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Abstract: Optimal experiment design for system identification involves determining an optimal input that 

is used to perturb the system so that the resulting input-output data is maximally informative. Plant 

friendly identification requires that constraints on input move sizes, output sizes or variance and 

experiment time be respected. The solution to the optimum input design problem depends on the 

unknown parameters to be estimated which is often approximated by an initial estimate. Use of the 

estimate is likely to result in loss in performance or violation of the constraints. An alternative is to 

formulate a robust optimization problem with uncertain parameters. The contribution of this work is to 

use the uncertainty sets originating from a prior identification exercise to solve a robust plant friendly 

input design problem. The methodology is derived for a general class of systems illustrated using 

numerical simulations. Simulations validate the expectation that the constraints are probabilistically more 

likely to be satisfied using the robust design than a nominal design based on uncertain parameters. 

Keywords: System identification, input design, convex optimization, robust optimization, semidefinite 

programming. 



1. INTRODUCTION 

System identification is the process of identifying dynamic 

models using a priori system knowledge and input-output 

data collected during an appropriate experiment. The quality 

of the identified model depends on the choice of the 

perturbation (input) signal. Hence, it is mandatory to design 

an informative input signal that results in maximum 

information about the system using minimal resources. The 

quality of the information can be quantified in terms of some 

scalar norm of the information matrix (Mehra, 1974; 

Goodwin et al., 1977; Zarrop, 1979; Ljung, 1999). Recently, 

a cost or a control relevant criterion is used to design the 

input (Hildebrand et al., 2003; Antoulas et al., 1999). An 

alternate is the least costly framework (Bombois et al., 2004) 

where the objective is to minimize the cost of the experiment 

quantified in terms of excessive input usage and output 

excursion while ensuring that the identified model is 

sufficiently accurate. For a wide variety of cost functions, it 

has been shown that the optimization problems can be 

reformulated as convex problems and in particular, 

semidefinite programs (SDPs) or generalized eigenvalue 

problems (GEVPs). Such problems can be formulated and 

solved using software such as CVX (Grant et al., 2011) or 

YALMIP (Lofberg, 2004).  

A practical requirement is that experiments are carried out 

under “plant-friendly” conditions, viz., conditions that cause 

minimum disruption to normal operation (Rivera et al., 

2009). This translates to requirements on input usage, input 

move sizes (to prevent actuator wear and tear), output 

excursions and experiment time. These constraints are non-

linear and possibly non-convex. Hence, these constraints are 

relaxed to obtain a convex reformulation (Narasimhan & 

Rengasawamy, 2011; Narasimhan et al., 2011).  

A very intriguing property of several optimal experiment 

design problems is that the optimization formulation, viz., the 

objective function and/or constraints are system parameter 

dependent. However, the parameters are unknown and the 

purpose of the experiment design is to estimate the unknown 

parameters. This apparent paradox is recognized in literature 

(Antoulas & Anderson, 1999). One suggested solution is to 

perform an initial (sub-optimal) experiment using standard 

inputs (e.g., PRBS, multi-sine etc.) and obtain an estimate of 

the parameters. These estimates are then used in the 

optimization problem and an optimal input is designed which 

is then used for perturbing the system. The parameters are re-

identified and the procedure is iterated, if necessary. This 

approach is often referred to as the sequential approach. 

However, since only estimates of the parameters are used at 

any stage, there is no guarantee of optimality or even 

constraint feasibility. This is especially relevant in plant 

friendly identification, where constraints on the output are 

important.  

Alternate methods include Bayesian approach (Chaloner & 

Larntz, 1989; Atkinson et al., 1993; Sebastiani & Wynn, 

2000) or robust approach (Rojas et al., 2007). In the Bayseian 

approach, the expected value of the cost is minimized, given 

a prior distribution for the parameters. The robust approach is 

a min-max or worst case approach, where the objective 

function is minimized over an uncertain set of parameters, 

given a characterization of the uncertainty set. This can be 

shown to be equivalent to a semi-infinite optimization 

problem with the feature that constraints be enforced at every 

point in this set. 

Preprints of the 10th IFAC International Symposium on Dynamics and Control of Process Systems
The International Federation of Automatic Control
December 18-20, 2013. Mumbai, India

Copyright © 2013 IFAC 553



 

 

    

 

Currently, we have two strong reasons to solve input design 

problem in robust framework. First reason is to account 

parameter uncertainty in problem formulation and second 

reason is to ensure constraint feasibility with higher 

probability level. We address this problem using a 

combination of the sequential and robust approaches. The 

sequential approach is used to generate an initial estimate of 

the parameters along with an uncertainty set. PEM methods 

result in asymptotically normal estimates of the parameters 

and hence, it can be safely concluded that given a confidence 

level, the true parameters lie within a confidence ellipsoid 

(Ljung, 1999). Equivalently, this results in an ellipsoidal 

uncertainty set for the parameters which are then used in a 

robust experiment design procedure. The constraints are then 

imposed for all points in the uncertainty set. Techniques from 

convex and robust optimization literature Boyd et al., (2004) 

Ben-Tel et al., (2009); are employed to arrive at robust and 

computable versions of the constraints. 

2. OPTIMAL INPUT DESIGN 

We consider the following SISO system with input    and 

output   . 
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Where     is the backshift operator,     is a zero mean, finite 

variance Gaussian white noise sequence. We make the 

following assumptions: 

 A(q) and D(q) have no zero on the closed unit disk 

and are co-prime. 

 There are no pole-zero cancellations. 

 The experiment time N is large. 

 The true system is in the model set. 

 The input is a stationary process with power 

spectrum (two-sided)  ̅u (  ) defined on [-   ]. 

  ( ) is the auto-correlation of  ( ) at lag   and 

form a Fourier transform pair with  ̅u( ). 

Corresponding to the two-sided power spectrum, we 

defied an equivalent one-sided power spectrum 

  ( ) on [   ]. The relationship between the two is 

as follow: Hildebrand et al., (2003)  given  ̅u (  ) 

defined on [-   ] ,   ( )  is defined such that  
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Where  ( ) is any    function on [-   ]. 

 The class of input is further constrained to those 

having unit power  

           ∫  ̅  (  )    
 

  

                                                          ( ) 

 or in term of the one -sided power spectrum: 
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Let    =[            ]    [            ]
  then 

  [    ]  is the overall vector of parameter to be 

estimated. The system is perturbed with an input sequence 

          resulting in the output           and the 

resulting data is used to estimate the unknown parameter 

 .The quality of the estimated parameter   ̂ can be described 

in the term of bias and covariance of  ̂. Given an 

asymptotically unbiased and efficient estimator, such as the 

Prediction Error method (Ljung , 1999) the covariance of  ̂ is 

given by the following: 

                                      ( ̂)    
                                             ( ) 

where    is Fisher information matrix. A typical problem in 

experiment design is to minimize a scalar function of    

subject to certain constraints. For above dynamic system it 

has been shown that     can be partitioned as Zarrop, (1979): 

                                    [
   
   

]                                            ( ) 

where         is related to the m+n+1 parameters in   

and dependent upon input.    is related to noise parameters 

and importantly, is independent of the input and so, it is 

sufficient to consider  cov( ̂)  or equivalently the inverse of 

   in input design problem. The objective in a plant friendly 

input design problem is to maximize some quality of the 

parameter estimates subject to plant friendly constraints. 

Typical quality functions include         (   ( ̂)) 

 ,         ( ̂) or       (   ( ̂)) . Plant friendly 

considerations include minimizing move size |       | 
and output magnitude |  |  However; it is not possible to 

translate these instantaneous constraints to the frequency 

domain and hence it is customary to relax them   by 

constraining  
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    and  
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    .   

 The frequency domain cov( ̂)  is approximately  

                               cov( ̂)    ∑          
       
                    (8) 

where    is constant (m+n+1) (m+n+1) matrix and    is  

trigonometric moment (Narasimhan et al., 2011).   

The input power constraint, input move size constraint and 

the output power constraint are all expressed in frequency 

domain using Parseval’s theorem.  Thus for a fixed and large 

N, the relaxed D-optimal plant friendly design problem is: 
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where the constraints are on the input power, input move size 

and output power respectively and       and     are user 

specified limits on the move size variance and output power.   

The above problem is convex but the decision variable 

  ( ) is infinite dimensional. Two methods have been 

proposed to convert it into finite dimensional problem 

(Hjalmarsson., 2005). The first involves parameterizing the 

input spectrum in term of a finite number of basis function 

e.g.,  

   ∑     (  ),                  j=1…,M.                           (10) 

The other approach is known as the partial correlation 

approach, where the problem is re-parameterized in terms of 

trigonometric moment      (Narasimhan et al., 2011). 
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However, parameterization simply in terms of    is not 

sufficient as it is necessary to ensure that    are feasible, or in 

other word we can say that they satisfy a necessary and 

sufficient condition to become a valid moment points. Define 

p=max (2n+r+2, m+s+n+1, m+r+s+1) if p is odd i.e., p=2l+1 
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The obtained matrices  ̅ and   should be positive definite 

(Narasimhan et al., 2011). 

A similar condition can be derived for even p, which is 

omitted in the interest of brevity and can be found in 

Narasimhan et al., (2011). The advantage of this re 

parameterization is that the final optimization problem is a 

semidefinite program (SDP). The input and output constraints 

in (9) can be expressed as linear functions of     E.g., 

| (   )  (   )|
 
 as defined in Narasimhan et al., (2011)  is 

a polynomial of degree 2n+r+s in    ( )and we denote it by  

∑   
      
       ( ). Hence the constraint  ∫       

 

 
 can 

be replaced by a linear equality as follows: 
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The other constraints (input move size and output power) can 

similarly be expressed as linear functions of     (Details are 

omitted in the interest of brevity). Let             

    be the coefficient of | (   ) (   ) (   )|
 
  The 

final optimization problem can be formulated as a SDP: 
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Other re-parameterization is also possible, e.g., in term of 

   ( )    (  )   (Hildebrand et al., 2003) which also 

yields an LMI. Both approaches are theoretically equivalent. 

Inspection of (14) reveals that the optimization formulation 

depends on the system parameters as they appear directly in 

the objective function and the output power constraint. The 

most common solution suggested in literature is to carry out a 

preliminary identification exercise using a sub-optimal input 

and obtain an estimate of the parameters,  ̂. These parameters 

are then used in (14) to obtain an input and the system is 

perturbed with this computed input and the parameters re-

identified. This procedure is repeated, if necessary.  

One important issue with this procedure is that the solution 

obtained may not be optimal or even feasible, i.e., the output 

power constraint may not be satisfied by the true system if an 

estimate is used in (14). In the following, we use techniques 

from robust optimization and characterization of the 

uncertainty sets to obtain a robust version of (14).  

3. ROBUST EXPERIMENT DESIGN 

3.1 Motivation  

From (14), it is clear that the optimization problem directly 

depends on the system parameter vector  . The plant friendly 

constraints on output power, i.e.,  ∑   
       
          

directly involves the parameters of the system to be identified 

 ̂   ( ̂). In the sequential approach, an estimate   ̂is 

generated using a prior identification experiment and the 

corresponding   ̂ used to solve (14). Note that  ̂ is only an 

estimate and hence, when an input corresponding to this 

solution is actually used to perturb the system subsequently, 

the output power need not satisfy the above constraint.   

Since  ̂ is an estimate and therefore uncertain, if we are able 

to characterize the corresponding uncertainty sets, we can 

then formulate a robust optimization problem.  Rather than 

impose the constraints using the estimated values of the 

system parameters, we require that the constraints be satisfied 

for all points in the uncertainty set.  

3.2 Characterization of uncertainty sets  
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 When   is estimated using a PEM method,   ̂is 

asymptotically normal with mean   and covariance given by 

the Cramer-Rao inequality. This can be interpreted to imply 

modulo a probability level, that the true   lies within a 

confidence ellipsoid. The larger the probability level, the 

larger the ellipsoid. Equivalently, we can describe the 

following uncertainty region cantered around   ̂: 

       { |(   ̂)
 
   ( ̂)

  
(   ̂)    }                     (15) 

where   is indicative of the probability level and cov( ̂) is 

evaluated from (6). Rather than solve (14) using the 

nominally value, viz., the estimated    ̂,we allow   to vary in 

 . 

While (15) characterizes the uncertainty set of the 

parameters, we are interested in characterizing the 

uncertainty sets of [       ] . This requires the calculation 

of the covariance of   as follows: 

The covariance of nonlinear parameter can be computed by 

linearizing it around mean using Taylor series expansion   

Ljung (1999). Let  ̂ is    -dimensional vector of estimated 

parameter with mean     and covariance Y. Our main interest 

is to find covariance of      dimensional random variable 

 ̂   ( ̂)  which is nonlinear in parameters. We use the 

following Taylor series expansion as follows:  

 ( ̂)   (  )    (  )( ̂    )  

Where    is the     derivative of   with respect to    

     ( ̂)   ( ( ̂)     ( ̂)) ( ( ̂)     ( ̂))
 

 

For an asymptotically unbiased estimate    ( ̂)   (  ) 
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                                   (16) 

Thus, given an estimate  ̂, and the corresponding estimate of  

the transformed vector  , the uncertainty set of the  

transformed vector   can  be described as : 

  { ̂    |‖ ‖    }                                                     (17) 

3.3 Robust formulation 

The robust counterpart of output constrain ∑   
       
      

     can be written as ∑   
       
                  .This 

relationship will hold if and only if 

       ∑   
       
         . Equivalently this relationship 

can be replaced by vector form as follows:  

                                                                          (18) 

Using equation 17, equation 18 can be written as: 

           ̂      ‖ ‖ 
(  )                                        (19) 

Using Cauchy-Schwarz inequality (Boyd et al., 2004) the 

simplified robust form of output constraint is: 

               ̂    ‖  ‖                                               (20) 

Although the above constraint is nonlinear, it is a convex and 

in particular, a second order cone constraint. The robust form 

of output constraint depends on the covariance of  ̂ which is 

generally nonlinear in parameter and must be computed 

before imposing this constraint into optimization formulation. 

     
       (∑    )s.t.

{
 
 

 
 

∑             
   

   ∑       
      
       

 ̂    ‖  ‖     

 (       )   

 (       )   

 

                                                                                           (21) 

The obtained problem is standard convex optimization 

problem and can be solved using CVX (Grant & Boyd, 2011) 

3.4 Input signal design 

Given the optimal    
 , the next step is to design actual input. 

The theory of Tchebycheff  system  (Narasimhan, et al., 

2011) allows us to obtain an input containing no more than 

p/2 distinct frequencies. Let the desired input spectrum    be 

represented in the form linear combination of weighted 

frequency.  

    ∑     (    )                                                       (22) 

Where  (    ) is Dirac delta function,   are points in 

support of     and     is the associated weights or 

contribution of ith frequency. The frequency    and its 

associated weight    can be computed by solving convex 

optimization problem proposed in Hildebrand and Gevers, 

2003 &  Narasimhan et al., 2011. Once the frequencies and 

the weights are known, the optimal input is a multisine 

(Zarrop, 1979). 

`   ∑       (      )                                                 (23) 

Where         (   )
     if        .For all other    

,   (    )
    and    can be chosen arbitrarily. 

 4. EXAMPLE 

To motivate the idea of robust D-optimal plant friendly input 

design, we have taken single input single output finite 

impulse response (FIR) system: 

Consider the true system 

    (                )                               (24)                                  

Hear    is input and    is zero mean Gaussian white noise 

with variance 0.1. The system is to be identified within FIR 

model structure.  

For the identification purpose output signal is generated 

according to expression (24) using sub optimal input (PRBS) 

of power 0.5. The generated data is then used to obtained   

initial estimate of the parameter ( ̂) and corresponding 

covariance matrix (Y) by using SYSID toolbox in Matlab. 
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For the above model (FIR) D-optimal plant friendly 

formulation is as follow: 
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The ideal value of the objective function is -28.59 and it is 

obtained by solving the above problem using the true values 

of the system parameters [1 -0.5 0.25].  For this system, the 

information matrix depends on the moments         . In this 

particular formation      , and hence it is sufficient to 

consider the feasible space for          . Let the input 

consist of single frequency   , i.e.,     (    ) where 

  is Dirac-delta function centred at   .Clearly, if     , we 

have           likewise, when                 
 . In similar fashion we continue with different   between 0 

to π and will get different    and   . Plot of  (     ) shown 

in Figure 1 will give the feasible region which is the convex 

hull of all single frequency design. 

Figure 1. Feasible region 

Since the output power constraint and hence, the optimal 

input design procedure depends on the unknown parameters, 

an initial estimate of the parameters is obtained by PRBS 

(Pseudo random binary signal). To simulate this idea we have 

taken                    . The optimal solution is 

[                ] , which lies on output constraint, that is 

the output constraint is active  while input constraint is not. 

Among other possible optimal input, which includes filtered 

white noise, autoregressive moving average sequence, we 

choose the following multi sine because it is easy of 

generation and subsequent analysis. 

            (
 

 
     )           (

 

 
     )  

          +0.2026   (  )                                                       (26) 

The actual output power corresponding to this input is 

calculated using the true system parameters.  This process is 

repeated in a Monte Carlo simulation setup with 1000 

different noise realization.  The parameter estimates using 

these data sets are used to solve the corresponding D-optimal 

problem. It is observed that the actual output power 

constraint is obeyed in only ~ 49.9% of the 1000 realizations. 

Hence, it can safely surmised that the probability that the 

output constraint is actually obeyed is approximately 0.495.   

In order to address this, we impose a robust version of the 

output power constraint which inherently accounts for the 

fact that the parameters are uncertain. This results in a 

conservative constraint and is shown in Figure 2.   

Figure 2. Feasible space with constraints 

The robust D-optimal plant friendly formulation is as 

follows: 
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 ,                 ,          

Given an initial estimate of  bi, and the corresponding 

covariance,  the covariance of the nonlinearly transformed   

is determined using the Taylor series approximation as 

described previously and P can be obtained by Cholesky 

factorisation of  this matrix.  

To simulate the robust D-optimal formulation we have taken 

all design parameter same as previous case (     
              )        . The optimal solution is  

 [                ] , which lies on output constraint, i.e.,   

the output constraint is active while input constraint is not. 

The robust input is: 
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As above, the process is repeated with 1000 sets of noise 

realizations. The parameter estimate using these data sets is 

used to solve the robust D-optimal problem. It is seen that the 

actual output power constraint is obeyed in ~84.04% of the 

1000 realizations.  For sake of illustration the results are also 

presented for    .795 (95 % confidence level). These are 

tabulated in Table 1. Hence, the robust problem formulation 

ensures that the probability that the output power constraint is 

obeyed is substantially higher. This results in a conservative 

constraint and the trade-off is that the parameter accuracy 

decreases slightly as compared to the ideal solution.  

5. CONCLUSIONS 

A robust formulation for plant friendly input design with 

constraints on input move size and output power is presented. 

The constraints are shown to be conservative, and hence 

result in a slight loss in performance. However, the robust 

formulation ensures that the output constraints are satisfied to 

a higher degree of confidence.  

Table 1 

Attribute                 .795 

% Output power below 

than true value in case of 

(Robust/linear) Output 

constraint 

84.04/49.9 95.4/49.9 

 True value of objective 

function  

-28.59 -28.59 

Objective function range 

in case of (Robust/linear 

output Constraint) 

-28.5 to -29/ 

-28.4 to -28.9 

-28.5 to -29/-

28.4 to -28.85 

% of objective function 

better than true value in 

case of (Robust/linear) 

output constraint 

15.9/50.2 4.5/50.2 
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