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Dynamical systems theory has emerged as an interdisciplinary area of research to characterize the complex dynamical
transitions in real-world systems. Various nonlinear dynamical phenomena and bifurcations have been discovered over
the decades using different reduced-order models of oscillators. Different measures and methodologies have been
developed theoretically to detect, control, or suppress the nonlinear oscillations. However, obtaining such phenomena
experimentally is often challenging, time-consuming, and risky, mainly due to the limited control of certain parameters
during experiments. With this review, we aim to introduce a paradigmatic and easily configurable Rijke tube oscillator
to the dynamical systems community. The Rijke tube is commonly used by the combustion community as a prototype
to investigate the detrimental phenomena of thermoacoustic instability. Recent investigations in such Rijke tubes have
utilized various methodologies from dynamical systems theory to better understand the occurrence of thermoacoustic
oscillations, their prediction and mitigation, both experimentally and theoretically. The existence of various dynamical
behaviors has been reported in single as well as coupled Rijke tube oscillators. These behaviors include bifurcations,
routes to chaos, noise-induced transitions, synchronization, and suppression of oscillations. Various early warning
measures have been established to predict thermoacoustic instabilities. Therefore, this review paper consolidates the
usefulness of a Rijke tube oscillator in terms of experimentally discovering and modeling different nonlinear phenomena
observed in physics; thus, transcending the boundaries between the physics and the engineering communities.

The occurrence of various nonlinear self-sustained oscilla-

tions in different systems observed in our day-to-day life

has been studied from a dynamical systems perspective.

Many such systems that mesmerize the human mind have

been modeled as an oscillator. Theoretical reduced-order

models have been developed for oscillators, e.g., Stuart-

Landau, Van der Pol, Rossler, Lorenz, etc., to study and

predict a plethora of dynamical behaviors observed in nat-

ural systems. The experimental validations of these the-

oretically discovered dynamical phenomena however are

limited to oscillators involving electronic circuits includ-

ing Chua’s circuit, lasers, pendulums, chemical oscilla-

tors, etc. In the present study, we introduce the Rijke

tube as a paradigmatic member to the family of nonlinear

oscillators. Rijke tube systems are prototypical thermoa-

coustic oscillators and have been extensively studied to un-

derstand the occurrence of complex thermoacoustic insta-

bilities observed in gas turbines and rocket engines used

for propulsion and power generation applications. Recent

studies on the Rijke tube have shown the existence of nu-

merous dynamical states, bifurcations, and nonlinear be-

haviors such as synchronization and oscillation quenching

in coupled systems that are often observed in nonlinear os-

cillators. Different nonlinear measures have been used to

predict critical transitions in a Rijke tube system. There-

fore, through this review paper, we introduce the dynam-

ical systems community to the Rijke tube oscillator to ex-

perimentally validate their novel theoretical findings, and

thus bridge the gap between the physics and the engineer-

ing communities.

I. INTRODUCTION

Most observations in our daily life can in one way or the
other be studied from a dynamical systems perspective. Any
system whose behavior evolves with time, such as a moving
bicycle1, the flowing riverbed2,3, flocks of birds flying in the
sky4–6, the changing climate7, the beating heart8, varying pop-
ulation densities of animals9,10, and many other systems that
we come across in our day-to-day life can be considered as
dynamical systems. These systems can be mathematically
modeled through differential equations by applying various
physical laws11. For example, the motion of an object can be
described using Newton’s laws of motion, planetary dynam-
ics using gravitational laws, and the power output from elec-
tronic circuits using electrostatic and electrodynamical system
equations12. Essentially, any system that evolves with time
can be investigated from a dynamical systems perspective, us-
ing a governing equation of the form:

ẋ = f (x, t), (1)

where x refers to the state variable (or a vector of state vari-
ables) of the system and f indicates a function that governs the
evolution of the variable in time. The dynamical behavior of a
system can manifest as various dynamical states. For instance,
in the trivial case when f (x, t) = 0, the system is always con-
sidered to be at a steady state where the dynamics of the state
variable x saturates to a fixed value. On the contrary, when
f (x, t) constitutes linear and nonlinear terms, the behavior of
the system becomes complicated and exhibits a wide variety
of dynamical states. One commonly observed dynamical state
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is the self-sustained oscillatory state wherein the dynamical
behavior of a state variable shows fluctuations about a mean
value. The occurrence of various self-sustained nonlinear be-
haviors has been studied from a dynamical systems perspec-
tive by modeling the system as a network of oscillators13,14.

Oscillations fascinate the human mind from a very young
age, starting from the joyful oscillations in a swing to the
monotonous motion of a pendulum bob. Our knowledge on
such oscillations grows as we learn about the spring-mass
systems from physics textbooks15,16. The simple back and
forth repeated fluctuations turn into intricate linear and nonlin-
ear differential equations. Oscillations can vary from being a
mind-soothing tone from musical instruments17 such as a flute
or the vibrations in the string of a guitar, to the loud destructive
sounds from the roaring of gas turbines or rocket engines18.
In biological systems, oscillations can be associated with the
sustenance of life in the form of respiratory cycles, neural net-
works in the brain, rhythmic beating of the heart, etc.19,20.
Furthermore, hazardous disease spread models21 and struc-
tural oscillations in bridges22,23 and skyscrapers24,25 are also
represented by oscillators. Oscillations, therefore, are ubiqui-
tous in nature and engineering, and their characteristics and
desirability vary from system to system.

Although the nature of these aforementioned systems may
seem very different, the inherent equation behind the oscilla-
tions remains the same. For example, let us consider a spring-
mass-damper system, governed by the following equations:

mẍ+ cẋ+ kx = 0 (2)

where m is the mass of the system, c and k are the damping
coefficient and the spring constant, respectively (Fig. 1a). The
oscillations in the system are driven due to the restoring force
(kx) of the spring, while the damper (cẋ) damps the oscilla-
tions. Simple harmonic oscillations are observed in the un-
damped case for c = 0 (Fig. 1b), while negatively damped os-
cillations are observed for c < 0 (Fig. 1c). For c > 0, the sys-
tem ultimately attains a steady state in time (Fig. 1d), where
x= 0 can be referred to as an equilibrium state (or fixed point).
To analytically obtain the equilibrium points, we need to set
all the equations of linearized time derivatives of state vari-
ables to zero, where the roots of these equations indicate fixed
points. The stability of these fixed points can be obtained by
computing the first derivatives of these linearized equations
(i.e., f ′(x)) about the fixed points. Depending on the value of
f ′(x), i.e., f ′(x) < 0 or f ′(x) > 0, the fixed point is classified
as stable or unstable, respectively. A stable fixed point tends
to attract all the neighbouring trajectories towards it - similar
to a sink. In contrast, an unstable fixed point tends to repel all
the trajectories nearby - similar to a source.

Apart from fixed points, there exists another set of attrac-
tors and repellers for the trajectories in the phase space for
systems that exhibit oscillatory behavior. These attractors
are often classified as regular or strange11,26,27. Regular at-
tractors possess a distinct closed-looped shape for a particu-
lar dynamical state, whose examples include limit cycle and
frequency-locked oscillations. A regular attractor is also ob-
served for quasiperiodic oscillations, where the trajectory is
bounded by a torus in the phase space. In contrast, strange at-

FIG. 1. (a) Schematic of a spring-mass system with state variable,
x(t), defined as the distance from mean position x = 0, mass m,
damping coefficient c, and spring constant k. Dynamics of the state
variable shows (b) an oscillatory behavior for c = 0, (c) a linearly
unstable behavior for c = −0.2 < 0 and (d) a stable steady state for
c = 0.2 > 0. The other parameters are kept at m = 1, k = 10 and
x(0) = 1.

tractors are observed for chaotic oscillations26,28,29. Such os-
cillations are deterministic and exhibit sensitive dependence
on the change in initial conditions. The dimension of regu-
lar attractors is an integer number, while that of strange at-
tractors is a non-integer number26. Regular oscillations are
often modelled using Vand der Pol or Stuart-Landau oscilla-
tors, while chaotic oscillations are modeled using Lorenz or
Rössler oscillators11,28,30,31.

Extensive research in dynamical systems theory has been
carried out to characterize the nonlinear behavior of oscilla-
tors. Bifurcation analysis is one commonly used approach de-
veloped to study the occurrence of qualitative changes in the
behavior of a system of oscillators on the variation of a con-
trol parameter28,32. These qualitative changes include emer-
gence or change in the stability of fixed points33, presence of
tipping34, bistability and hysteresis35, etc. Other approaches
that have been developed to detect the dynamical properties of
a system include Poincaré map, recurrence plots, calculating
measures such as Lyapunov exponents, correlation dimension,
etc.36,37. In addition to studies on characterizing the dynami-
cal behavior of individual oscillators, many studies have been
devoted towards understanding the coupled dynamics arising
due to the interaction of two or more oscillators. Furthermore,
several studies have focused on developing various control
strategies based on self-coupling, mutual coupling, and ex-
ternal forcing to control or quench self-sustained oscillations
in coupled systems38–41.

Over the last three decades, various researchers have
used different reduced-order nonlinear models and coupling
schemes to analyze the behavior of coupled oscillators. To-
wards this purpose, commonly used oscillator models include
the Van der Pol, Lorenz, Stuart-Landau, Duffing, Chua, relay
oscillators, etc.38,42–45. Various coupling schemes46 that have
been invented, including time-delay coupling, dissipative cou-
pling, relay coupling, conjugate coupling, environment cou-
pling, etc. A coupled system of such oscillators exhibits a
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plethora of dynamics depending on the number of oscillators
and their coupling scheme47–49. These dynamical states in-
clude homogenous states such as synchronization39,42, am-
plitude or oscillation death46,50,51, symmetry-breaking states
such as chimera52–54, weak chimera55–57 and clustering58,
etc. However, the experimental evidence of coupled dynam-
ical behaviors of these oscillators are limited to a few sys-
tems including electronic circuits59,60, lasers61,62, chemical
oscillators63,64, and thermo-fluid systems55,65. Although these
experimental systems provide limited controllability and a re-
duced number of control parameters, they are extensively used
due to the demand for experimental verification.

In the present review, we introduce the Rijke tube, a proto-
typical thermoacoustic oscillator, as a paradigmatic oscillator
in the family of the aforementioned nonlinear oscillators. A
typical thermoacoustic system consists of a heat source placed
at a particular location inside a duct. The heat source com-
prises a single flame, multiple flamelets, or an electrically
heated wire mesh. In such systems, positive feedback be-
tween the acoustic field in the duct and the heat release rate
fluctuations across the heat source often lead to the occur-
rence of large amplitude self-sustained acoustic oscillations,
known as thermoacoustic instability. Earlier review papers on
Rijke tubes in the engineering literature66–72 highlight the ap-
plication and relevance of such systems in the aerospace and
rocket industry from the perspective of investigating mech-
anisms and control of thermoacoustic instability. Here, we
will cover numerous recent experimental and theoretical stud-
ies performed on Rijke tube systems in the last decade from
a dynamical systems perspective. These studies have investi-
gated various dynamical transitions (bifurcations) leading to
the occurrence of thermoacoustic instability, different nonlin-
ear states observed during such instabilities, and a variety of
methodologies based on coupling and external forcing used
to mitigate these instabilities, and measures to predict the oc-
currence of thermoacoustic instability in the system. Similar
studies on characterizing and controlling the dynamical be-
havior of oscillators are usually performed with phenomeno-
logical models in the dynamical systems literature. Here, we
aim at attracting the attention of the dynamical systems com-
munity to the Rijke tube oscillator, which is known only in the
thermoacoustic community, with its potential applications in
advancing experimental research on nonlinear oscillators.

Rijke tube systems are rather simple in design, easy to fab-
ricate and operate, and also allow us to perform strictly con-
trolled experiments. Furthermore, the presence of numerous
control parameters in such systems and their individual con-
trol facilitate the investigation of various phenomena observed
in general dynamical systems theory. The effect of exter-
nal fluctuations (both harmonic and stochastic) on the non-
linear behavior of a bistable oscillator can be easily demon-
strated through experiments by installing various additional
external subsystems such as actuators. Coupled phenomena
such as synchronization and amplitude death observed due to
the interaction of oscillators can be easily studied and verified
by connecting two or more Rijke tubes using simple tubes.
Thermoacoustic instability in Rijke tubes often portrays itself
as dancing flames along with a rhythmic sound production

during the states of limit cycle, quasiperiodicity, frequency-
locked and chaotic oscillations73–75.

The outline of the paper is as follows. In Sec. II, we de-
scribe the discovery of thermoacoustic oscillations in the orig-
inal Rijke tube system and various advances that have been
made in the study of Rijke tubes over the years in brief. Subse-
quently, we explain various dynamical states exhibited by the
Rijke tubes and, thereby, justify the claim of it being an excel-
lent example for an oscillator. We also present different types
of Rijke tube systems and briefly describe each of their ex-
perimental setups. In Sec. III, we present the various bifurca-
tions exhibited in a Rijke tube oscillator by varying the control
parameter along with a description of the dynamical states ex-
hibited by the system. This is followed by a discussion on var-
ious routes to chaos observed in Rijke tube systems. Section
IV describes bistability along with different noise-induced dy-
namical behaviors, such as coherence resonance, stochastic
bifurcations, and pulsed instabilities. The interaction between
coupled Rijke tube oscillators leading to synchronization and
phase-flip bifurcation, and different states of forced synchro-
nization of the Rijke tube oscillator are presented in Sec. V,
followed by a discussion on control strategies implemented to
mitigate thermoacoustic instability in Sec. VI. Finally, in Sec.
VII, we conclude the study and provide insights on possible
future advancements and developments in the field along with
its applications to other streams of science and technology.
Hence, we summarize relevant works considering the oscil-
latory behavior of the Rijke tube and the various dynamical
behaviors exhibited by the oscillator. Before we dive into de-
lineating the simple experimental Rijke tube as an oscillator
and explaining its distinguished characteristics, let us explore
the various types of Rijke tube oscillators.

II. A BRIEF HISTORY ON RIJKE SYSTEMS

A. Thermoacoustic instability and its challenges

The occurrence of thermoacoustic instability in rocket and
gas turbine engines has hindered the development of the en-
ergy and aviation industry as well as the space and defense
programs for decades18,76,77. The issue of thermoacoustic in-
stability emerged with deadly consequences in the rocket in-
dustry especially in the 1960’s during the testing phase of the
Apollo launch78,79. When testing the F1 engine for power-
ing the Saturn V rocket, the Apollo team at NASA found that
the gases in the engine developed violent pressure oscillations
(known as “combustion instability” or “thermoacoustic insta-
bility” in the parlance of propulsion engineers), which causes
significant harm to the engine. Although combustion insta-
bility refers to stable limit cycle oscillations, engineers refer
to it as ‘instability’ or the ‘unstable state of operation’ due to
its disastrous consequences. The consequences of thermoa-
coustic instability include loss of structural integrity resulting
from the increased vibrations, overwhelming the thermal pro-
tection systems, damage to electronic systems including guid-
ance and navigation systems, performance losses due to thrust
oscillations, loss of controllability of the vehicle, and some-
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times even failure of the mission, causing an impediment in
the engine development amounting to billions of dollars of
losses annually to engine manufacturers18,79–81.

Scientists from all around the world have invested consider-
able time and effort to suppress thermoacoustic instability and
thereby reduce the financial losses associated with it. Var-
ious theoretical and experimental studies on thermoacoustic
instability have been performed over the years to understand
the thermoacoustic phenomena, characterize the various dy-
namical behaviors, and develop methodologies to suppress
these large amplitude thermoacoustic oscillations. To under-
stand the complex interactions between subsystems that lead
to the occurrence of thermoacoustic instability, it is essential
to begin the process from a simple prototypical system and
gradually work our way towards more complex systems by
adding individual complexities. Hence, fundamental research
on thermoacoustic instability began on prototypical thermoa-
coustic systems known as Rijke tubes. Next, we present a
historical perspective on the development of Rijke tube sys-
tems.

B. History of Rijke tube systems

Higgins82 was the first to report the generation of
combustion-driven acoustic oscillations by a hydrogen diffu-
sion flame enclosed in a tube (Fig. 2a). He referred to this phe-
nomenon as the ‘singing flame’. However, recent reports83–85

points to the existence of such oscillations prior to Higgins in
a devise called ‘Kibitsunokama’ (or the iron bowl of Kibitsu)
which was mentioned by a Buddhist monk in his diary in
1568. Subsequently, Sondhauss86 observed the occurrence of
acoustic oscillations in a glass tube with a heated closed bulb
at one end and the other end open to the atmosphere (Fig. 2b).
Later, in 1859, Rijke87 discovered the production of a tonal
sound from a metal gauze, heated using a burner in a vertical
duct. Such a setup using the vertical duct with the concen-
trated heat source located in the lower half was thereafter re-
ferred commonly as the ‘Rijke tube’ (Fig. 2c). He observed
the production of a loud sound soon after the removal of the
flame from the duct, which gradually decayed as the gauze
cooled. He inferred that the production of sound was due to
the direct conduction of heat from the metal gauze to the sur-
rounding air in the tube. Rijke further observed that the sound
was absent when the tube is placed horizontally or when the
gauze is located in the upper half of the tube. He reasoned that
the upward flow of air in the vertical tube, due to the natural
convection of air, is necessary for the production of sound.
The rapid expansion of the air as it passes through the hot
gauze and the gradual contraction after engenders the sound
in the tube69,87. However, his conclusion was incomplete and
was unable to explain the relevance of locating the wire gauze
in the lower half of the Rijke tube in the production of sound.

Subsequent analysis of heat-driven oscillations by Rayleigh
filled this void88–91. He proposed that the addition of heat
at the point of highest compression or the extraction of heat
at the point of highest expansion in an acoustic cycle pro-
moted the generation of tonal sound waves in the system. On

FIG. 2. Schematic of the experimental setups used for investigating
thermoacoustic instability in the pioneering studies by (a) Higgins82,
(b) Sondhauss86, and (c) Rijke87.

the other hand, the heat addition during the maximum ex-
pansion and the heat extraction during the maximum com-
pression resulted in the damping of acoustic oscillations in
the system. Thus, to generate thermoacoustic instability, both
acoustic pressure and heat release rate fluctuations should be
in-phase with each other. This description of the condition
for acoustic driving by a heat source is now popularly re-
ferred to as the Rayleigh criterion92, as it explains the pro-
motion of thermo-acoustic oscillations in a Rijke tube69. Sub-
sequently, the Rayleigh criterion was generalized to account
for the acoustic losses in the system, whose expression can be
given as follows93,94,

1
T

∫ T

0

∫ V

0
p′(t)q̇′(t)dV dt > Acoustic damping, (3)

where p′(t) and q̇′(t) correspond to the acoustic pressure and
the global heat release rate fluctuations in the flame, t, V and
T correspond to the time variable, combustor volume, and the
time period of oscillations, respectively. Thus, thermoacoustic
instability is established in a system only if the acoustic driv-
ing caused by the unsteady heat release rate fluctuations over-
balances the acoustic damping in the system. A detailed de-
scription of the history and the development of the Rijke tube
can be found in refs.66–69,91,93,95,96. Hereon, we will discuss
various modern variants of Rijke tube configurations devel-
oped recently for studying the nonlinear behavior of a Rijke
tube oscillator.

C. Types of Rijke tube systems

1. Horizontal Rijke tube

The horizontal Rijke tube is a recent variant of the original
Rijke tube that we discussed before. It consists of a horizon-
tal duct with an electrically heated wire mesh as a compact
heat source, located at the quarter location from the inlet of
the duct (Fig. 3). An external power supply is used to control
the heat input to the wire mesh; thus, it controls the heat re-
lease rate fluctuations in the system. As mentioned above, the
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natural convection of the air flow is necessary for the genera-
tion of acoustic oscillations in the vertical configuration of a
traditional Rijke tube. It, therefore, causes an intrinsic depen-
dency between the heat release rate fluctuations in the flame
and the upward air flow. As a result, it is difficult to obtain
an independent control over the supply of air and the genera-
tion of heat release rate fluctuations in the traditional vertical
Rijke tube. The ingenious invention of the horizontal Rijke
tube by Matveev97 in 2003 brought a radical change, making
the research performed on Rijke tubes far less complicated.
In this system, a continuous mean air flow is established using
external devices such as a blower97,98 or a compressor99. This
decouples the mean flow and the heat release rate fluctuations
in the system, that in turn, helps in independently studying the
effect of an increase in the mean air flow rate in the Rijke tube
system. This simplification in the setup further enables us to
evade the need to model natural convention (seen in traditional
Rijke tubes), facilitating much easier modeling of Rijke tube
systems.

The duct used in the horizontal Rijke tube is long and main-
tains an open-open boundary condition for the acoustic stand-
ing wave established inside the duct. Mathematically speak-
ing, the total pressure p(x, t) in a Rijke tube can be described
as p(x, t) = p̄+ p′(x, t), where p̄ is the atmospheric pressure,
p′(x, t) are the acoustic pressure oscillations, and x and t are
the space and time variables. At both the ends of the Rijke
tube, we have p(x = 0, t) = p(x = L, t) = p̄, where L is the
length of the duct. Therefore, at the boundary, we observe
p′(x= 0, t) = p′(x= L, t) = 0. This boundary condition where
the acoustic pressure is zero is referred to as an acoustically
open boundary condition. On the other hand, in the case of
acoustically closed boundary conditions, the acoustic velocity
(u′) is zero at the boundary100–102.

Furthermore, air is passed through a decoupler prior to en-
tering the system. The decoupler is a large chamber used to
dampen the fluctuations in the air flow and supply a steady
flow into the system. The acoustic pressure oscillations es-
tablished in the Rijke tube can be measured using micro-
phones/piezoelectric transducers mounted on the duct. In a
horizontal Rijke tube, we can vary different control parame-
ters, such as the heater power supplied to the mesh, the heater
location in the duct, and the mass flow rate of air, to study the
occurrence of limit cycle oscillations (i.e., thermoacoustic in-
stability) in the system. In addition, we can study the effect
of external perturbations (e.g., noise or harmonic forcing), fa-
cilitated through loudspeakers, on the transition of the system
behavior from a steady state to limit cycle oscillations. Elec-
trical heaters are also used in the vertical configurations of Ri-
jke tubes in recent theoretical studies by Andrade et al.103,104

and Wilhelmsen and Meglio105.

2. Vertical Rijke tube burners

In addition to the previously discussed Rijke tube config-
uration consisting of a heated wire mesh as a compact heat
source, another widely used configuration uses the flame as
a compact heat source. Here, the flame indicates the region

FIG. 3. Schematics illustrating (a) the boundary conditions of a duct
that is open at both the ends and (b) the experimental setup of a hor-
izontal Rijke tube. In (a), x f indicates the location of the heater wire
gauze from the inlet, L is the duct length, p′ is the acoustic pressure
fluctuations, and ū is the flow velocity. (b) Adapted with permission
from Tandon et al.106.

in the space where chemical reactions take place that converts
cold unburnt reactants (i.e., fuel and air) into hot burnt prod-
ucts. By saying compact, we mean that the length of the heat
source (i.e., the flame or the mesh) is much smaller than the
wavelength of the acoustic standing wave established in the
duct (i.e., l f lame << λ ). We refer to such systems as Rijke
tube burners in this paper. Depending on how the fuel and air
enter into the combustion chamber, the type of flame in verti-
cal Rijke tube burners is usually classified as a diffusion flame
or a premixed flame.

In a diffusion flame Rijke tube burner (Fig. 4a), the fuel
and the oxidizer (air) are supplied through separate feed lines
in the Rijke tube. The fuel is supplied through the burner tube,
whereas the oxidizer is supplied through the annular space be-
tween the burner tube and the Rijke tube. Both the fuel and
the oxidizer enter the system via separate decouplers that sup-
press the fluctuations, providing a quiet flow. The diffusion
flame is established at the interface where the fuel (in gaseous
form) meets the air. Previous experimental studies showed
that a conical laminar flame107 or a turbulent flame108 can be
established in this type of burner.

On the other hand, in a premixed flame Rijke tube burner
(Fig. 4b), the fuel and air are injected into a common mixing
chamber and this well-mixed fuel-air mixture is then fed to
the burner tube through a decoupler. The fuel-air mixture is
ignited in the system using a spark plug or a small pilot flame.
In this setup, we can study the interaction of the acoustic field
with different configurations of laminar flames including con-
ical flame109,110, V-flame75,111,112, and also multiple conical
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FIG. 4. Schematic representation of (a) a diffusion and (b) a pre-
mixed flame vertical Rijke tube burner.

flames109,112,113.
In experiments with such Rijke tube burners, we can

vary different control parameters, such as the equivalence
ratio (i.e., the ratio of the actual fuel/air ratio to the
ideal/stoichiometric fuel/air ratio for combustion) and the lo-
cation of the flame in the tube, to study the occurrence of ther-
moacoustic instability in the system. The acoustic pressure
in the duct can be measured using condenser microphones or
piezoelectric transducers. The heat release rate fluctuations in
the flame can be measured in terms of temporal or spatiotem-
poral fluctuations in CH* or OH* radicals114–116 emitted by
the flame using a photomultiplier tube or a high-speed cam-
era.

3. Other Rijke-type combustors

Other than the aforementioned two basic types of Rijke-
type combustors, there are a few more novel Rijke-type
combustors utilized to investigate thermoacoustic instability.
These include the spray combustor117,118, two-heater Rijke
tubes119,120, loop tubes121,122, segmented Rijke tube123, and
Rijke-Zhao tubes124–126. The spray combustor used by Pawar
et al.117,118 consists of needle spray injectors producing tiny
droplets of fuel into the resonator tube. The droplets are fur-
ther passed through a mesh unit, where secondary atomization
takes place. The mesh unit also serves as a flame holder, facili-
tating the variation of the location of the flame in the duct. The
two-heater Rijke tube119 consists of a horizontal aluminum
duct with a square cross-section having two heating elements:
a stationary primary heater and a movable secondary heater.
A segmented tube123 is a Rijke tube consisting of two seg-
ments having different cross-sectional areas for the upstream
and the downstream of the tube. A Rijke-Zhao tube124 con-
sists of a mother tube having a Bunsen burner that splits into
two daughter tubes having different lengths. We will discuss
various dynamical behaviors and bifurcations observed exper-
imentally in the aforementioned configurations of Rijke tubes
in detail in Secs. III to V. Having discussed various experi-
mental configurations of a Rijke tube oscillator, we next move
our attention towards their mathematical modeling.

D. Theoretical studies

Ever since the discovery of thermoacoustic oscillations in
the Rijke tube system, experimental studies on such systems
were reported investigating various characteristics of the sys-
tem. This was followed by theoretical studies to enhance the
understanding of the dynamics exhibited by the system. The
model based on the friction interaction between the heated
gauze and the convective updraft proposed by Pflaum127 in
1909 set the beginning of such an analysis. The first attempt
at quantitative modeling was put forth by Lehmann128 in 1937
based on flawed assumptions. This, in turn, led to the inaccu-
rate conclusion that an increase in the convective velocity of
the system would indefinitely increase the intensity of sound.
Later, the study by Neuringer and Hudson129 adopted a dif-
ferent approach by starting from the equations of pressure and
velocity followed by a linear perturbation analysis. In this
manner, they derived the equation for the complex frequen-
cies in a Rijke tube. Their analysis verified the experimental
observation of growth of oscillations when the heater is lo-
cated in the lower half of the tube and its dampening when the
heater is placed in the upper half of the tube.

Subsequent studies focused on the development of flame
transfer functions130, deriving equations for the growth rate
of the oscillations131, and the robustness of such oscillations
to changes in parameters, such as flow velocities and heater
temperature132. Successful predictions of stability limits were
obtained using the analysis with flame transfer functions and
growth rates130,132. A similar theoretical analysis was per-
formed on premixed flames by obtaining the transfer func-
tions for a conical flame and thereby obtaining the stability
limits133,134. A series of investigations by McIntosh and his
colleagues135–137 investigated premixed flames using the large
activation energy theory to simplify the differential equations
in the flame zone. They obtained the flame response for vari-
ous parameter combinations of flame location, mean flow rate,
temperature, and finite tube lengths.

Another approach extensively used to model Rijke tube sys-
tems was through investigations on the Rayleigh criterion (Eq.
3), which requires the addition of heat during maximum com-
pression or minimum expansion to promote oscillations, and
vice versa to dampen oscillations. Putnam and Dennis138,139

theoretically verified this criterion, starting from the linearized
gas equations to investigate the phasing between the heat ad-
dition and the pressure fluctuations. Clarke et al.140 obtained
an analogy of the phasing relation using a piston configura-
tion, where they concluded that driving of oscillations can be
obtained when the phase difference between the heat and the
pressure fluctuations remains bounded between ±90◦. They
inferred that damping of oscillations occurs when the phase
difference between the heat and the pressure fluctuations are
beyond these set limits. The study by Culick141 produced a
general proof for the Rayleigh criterion applicable to both lin-
ear and nonlinear thermoacoustic oscillations. These studies,
therefore, marked the beginning of investigations on utilizing
the phase relations and the coupling between the pressure and
the heat release rate fluctuations to understand thermoacoustic
instability deeper.
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A particular form of investigation of this coupling was de-
veloped by Crocco and Cheng142, commonly referred to as
the n − τ model, to investigate the linear stability of com-
bustion systems. Nicoli and Pelce143 derived a relation for
the heat transfer between the heater and the surroundings in a
low Mach number flow by taking the instantaneous mass flow
rate perturbations into account. Using the modified King’s
Law144, Heckl145 developed a correlation between the un-
steady heat release rate at time t to the acoustic velocity fluc-
tuations at the time, t − τ . Zinn and co-workers146–148 and
Culick and co-workers18 introduced a Galerkin approach and
its extension to solve the nonlinear models of the thermoa-
coustic system. Balasubramanian and Sujith149 constructed
a reduced-order model for a horizontal Rijke tube exhibiting
a subcritical Hopf bifurcation. This model utilizes the modi-
fied King’s law and the Galerkin technique to get the temporal
evolution of the acoustic perturbations in a Rijke tube.

Next, we will describe the derivation of a mathematical
model in the time domain for a horizontal Rijke tube system
from momentum and energy conservation laws proposed by
Balasubramanian and Sujith149. The conservation laws for a
one-dimensional acoustic field are:

ρ̄
∂ ũ′

∂ t̃
+

∂ p̃′

∂ x̃
= 0,

∂ p̃′

∂ t̃
+ γ p̄

∂ ũ′

∂ x̃
= (γ −1) ˙̃Q′,

(4)

where p̃′ and ũ′ are the dimensional acoustic pressure and ve-

locity fluctuations, and γ is the heat capacity ratio. Here, ˙̃
Q′

is the heat release rate modeled using the modified King’s law
and follows the empirical model suggested by Heckl145:

˙̃Q′ =
2Lw(Tw − T̄ )

S
√

3

√

πλCvρ̄dw

2

×
[√∣

∣
∣
u0

3
+u′f (t − τ)

∣
∣
∣−

√
u0

3

]

δ (x̃− x̃ f ).

(5)

Here, Lw refers to the equivalent length of the wire, (Tw− T̄ ) is
the temperature difference between the wire and the ambient
temperature, S is the cross-sectional area of the duct, λ ,Cv,τ
and ρ̄ are the heat conductivity, the specific heat of air at con-
stant volume, time lag accounting for the thermal inertia of
the medium and mean density of air, respectively. The above
sets of equations are normalized as follows:

x =
x̃

L
; t =

co

Lt̃
; u′ =

ũ′

ũ
;

p′ =
p̃′

p̃
; Q̇′ =

˙̃Q′

co p̃
; M =

ũ

co

,

(6)

using the length of the duct, L, speed of sound, co to infer the

non-dimensional set of equations:

γM
∂u′

∂ t
+

∂ p′

∂x
= 0,

∂ p′

∂ t
+ γM

∂u′

∂x
= (γ −1)

2Lw(Tw − T̄ )

Sco p̄
√

3

√

πλCvρ̄dwu0

2

×
[√∣

∣
∣
∣

1
3
+u′(t − τ)

∣
∣
∣
∣
−
√

1
3

]

δ (x− x f ).

(7)

On reducing the above set of partial differential equa-
tions to ordinary differential equations using the Galerkin
technique148, the velocity and the pressure field can be written
as

u′ =
∞

∑
j=1

η j cos( jπx) and p′ =−
∞

∑
j=1

γM

jπ
η̇j sin(jπx). (8)

Therefore, we obtain the following set of equations after ac-
counting for the damping in the system:

dη j

dt
= η̇ j,

dη̇ j

dt
+2ζ jω jη̇ j + k2

j η j =− 2K

γM
jπ sin( jπx f )

×
[√∣

∣
∣
∣

1
3
+u

′
f (t − τ)

∣
∣
∣
∣
−
√

1
3

]

,

(9)

where ζ j =
1

2π

[

c1
ω j

ω1
+ c2

√
ω1
ω j

]

. Here, c1 and c2 are the

damping coefficients and the expression of non-dimensional
heater power is given by:

K =
4(γ −1)Lw

γMco p̄S
√

3
(Tw − T̄ )

√

πλCvu0ρ̄lc. (10)

The above set of equations (Eq. 9) indicate the final
second-order equation and is hereafter referred to as the
Balasubramanian-Sujith oscillator.

Numerical integration of Eq. (9) generates the acoustic
pressure and velocity time series from the model. The vari-
ation of parameters, such as the heater power (K), the time
lag (τ), the heater location (x f ), and the damping coefficient
(c1), are utilized to study the onset of thermoacoustic oscil-
lations. Subramanian et al.150 used the method of numerical
continuation to conduct a thorough bifurcation analysis, and
obtained regions of global stability, instability, and bistability.
Subsequently, Subramanian et al.151 employed the method of
multiple scales to get the slow flow equations from Eq. (9) and
recast it into the Stuart-Landau equation152. Furthermore, lin-
ear and nonlinear stability analyses were performed using the
method of harmonic balance and numerical continuation153.

Magri and Juniper154,155 proposed a mathematical frame-
work of an adjoint sensitivity analysis to detect the most influ-
ential components of the system that is responsible for the oc-
currence of thermoacoustic instability and quantified their in-
fluence on the frequency and growth rate of oscillations. This
method, in turn, helps in creating changes in a thermoacous-
tic system or developing passive controls that can extend its
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linearly stable region. They performed two types of analysis,
i.e., structural sensitivity analysis and a base-state sensitivity
analysis, on the adjoint equations obtained from the linear sta-
bility analysis of the Balasubramanian and Sujith149 model.
Through a structural sensitivity analysis, they quantified the
effect of feedback mechanisms possessed by any component
of the system on the frequency and growth rate of oscillations.
On the other hand, through a base state sensitivity analysis,
they examined the effect of a change in different parameters
in Eq. (9) on the stability of the Rijke tube system.

III. NONLINEAR BEHAVIOR OF A RIJKE TUBE
OSCILLATOR

Having discussed the various types of Rijke tube systems
and models for the Rijke tube oscillators, in the present sec-
tion, we characterize various bifurcations, nonlinear phenom-
ena, and dynamical states exhibited by such oscillators due
to a change in the system parameter. We start our discussion
with primary bifurcations observed during the transition from
the steady state to thermoacoustic instability in Rijke tube sys-
tems.

A. Hopf bifurcations

As we know from the fundamentals of dynamical systems
theory, variation in the control parameter can induce a change
in the stability of fixed points (or closed orbits) that, in turn,
leads to the creation of new fixed points (or closed orbits) or
the destruction of the existing ones in a phase space28,30. Such
a qualitative change in the dynamics of the system due to a
small change in the control parameter is referred to as bifur-
cation. There are four types of local bifurcations, i.e., saddle-
node, transcritical, pitchfork, and Hopf bifurcations, which
are commonly studied using reduced-order models in dynam-
ical systems theory28,32,156. Similar to the bifurcations ob-
served in paradigmatic models28,30,157, most of the Rijke tube
systems undergo a Hopf bifurcation due to the variation of dif-
ferent control parameters, such as the heater power, the heater
location, and the damping coefficient109,149,150,158–161. During
this bifurcation, a change in the control parameter leads to the
transition of the system behavior from a fixed point to an oscil-
latory state (often limit cycle oscillations). Hopf bifurcations
are primarily classified into two types: supercritical Hopf and
subcritical Hopf bifurcation.

In Fig. 5, we show the Hopf bifurcation characteristics
of a horizontal Rijke tube system during the transition from
steady state to limit cycle oscillations (thermoacoustic insta-
bility). The bifurcation diagram is obtained by plotting the
variation of the root-mean-square value of acoustic pressure
fluctuations (Prms) against the electric power supplied to the
heater (K) in a quasi-static manner99. We notice that the na-
ture of Hopf bifurcation observed in the horizontal Rijke tube
depends on the value of the mass flow rate of air supplied to
the system. For low or high values of the mass flow rate of
air, the system exhibits a supercritical Hopf bifurcation or a

FIG. 5. One-parameter bifurcation diagram showing the variation
of root-mean-square of acoustic pressure fluctuations (Prms) with the
heater power (K) for (a) supercritical and (b) subcritical bifurcation
observed in a horizontal Rijke tube. (c) Two-parameter bifurcation
diagram between the mass flow rate of air (ṁ) and the normalized
heater power (K/KF ) showing a change in the criticality of the sys-
tem as the mass flow rate of air is varied in the same system, where
KF indicates the heater power at the fold point. Reproduced with
permission from Etikyala et al.99.

subcritical Hopf bifurcation, respectively, for the variation of
heater power (K) as the control parameter.

For the supercritical Hopf bifurcation (Fig. 5a), we observe
a continuous (i.e., a second-order) transition in the pressure
amplitude as the system behavior changes from steady state to
limit cycle oscillations. Furthermore, the variation in the pres-
sure amplitude is nearly the same in both the forward (increas-
ing K) and the reverse (decreasing K) variation of the heater
power. On the other hand, during the subcritical Hopf bifurca-
tion (Fig. 5b), for the forward path (increasing K), we observe
an abrupt jump (i.e., explosive, first-order transition) in the
amplitude of acoustic pressure fluctuations during the transi-
tion from steady state to limit cycle oscillations. While for the
reverse path (decreasing K), the system remains in the limit
cycle state even after the Hopf point and transitions abruptly
to the steady state at a lower value of the heater power com-
pared to the Hopf point. This bifurcation from limit cycle os-
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FIG. 6. (a) Time series, (b) amplitude spectrum, and (c) phase por-
trait corresponding to the state of limit cycle oscillations in a hori-
zontal Rijke tube, highlighting the presence of high amplitude ther-
moacoustic oscillations with a dominant frequency of 162.8 Hz and
a single closed loop in the phase portrait.

cillations to steady state is called fold bifurcation28,30. Thus,
we notice the existence of hysteresis in the parameter space
of the heater power for subcritical Hopf bifurcation (Fig. 5b).
Furthermore, we observe that the variation of the mass flow
rate of air causes a change in criticality99 of the horizontal
Rijke tube (Fig. 5c). Here, a change of criticality refers to
the switching from supercritical to subcritical Hopf bifurca-
tion or vice versa with varying mass flow rates of air in the
same system. Note that the transition between these bifurca-
tions is gradual.

Figure 6 shows the properties of limit cycle oscillations ob-
served in a horizontal Rijke tube system during the state of
thermoacoustic instability. For limit cycle oscillations, we ob-
serve constant amplitude periodic oscillations (Fig. 6a). Dur-
ing this state, the system emits a very loud tonal sound having
a specific frequency corresponding to the unstable acoustic
mode of the duct (Fig. 6b). Such oscillations manifest as a
single closed loop attractor in the embedded phase space (Fig.
6c).

B. Tipping

In the previous subsection, we discussed the bifurcation in-
duced transition from steady state to limit cycle oscillations,
or more specifically bifurcation induced tipping162. Tipping
(alternatively known as critical transition) is a general classi-
fication of a phenomenon where a small change in the control
parameter across a critical value leads to a qualitative change
in the state of the system. The value of the parameter at which
such a transition happens is referred to as the critical point or

FIG. 7. Time series of acoustic pressure fluctuations (p′) as a func-
tion of the time-varying control parameter (i.e., heater power P) dur-
ing the occurrence of thermoacoustic instability in a horizontal Rijke
tube, for three different rates (r) of change of voltage inputted to the
heater. The inset indicates the rate of change of root-mean-square of
pressure fluctuations (p′0), whose value is maximum at the onset of
thermoacoustic instability. We can notice an increase in the delay (δ )
in the transition to thermoacoustic instability with an increase in r.
Here, µ indicates the Hopf point of the system from quasi-static ex-
periments. Reproduced with permission from Pavitran and Sujith164.

the tipping point163.
Ashwin et al.162 classified critical transitions in a dynami-

cal system into three types, where the classification is based
on the mechanism of tipping. Bifurcation-induced tipping (B-
tipping) occurs when the system parameter gradually crosses
the critical point (the bifurcation point) resulting in a bifurca-
tion, as discussed in the previous section. On the other hand,
noise-induced tipping (N-tipping) refers to the switching of
the state of a system due to the presence of stochastic per-
turbations. Rate-induced tipping (R-tipping) occurs when the
system parameter is considered to be a time-dependent vari-
able. Tipping occurs when the rate exceeds the critical value
leading to a qualitative change in the system dynamics. The
study by Thompson and Sieber165,166 classified tipping based
on the different levels of consequences as safe, explosive, and
dangerous. These classifications of tipping, i.e., based on ei-
ther the mechanism or consequences of tipping, were derived
from investigations on climate change models.

In addition to B-tipping discussed in the previous subsec-
tion, there are a few studies in the thermoacoustic literature
that focus on investigating R-tipping and N-tipping in Rijke
tube systems167,168. Tony et al.167 were the first to study rate
induced tipping in horizontal Rijke tubes where they demon-
strated preconditioned R-tipping both experimentally and the-
oretically. They observed that the critical rate of change of
the control parameter is a function of the initial condition.
Later, Unni et al.168 examined the effect of noise on rate-
dependent transitions and observed high variability in the crit-
ical transitions due to the presence of noise. They observed
the transition from R-tipping to N-tipping as the amplitude of
the pressure oscillations approached the noise floor and de-
layed transition due to varying rates. A subsequent study by
Zhang et al.169 investigated the R-tipping delay phenomenon
in a thermoacoustic model, where the rate of parameter varia-
tion is observed to delay the tipping point (see Fig. 7). They
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noticed that the characteristics of additive and multiplica-
tive exponential colored noise, such as initial values, ramp
rate, etc., have considerable influence on the R-tipping delay
phenomenon164,170. We will discuss the studies on tipping
that serve as early warning signals to thermoacoustic systems
in detail in Sec. VI.4.

C. Transition from steady state to limit cycle via
intermittent oscillations

Unlike direct transitions observed from steady state to ther-
moacoustic instability through Hopf bifurcation in the previ-
ous subsections, we come across a few studies on Rijke tube
systems that report the transition to occur via an intermediate
dynamical state. Various types of oscillatory dynamics such as
intermittency117, bursting106,113, beating171, and mixed-mode
oscillations113 have been observed as the intermediate state in
different Rijke tube systems. Intermittency is characterized
by the occurrence of bursts of high amplitude periodic oscil-
lations amidst epochs of low amplitude aperiodic ones. Sim-
ilarly, bursting oscillations refer to the alternating occurrence
of large amplitude periodic oscillations and a quiescent state.
Mixed-mode oscillations refer to the switching of the system
behavior between two or more distinct amplitudes of periodic
oscillations and timescales, whereas beating refers to the oc-
currence of amplitude-modulated periodic oscillations in the
system. These oscillations are conjectured to arise due to the
coexistence of subsystems with multiple time scales of oscil-
lations and such systems are usually referred to as slow-fast
systems172–174.

Pawar et al.117 reported the existence of intermittency175 in
a Rijke-type laboratory spray burner during the transition from
stable operation to thermoacoustic instability when the flame
location is varied (Fig. 8a). Using various measures from dy-
namical systems theory, they confirmed the presence of type-
II intermittency. Furthermore, their study suggests that inter-
mittency could be more dangerous as compared to limit cy-
cle oscillations, as the maximum amplitude of bursts during
intermittency is nearly thrice the amplitude of limit cycle os-
cillations. Weng et al.171,176 reported the presence of beat-
ing dynamics between the steady state and limit cycle oscilla-
tions in a porous plug stabilized laminar premixed flame Rijke
tube burner (Fig. 8b). The amplitude-modulated oscillations
were accompanied by low frequency flame pulsations having
a frequency lower than 1 Hz; thereby, creating a time scale
difference of 102 − 103 between the pulsations in the flame
and the thermoacoustic oscillations. Subsequently, Kasthuri
et al.113 observed the presence of bursting and mixed-mode
oscillations in a premixed matrix burner with several interact-
ing laminar flames (Fig. 8c). They found that these oscilla-
tions occur due to the interaction of a slow timescale associ-
ated with temperature fluctuations and a fast timescale with
acoustic pressure fluctuations.

Tandon et al.106 systematically investigated the role of slow
and fast timescales on the occurrence of intermittent oscilla-
tions prior to thermoacoustic instability in a horizontal Rijke
tube system. Towards this purpose, they modeled slow oscil-

FIG. 8. Different types of intermediate states observed in acous-
tic pressure fluctuations (p′) during the transition from steady state
to limit cycle oscillations such as (a) intermittency in the spray
combustor117, (b) beating dynamics in the Rijke-type burner171, (c)
bursting in the multiple flames matrix burner113, and (d) bursting in
the horizontal Rijke tube106. Reproduced with permission from Tan-
don et al.106.

lations in the control parameter and studied the interaction of
these oscillations with a fast oscillating acoustic pressure field
as the system dynamics transitions from steady state to limit
cycle oscillations. When slow and fast subsystems are un-
coupled, they observed regular occurrence of bursting in the
pressure signal prior to thermoacoustic instability (Fig. 8d).
On the other hand, when slow and fast subsystems are cou-
pled with each other, they noticed the creation of amplitude-
modulated bursting in the pressure oscillations.

So far, we discussed the transition of a Rijke tube system
from steady state to limit cycle oscillations and their corre-
sponding bifurcations. In the following subsection, we will
describe the dynamics of such systems beyond the state of
limit cycle oscillations and associated bifurcations leading to
the occurrence of different dynamical regimes.

D. Secondary Hopf bifurcations in thermoacoustic systems

In many dynamical systems, increasing the control param-
eter further in the regime of limit cycle oscillations engen-
ders the possibility of secondary Hopf bifurcations, leading
to the emergence of new frequencies in the system30,31. The
interaction between the former and the newly generated fre-
quencies post bifurcation gives rise to various complex dy-
namical states that are different from period-1 limit cycle os-
cillations. These states include period-2, period-3, period-
k, frequency-locked, quasiperiodic, strange nonchaotic, in-
termittent, and chaotic oscillations. There are many exper-
imental as well as theoretical studies in the thermoacoustic
literature that report the existence of these dynamical behav-
iors in Rijke tube systems74,75,109,110,150,177–180. Sometimes,
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FIG. 9. Secondary bifurcations of acoustic pressure fluctuations ob-
served from experiments in a laminar premixed flame Rijke tube
burner, as the flame location (x f ) is varied as the control parameter.
Regions (I)–(VIII) indicate steady state, limit cycle, quasiperiodicity,
frequency-locked, quasiperiodicity, period-2, chaos, and steady state,
respectively. Reproduced with permission from Kabiraj et al.73.

a secondary Hopf bifurcation observed due to a change in
the control parameter leads to the transition from low am-
plitude limit cycle oscillations to high amplitude limit cycle
oscillations, where both the limit cycle oscillations exhibit the
same frequency28. Mukherjee et al.111 reported the presence
of such secondary bifurcation of limit cycle oscillations in a
laminar Rijke type burner. Furthermore, as the dynamical be-
havior of many systems ultimately tends to reach a state of
chaotic oscillations with a change in the control parameter, the
dynamical transitions associated with the occurrence of chaos
are often referred to as routes to chaos11,30,181. The system
finally reaches the state of chaotic oscillations either through
period-doubling route to chaos, via Ruelle-Takens-Newhouse
route to chaos or through intermittency route to chaos37. A
plethora of nonlinear dynamical states observed during each
of these routes to chaos have been reported in Rijke tube sys-
tems as well74,110,150,177,179.

1. Rich nonlinear behavior of thermoacoustic systems

In laminar premixed flame Rijke tube burners (Fig.
4), we witness rich dynamical behavior resulting from
a secondary Hopf bifurcation of limit cycle oscillations
(see Fig. 9) due to the variation of different control
parameters73–75,109,111,178,179,182–184. In this section, we will
discuss the characteristics of these dynamical states and then
elaborate different routes to chaos observed in Rijke tube sys-
tems.

1. Period-1 limit cycle oscillations: Limit cycle oscilla-
tions are characterized by constant-amplitude periodic
oscillations (Fig. 10a). Such oscillations have a single

dominant frequency in the power spectrum; hence, of-
ten referred to as period-1 limit cycle oscillations. As
a result, these signals possess a distinct single closed-
loop attractor in the phase space, where the phase space
trajectory repeats its behavior after each time period of
the oscillation. The Poincaré section of limit cycle os-
cillations shows a single point.

2. Frequency-locked or period-k oscillations: Unlike
period-1 limit cycle oscillations, frequency-locked os-
cillations possess more than one narrow band peaks
(say, f1 and f2), which are rationally related to each
other (i.e., f1/ f2 = p/q, where p and q are integer num-
bers) in the power spectrum (Fig. 10b). These sig-
nals are periodic and repeat their behavior in the phase
space, depending on the ratio of frequencies ( f1/ f2).
When this ratio is an integer number (say, k), we ob-
serve period-k oscillations in the signal with k orbits in
the phase space. For example, during period-2 oscilla-
tions, we observe two dominant frequencies in the spec-
trum, where the low amplitude frequency (say f2/2) is
observed at the subharmonic of the dominant frequency
(say f2). We notice the presence of two loops for the
phase space trajectory (Fig. 10c); hence, two distinct
points in the Poincaré section. In Rijke tube systems,
many theoretical74,150 and experimental161,185 studies
have reported the presence of period-2 oscillations. The
experimental evidence of frequency-locked oscillations
has been reported by Kabiraj et al.73,109 and Vishnu et

al.75.

3. Quasiperiodic Oscillations: For quasiperiodic oscilla-
tions, we observe two dominant frequencies (say, f1 and
f2) and frequencies corresponding to their linear com-
binations (say, n f1 + m f2, where n and m are integer
numbers) in the spectrum (Fig. 10d). These two dom-
inant frequencies are irrationally related to each other
( f1/ f2 6= p/q). As a result, quasiperiodic oscillations
are aperiodic oscillations, and their properties never re-
peat after a finite duration of time. The phase space
trajectory of quasiperiodic oscillations lies on a torus
structure in the phase space (Fig. 10d) and its Poincaré
section shows a closed structure30. Quasiperiodic os-
cillations have been reported in a theoretical study on a
two-dimensional ducted premixed flame by Kashinath
et al.74 and in experimental studies on a laminar pre-
mixed flame Rijke tube burner by73,75,109,110.

4. Chaotic Oscillations: Chaotic oscillations are charac-
terized by an exponential divergence of nearby trajec-
tories in the phase space. A power spectrum of these
oscillations possesses more than two irrationally related
frequencies and their linear combinations, which even-
tually manifests as a broadband spectrum. As a conse-
quence, chaotic oscillations are aperiodic in time. The
phase space of such oscillations shows the existence
of a strange attractor, where the behavior of the phase
trajectory is highly unstable, while their Poincaré sec-
tion exhibits a scatter of points (Fig. 10e). The max-
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FIG. 10. Three-dimensional phase portrait, Poincaré map, and the
power spectrum corresponding to various dynamical states observed
after secondary bifurcation in Fig. 9 including (a) limit-cycle, (b)
frequency-locked, (c) period-2, (d) quasiperiodicity, and (e) chaotic
oscillations. Adapted with permission from Kabiraj et al.73.

imum Lyapunov exponent of chaotic oscillations is al-
ways positive. These oscillations have been reported
in theoretical studies on a two-dimensional ducted pre-
mixed flame by Kashinath et al.74 and on a horizontal
Rijke tube by Subramanian et al.150, and experimental
studies on laminar Rijke tube burner by73,75,109,110.

5. Strange nonchaotic oscillations: Strange nonchaotic
oscillations point towards the existence of a fractal at-
tractor, similar to that observed for chaotic oscillations;
however, unlike chaos, they do not possess sensitivity to
initial conditions. Hence, the maximum Lyapunov ex-
ponent of strange nonchaotic oscillations is always neg-
ative. The Poincaré section of strange nonchaotic oscil-
lations presents a wrinkled torus (Fig. 11). The power
spectrum of strange nonchaotic oscillations is broad-
band. These oscillations are often observed in systems
with quasiperiodically forced oscillations186–188. Al-
though the evidence of such oscillations in self-excited
dynamics is rare, they have been observed in a pulsating
star network by Lindner et al.189 and recently in exper-
iments on laminar premixed flame Rijke tube burner by
Premraj et al.178. Guan et al.190 reported the existence
of strange nonchaos in forced limit cycle oscillations of
acoustic pressure in a premixed flame Rijke tube burner.

FIG. 11. (a)–(c) Phase portrait, Poincaré section, and power spec-
trum, respectively, of strange nonchaotic oscillations observed from
experiments in a laminar premixed Rijke tube burner. Adapted with
permission from Premraj et al.178.

FIG. 12. Period- doubling route to chaos reported in a mathemati-
cal model of the horizontal Rijke tube149, showing the presence of
(a) period-1 limit cycle oscillations, followed by (b) period-2 and (c)
period-4 oscillations, ultimately reaching the state of (d) chaotic os-
cillations. Reproduced with permission from Subramanian et al.150.

On the other hand, Weng et al.191 provided the theoret-
ical evidence of strange nonchaos in a model of non-
linearly coupled damped oscillators of a laminar Rijke
tube burner.

2. Various routes to chaos in thermoacoustic systems

As mentioned before, route to chaos refers to the fundamen-
tal mechanism by which a regular attractor becomes a chaotic
attractor as the control parameter is varied11,30,192. Various
numerical studies have focused on studying different routes
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to chaos in order to clearly understand the enigma of chaotic
oscillations itself. In laminar Rijke-type thermoacoustic sys-
tems, three routes to chaos have been reported, which we de-
scribe as follows.

1. Period-doubling route to chaos: This route to chaos is
the most commonly studied scenario in the dynamical
systems literature30,193–198. It was first discovered by
Feigenbaum199, and hence referred to as Feigenbaum
scenario.

Lei and Turan177 reported the presence of a period-
doubling route to chaos in a time-lag model of a com-
bustion system. Subramanian et al.150 showed the
existence of this route to chaos for the variation of
heater power in the Balasubramanian-Sujith oscillator
model of the Rijke tube oscillator (Fig. 12). During
period-doubling bifurcations, the system behavior ini-
tially transitions from a steady state to limit cycle oscil-
lations via Hopf bifurcation (Fig. 12a). Such limit cy-
cle oscillations undergo a sequence of secondary Hopf
bifurcations, causing their transition to period-2 (Fig.
12b), period-4 (Fig. 12c), period-8 oscillations, etc. un-
til chaotic oscillations are observed (Fig. 12d). Similar
results were observed in a numerical study on slot sta-
bilized two-dimensional premixed flame by Kashinath
et al.74 for the variation of flame location as the con-
trol parameter. As per our knowledge, experimental ev-
idence on the period-doubling route to chaos is still un-
reported in Rijke tube systems. An experimental study
on a horizontal Rijke tube with an electrically heated
wire mesh as the heat source by Gopalakrishnan and
Sujith161 reported the presence of period-2 oscillations.
However, further period-doubling bifurcations were not
observed in the system due to limitations in the experi-
mental configuration. The usage of the wire mesh as the
heat source restricted the increase in the heater power
above a limit, above which the mesh melts. Therefore,
future investigations on a horizontal Rijke tube consist-
ing of a plate-type heat source may provide the possibil-
ity of observing multiple period-doubling bifurcations
leading to chaos experimentally.

2. Ruelle-Takens-Newhouse route to chaos: In the
Ruelle-Takens scenario30, the system exhibiting limit
cycle oscillations undergoes another Hopf bifurcation
leading to the appearance of a second frequency in the
signal. Contrary to the period-doubling route, where the
second frequency is rationally related to the first fre-
quency, here the system acquires a second frequency
that is irrationally related to the first, and hence exhibit-
ing quasiperiodic oscillations. Further increase in the
control parameter leads to the occurrence of another fre-
quency that is incommensurate with the other two fre-
quencies. The presence of three frequencies leads to the
transition from quasiperiodic oscillations to chaotic os-
cillations. This route was first discovered by Ruelle and
Takens201 and Newhouse et al.202 independently, and is
also referred to as a quasiperiodic route to chaos.

FIG. 13. (a) Quasiperiodicity route to chaos highlighting the transi-
tion from (I) limit cycle oscillations to (II) quasiperiodic oscillations,
ultimately leading to (III) chaotic oscillations. (b) Phase portraits,
(c) amplitude spectra and (d) Poincaré sections corresponding to the
three dynamical states. Reproduced with permission from Mondal et

al.200.

Kabiraj et al.73,109 observed a quasiperiodic route to
chaos in an experimental study on a laminar premixed
flame Rijke tube burner as the location of the flame in
the duct is varied as the control parameter (Fig. 13).
They observed the transition from limit-cycle oscilla-
tions (Fig. 13-I) to chaotic oscillations (Fig. 13-III)
via the intermediate states of quasiperiodic oscillations
(Fig. 13-II). Furthermore, Kashinath et al.74 reported
the presence of Ruelle-Takens-Newhouse route to chaos
on the variation of the flame position in a numeri-
cal study on slot stabilized two-dimensional premixed
flame.

3. Intermittency route to chaos: During the intermit-
tency route to chaos, as we change the control parame-
ter, the limit cycle oscillations transition to chaotic os-
cillations via intermittency30,31,203. During the state of
intermittency, the system dynamics alternates between
irregularly occurring bursts of chaotic oscillations and
epochs of periodic oscillations. As the system ap-
proaches the onset of chaotic oscillations, the number
of occurrences of such bursts in the signal is observed
to be increasing; ultimately leading to chaotic oscilla-
tions in the system. This route was first discovered
by Pomeau and Manneville203 in dissipative dynami-
cal systems and is therefore also called the Pomeau-
Manneville scenario.

In thermoacoustic systems, Guan et al.110 reported the
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FIG. 14. (a) Bifurcation diagram and (b) power spectral density vari-
ation during the intermittency route to chaos when the flame location
(z measured from the bottom of the combustor) is varied as the con-
trol parameter in a laminar premixed Rijke tube burner. During this
route to chaos, the system behavior transitions from (c) fixed point,
(d) limit cycle oscillations, (e) quasiperiodicity, (f) intermittency to
(g) chaotic oscillations. Here, subplots 1 to 3 correspond to the time
series, phase portraits, and Poincaré section, respectively, for the cor-
responding dynamical states shown in c to g. Reproduced with per-
mission from Guan et al.110.

presence of an intermittency route to chaos in an exper-
imental study on a premixed flame Rijke tube burner
as the location of the flame is varied as the control pa-
rameter. They observed the transition from steady state
(Fig. 14c) to limit-cycle oscillations (Fig. 14d), fol-
lowed by quasiperiodicity (Fig. 14e), to intermittency
(Fig. 14f) and then to chaos (Fig. 14g). The intermit-
tency observed in the system consists of epochs of high
amplitude chaos amidst bursts of medium-amplitude
quasiperiodicity.

To summarize, Rijke-type thermoacoustic systems, similar
to other phenomenological oscillators in dynamical systems
theory, exhibit complex nonlinear behaviors and bifurcations.
Hence, we confirm the nonlinear nature of Rijke tube oscilla-
tors and encourage the application of the Rijke tube oscillator
as a general nonlinear oscillator. Next, we discuss the bistable
nature of the Rijke tube oscillator and present different non-
linear behaviors that can arise in such systems due to the in-
fluence of external stochastic perturbations in the system.

IV. NOISE-INDUCED DYNAMICS IN THE
SUBTHRESHOLD AND BISTABLE REGIONS OF
THERMOACOUSTIC SYSTEMS

Most systems in nature are inherently noisy and,
therefore, exhibit many noise-induced phenomena and
bifurcations204–209. These dynamical changes include mod-
ification in the stability margins, occurrence of coherence
and stochastic resonance, and excitation of new dynamical
states209–212. In this section, we discuss various noise-induced
dynamics in the sub-threshold and bistable regimes of Rijke

FIG. 15. Bifurcation diagrams of (a) supercritical and (b) subcritical
Hopf highlighting the subthreshold and bistable regions. Reproduced
with permission from Gupta et al.217.

tube oscillators107,161,213–220. The regime corresponding to
a single stable fixed-point solution (stable focus), observed
prior to the Hopf point in supercritical Hopf bifurcation (Fig.
15a) and the fold point (saddle-node) in subcritical Hopf bi-
furcation (Fig. 15b), is referred as the subthreshold regime210.
A bistable region is observed for subcritical Hopf bifurcation
and lies between the Hopf and fold points of the system pa-
rameter space (Fig. 15b), wherein a stable fixed point coexists
with stable and unstable solutions of limit cycle oscillations.
In the upcoming section, we discuss some kinds of noise-
induced dynamics namely coherence resonance and stochastic
bifurcations observed in the subthreshold regime of the Rijke
tube oscillator. Subsequently, we present the discussion on
noise-induced dynamics in the bistable region of such oscilla-
tors.

A. Coherence resonance

The addition of noise in the subthreshold regime of an ex-
citable system (or an oscillator) has a counter-intuitive ef-
fect of increasing the coherent nature of its oscillatory re-
sponse rather than deteriorating it38,221. Coherence reso-
nance refers to a noise-induced coherence characterized with
a resonance-like dependence on the strength of noise as the
system approaches the bistable region. It was first described
and analyzed by Pikovsky and Kurths222 in a noise-driven ex-
citable FitzHugh–Nagumo system. During coherence reso-
nance, the degree of regularity in the dynamics of the sys-
tem is observed to be maximum at intermediate values of ex-
ternal noise intensity. This phenomenon has been studied in
many oscillators including Stuart-Landau223 and Van der Pol
oscillators221,224, under the influence of additive white noise,
indicated by

√

2Dζ (t) where D represents the noise intensity
and ζ (t) highlights the noise characteristics.

Coherence resonance has been studied in various Rijke tube
systems both experimentally215 and theoretically217,220. Fig-
ure 16 shows the occurrence of coherence resonance in a lami-
nar premixed flame Rijke tube burner for increasing values of
the noise intensity D215. For low and high values of D, the
noisy fluctuations in the system induce transient coherence
which dies down as time progresses (insets of Fig. 16a,c).
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FIG. 16. (a)-(c) Variation of the autocorrelation function and the
acoustic pressure signal (see inset) depicting the characteristics of the
coherence resonance phenomenon observed in a laminar premixed
flame Rijke tube burner for low, medium, and high levels of noise
intensity D, respectively. The maximum coherence is observed at in-
termediate noise levels (D = 12.7 Pa). Reproduced with permission
from Kabiraj et al.215.

On the contrary, for intermediate values of D, we observe the
noise-induced emergence of coherent (periodic) oscillations
in the system (inset of Fig. 16b).

The existence of coherence resonance has an important ap-
plication in thermoacoustic systems. We can use the increase
in the coherent nature of pressure signals in the steady state
regime of the system prior to the Hopf point as a precur-
sor to an impending thermoacoustic instability215,217,220. Fur-
thermore, the existence of coherence resonance has been ex-
amined for subcritical Hopf bifurcation215,216 and supercriti-
cal Hopf bifurcation218 individually as well as collectively217.
The comparative analysis between these bifurcations showed
the existence of a qualitative difference in the variation of dif-
ferent measures such as autocorrelation factor and spectral
width and height of the coherence resonance phenomenon.
Such a qualitative difference exists due to the inherent dif-
ference in the type of nonlinearity in the system217.

Similar to coherence resonance, where maximum coher-
ence is observed in the signal at intermediate levels of
noise, we can also observe the maximum amplification in
the signal for intermediate levels of noise due to stochastic
resonance207,225. Stochastic resonance is one of the well-
known noise-induced phenomena in bistable systems that cor-
respond to the enhancement of amplitude response of the sys-
tem due to the addition of external periodic forcing in the
presence of noise. This phenomenon has potential applica-
tions in various fields including physics, engineering, sensory
systems, biology, and medicine207,226–228. The existence of
stochastic resonance has however not yet been discovered in
the thermoacoustic system as per the authors’ knowledge.

B. Stochastic bifurcations and hysteresis

The presence of high intensity additive noise in a system
could lead to the disappearance of sharp transitions to limit
cycle oscillations during Hopf bifurcations, which are other-
wise observed in deterministic systems229,230. Hence, it is in-
deed very challenging to obtain the Hopf points (or transition
boundaries) in the system, as the system transitions from be-
ing a deterministic system to a stochastic system219. There-
fore, we resort to tracking the probability distribution of the
variables rather than calculating their absolute values209.

Furthermore, systems with noise may undergo stochas-
tic bifurcations, while transitioning from one dynamical
state to another. Stochastic bifurcations are classified into
two types: phenomenological bifurcation and dynamic bi-
furcation, commonly referred to as P-bifurcation and D-
bifurcation, respectively209,231. P-bifurcation describes qual-
itative changes observed in the probability density function
(PDF) of the variable, whereas D-bifurcation is associated
with the change in the measure of a system variable (as dis-
cussed in Sec. III) or with the sign change of the Lyapunov
exponent, due to a change in the control parameter.

Stochastic bifurcations are observed in various nonlinear
systems209,231 such as Van der Pol oscillators224, biological
systems232, and laser systems233. Rijke tube systems also tend
to exhibit stochastic behavior and stochastic bifurcations in
the presence of noise. As a result, such systems are mod-
eled using stochastic differential equations234. The probabil-
ity density function (PDF) is calculated by solving the Fokker-
Planck equation of stochastic systems, which was first intro-
duced to thermoacoustic systems by Clavin et al.235. Noiray
and Schuermans236 introduced the Fokker-Planck equation to
identify the deterministic characteristics of noise perturbed
limit cycle oscillations in a turbulent thermoacoustic system
undergoing a supercritical Hopf bifurcation. Gopalakrishnan
et al.219 derived the stationary amplitude distribution from
the Fokker-Planck equation of a stochastic Balasubramanian-
Sujith oscillator model149 for the horizontal Rijke tube un-
dergoing a subcritical Hopf bifurcation. They observed the
presence of stochastic P-bifurcations at low levels of noise
as well as their absence at high levels. At a low noise level,
the transition of the system behavior from the subthreshold to
the bistable (or hysteresis) region is associated with the occur-
rence of a P-bifurcation, where the PDF changes from being
unimodal to a bimodal form. While the transition from the
bistable to limit cycle region is associated with the occurrence
of a second P-bifurcation, where the PDF changes from being
bimodal to a unimodal form. With an increase in the noise in-
tensity, the width of the hysteresis region correspondingly de-
creases following a power-law behavior, while the transition
from steady to limit cycle oscillations becomes continuous237.
As a result, at a very high noise level, we do not observe any
hysteresis region; hence, the PDF always remains unimodal,
leading to the absence of P-bifurcation in the system.

Saurab et al.216 experimentally investigated the effects of
noise in a Rijke tube with laminar premixed flame and ob-
served the presence of a P-bifurcation along with coherence
resonance. Li et al.220 analytically studied the stability of
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FIG. 17. Schematic diagrams representing a ball resting on a surface
that is (a) globally stable, and (b), (c) having multiple stable states.
The introduction of finite amplitude perturbations can change the sta-
bility of the system in (b) and (c). The stable and unstable positions
are marked by S and U, respectively.

the stochastic one-dimensional self-excited nonlinear standing
wave thermoacoustic system238. Moreover, Li et al.239 iden-
tified the presence of two different types of P-bifurcations in
this system, one with a crater-like PDF and the other had two
peaks and one trough.

C. Noise-induced limit cycle oscillations: effect of bistability

As discussed in Sec. III.1, Rijke tubes undergo a subcriti-
cal Hopf bifurcation for certain parameter ranges. This bifur-
cation is accompanied by the formation of a hysteresis loop
and a bistable region (Fig. 15b). In the bistable region, the
system dynamics can exist as two possible stable states, and
the choice of the state acquired by the system depends on the
initial amplitude or the energy possessed by it150,240. For ex-
ample, let us consider a simple nonlinearly unstable system of
a ball resting in the depression. In this scenario, small pertur-
bations to the ball’s displacement would die down making the
system linearly stable. On the other hand, large perturbations
would cause the ball to become unstable, causing it to fall to
another stable state (Fig. 17). Hence, depending on the ampli-
tude of initial perturbations, the system would either remain in
the same stable state or transition to another stable state.

For subcritical Hopf bifurcation, if the system is operating
at the stable state in the bistable zone and the perturbations
induced are below a certain threshold, the system approaches
the same stable steady state after the transients subside. On
the other hand, when the amplitude of perturbations or the
corresponding energy is higher than the threshold, the system
switches its dynamical behavior and transitions to stable limit
cycle oscillations. Such a phenomenon is commonly known
as subcritical transition241,242.

For example, in a fluid flow through a pipe, the transi-
tion from laminar to turbulent flow occurs when the value
of Reynolds number is greater than 5000 (Recr > 5000), and
the unstable eigenvalues emerge in the system243,244. There-
fore, for Re > 5000, any external perturbations introduced in
the system grows in time. However, nonlinear perturbation
analysis245 shows that the highest Reynolds number at which
external perturbations decay is between 100 < Re∗ < 1000,
which is significantly less than Recr = 5000. Such behavior in
turbulent flow systems is referred to as a bypass transition and
such transitions are different for normal and non-normal sys-
tems. In the case of normal systems, the two Reynolds num-

bers coincide (Re∗ = Recr), whereas the difference between
the two critical Reynolds numbers arises leading to a bistable
zone. For a normal system, when the individual eigenvectors
decay, the resultant also decays. In contrast, for a non-normal
system, the individual eigenvectors may decay, but the resul-
tant can grow.Such a non-normal system may show a transient
growth in the amplitude of perturbations in a linearly stable
regime and the amplitude of the fluctuations may grow due to
linear mechanisms to a level where the nonlinearities are im-
portant. When the system is operating in a bistable state, it
may switch to other dynamical states as a result of nonlinear
driving. Therefore, if a system operates in the linearly stable
steady state of the bistable regime of a subcritical Hopf bifur-
cation, the presence of both nonlinearity and non-normality
plays a role in exciting the system to limit cycle oscillations
from small but finite amplitude disturbances79,160.

The progress in non-modal stability analysis and non-
normal behavior have recently enabled us to study the im-
pact of short-term behavior on the occurrence of thermoa-
coustic instabilities from a new perspective79. The influence
of non-normality has been investigated theoretically in a hor-
izontal Rijke tube149,160,246–248, premixed flame Rijke tube
burners150,249,250, resonator tubes251, one-dimensional ther-
moacoustic systems252,253, and entropy waves254. Experimen-
tal verification of non-normality in thermoacoustic systems
was performed by Mariappan and Sujith98 in a horizontal Ri-
jke tube. Further investigations on the non-normal behavior in
thermoacoustic systems highlighted its effects on various con-
trol strategies. For example, nonlinear driving that drives the
system to an unstable behavior can be prevented by control-
ling the transient growth through active control255 or feedback
control256. For a comprehensive discussion on the non-normal
and nonlinear nature of the thermoacoustic system, the readers
may refer to Juniper160 and Sujith et al.79.

Furthermore, the phenomenon of subcritical transition to
limit cycle oscillations in the bistable region due to external
perturbations has been examined in different genres of ther-
moacoustic systems including a horizontal Rijke tube98,237,
premixed flame Rijke tube burner247,257, and ducted non-
premixed flame burner107, and Rijke-Zhao tubes125. The ex-
ternal perturbations (both harmonic and noise) required for a
subcritical transition in thermoacoustic systems are often gen-
erated through loudspeakers. We note that such a subcritical
transition of the system behavior from stable steady state to
stable limit cycle oscillations (i.e., thermoacoustic instability)
due to external perturbations has been traditionally referred to
as ‘triggering’ in the parlance of aerospace and rocket propul-
sion systems18,160.

In addition to excitation through periodic perturbations,
noise-induced excitation of limit cycle oscillations in the
bistable region has also received immense interest, due to
its practical applicability in excitation of thermoacoustic in-
stability in solid rocket combustors18,235,258,259. This phe-
nomenon of noise-induced limit cycle oscillations has been
studied theoretically213,214 as well as experimentally107 in dif-
ferent Rijke tube oscillators. An excitation to limit cycle oscil-
lations in such systems is strongly dependent on the strength
of the noise. Hence, when the strength of noise added to the
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system exceeds a certain threshold value, the system under-
goes nonlinear driving to a limit cycle state213,214. Further
studies examined the influence of the frequency and the type
of noise on the subcritical transition of a thermoacoustic sys-
tem and concluded that low frequency noise is more effective
in facilitating the transition in the system than high frequency
noise160. Furthermore, pink noise is found to be more effec-
tive than white noise or blue noise in exciting the system to
thermoacoustic instability213. Jegadeesan and Sujith107 found
that the noise strength required for exciting limit cycle oscil-
lations in a diffusion flame Rijke tube burner is significantly
lower than that required for harmonic perturbations in a deter-
ministic system.

So far, we have discussed the effect of perturbations on the
stability and dynamical characteristics of the acoustic pressure
field in the subthreshold and bistable regimes of different Ri-
jke tube oscillators. In the upcoming section, we move our
attention towards synchronization in coupled thermoacoustic
oscillators.

V. SYNCHRONIZATION IN THERMOACOUSTIC
OSCILLATORS

In this section, we will present the synchronization charac-
teristics of coupled or forced Rijke tube oscillators. As men-
tioned above, during the state of thermoacoustic instability,
such as limit cycle, quasiperiodic or chaotic oscillations, a Ri-
jke tube system behaves as a nonlinear oscillator. Coupling or
forcing of such Rijke tube oscillators can cause the system to
exhibit a wide variety of synchronization phenomena. Before
going into the details of synchronization of Rijke tube oscilla-
tors, we first provide a brief discussion on synchronization of
general oscillators.

Synchronization is a ubiquitous phenomenon observed due
to the interaction between two or more oscillators in many
natural and engineering systems38,39,260. It refers to the ad-
justment of motions of the constituent oscillators to a common
phase and frequency upon coupling39. Interaction between os-
cillators has been studied primarily through two mechanisms,
i.e., mutual coupling and forcing38. The corresponding types
of synchronization are classified as mutual and forced syn-
chronization, respectively. During mutual coupling, the con-
stituent oscillators change their behavior due to the presence
of bidirectional coupling between them. Various types of lo-
cal, non-local, and global coupling schemes have been em-
ployed to study mutual synchronization of oscillators42,261.
These couplings include time-delay, dissipative, conjugate,
diffusive, environment, on-off coupling, etc.46,50,261. On the
other hand, in the forced coupling, a unidirectional coupling
exists between the forcing and the oscillator39. The forcing
parameters such as the amplitude and frequency of the forc-
ing signal are varied as control parameters in studies on forced
synchronization, as elaborated in Sec. V B.

The mutual interaction of two oscillators prominently gives
rise to three distinct states of coupled behavior: synchronized
oscillations, desynchronized oscillations, and quenching of
oscillations. Depending on the value of phase difference be-

FIG. 18. Time series and the amplitude correlation plot correspond-
ing to (a) in-phase synchronization, (b) amplitude death, (c) anti-
phase synchronization, and (d) desynchronization in a model of two
coupled Rijke tube oscillators262.

tween the synchronized oscillations, the coupled behavior can
be classified as in-phase (0 deg phase difference) and anti-
phase (180 deg phase difference) synchronization, as shown
in Fig. 18a and 18c, respectively. If both the oscillators pos-
sess different (non-identical) frequencies, the phase difference
between them drifts in time, and the corresponding oscillators
are characterized as desynchronized (Fig. 18d). The interac-
tion between the coupled oscillators sometimes leads to com-
plete suppression of their oscillations, known as ‘oscillation
quenching’. Oscillation quenching has been mainly classi-
fied into two types: amplitude death and oscillation death46,51.
During amplitude death, all the oscillators reach a homoge-
nous steady state (Fig. 18b), while during oscillation death,
both the oscillators stabilize to different steady states (non-
homogenous steady states). In the case of forced interaction,
quenching of oscillations in the forced system occurs through
a phenomenon of asynchronous quenching119,263,264, wherein
the amplitude of the oscillator drops to a minimum value equal
to that of external forcing. Thus, the methodologies based on
the mechanisms of coupling or forcing an oscillator can help
in mitigating thermoacoustic instabilities95. We have provided
an elaborate discussion on amplitude death and asynchronous
quenching in Sec. VI.

There have been extensive studies performed on mutual or
forced synchronization of phenomenological oscillators, such
as Stuart-Landau, Van der Pol, Rössler, and Lorenz oscilla-
tors, neural networks, ecological models, population models,
disease spread models, etc.11,38,39,260,265–268. These studies
have shed light on many hidden features of interacting sys-
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tems. In the upcoming discussion, we show that the experi-
mental and theoretical investigations on Rijke tube oscillators
also demonstrate the characteristics of mutual and forced syn-
chronization as observed for paradigmatic oscillators.

A. Mutual synchronization of coupled Rijke tube oscillators

In Sec. III, we discussed the bifurcation characteristics of a
single Rijke tube oscillator during the transition from steady
state to limit cycle oscillations. The introduction of coupling
between two such oscillators significantly changes their dy-
namical properties. In this case, Srikanth et al.262,269 found a
forward shift in the occurrence of Hopf bifurcation along with
a reduction in the amplitude of limit cycle oscillations when
compared to these properties for an isolated Rijke tube oscilla-
tor. Recently, there has been an increased interest in studying
the behavior of two coupled Rijke tube oscillators262,270–274.
These studies have potential applications in understanding
the interaction between multiple combustion systems of can-
annular type combustors used in gas turbine engines275–279.

The coupled behavior of two thermoacoustic systems has
been studied under two coupling schemes: time-delay and
dissipative270. Time-delay coupling accounts for the finite
time required for the propagation of information (or acous-
tic oscillations) from one oscillator to another. This type of
coupling is introduced in an experimental system by connect-
ing the two oscillators using a coupling tube, whose diameter
is smaller than the diameter of the Rijke tube272,280. The in-
crease in the length (lc) and the diameter (d) of the coupling
tube in experiments have direct correspondence with an in-
crease in the time delay (τ) and the strength of coupling (Kτ )
between the oscillators in the model262,272. On the other hand,
dissipative coupling accounts for the dissipation of energy
during the transfer of information from one oscillator to an-
other as a consequence of mutual interaction. The sources of
dissipation of energy could arise due to the direct flow trans-
fer from one system to another through the coupling tube or
from the loss of acoustic energy due to the introduction of the
coupling tube272,280. In addition to the variation of coupling
parameters, the effect of change in system parameters, such as
the amplitude and natural frequency of each oscillator in the
uncoupled state, has been shown to play an important role in
the coupled dynamics of Rijke tube oscillators184,262,272.

Thomas et al.270 used the mathematical model of the ther-
moacoustic oscillator149 explained in Sec. II.4, to study the
coupled interaction of two thermoacoustic oscillators (see Fig.
19a). The equations for a pair of Balasubramanian-Sujith os-
cillators coupled through both time-delay and dissipative cou-
pling are as follows262:
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where a and b indicate the oscillators in the coupled system,
Kd and Kτ denote the dissipative coupling strength and time-
delay coupling strength, respectively, and τ denotes the time
delay between the oscillators. Keeping either of the coupling
strengths (Kd or Kτ ) as zero makes the system purely time-
delay coupled or dissipative coupled, respectively. The re-
maining terms in the equation are similar to those discussed
in Sec. II.4.

In an experimental study, Dange et al.272 observed the syn-
chronization of large amplitude limit cycle oscillations in two
identical Rijke tube oscillators coupled using a single cou-
pling tube (see Fig. 19b). With an increase in the length
of the coupling tube (lc), they found that the oscillators sud-
denly change their synchronized dynamics from in-phase to
anti-phase synchronization or vice-versa, at a critical value of
the coupling tube length. This abrupt change in the phase of
these oscillators from one form of synchronization to another
is commonly referred to as phase-flip bifurcation281,282.

Srikanth et al.262 studied the characteristics of coupled
Rijke-tube oscillators during phase-flip bifurcation for a wider
range of coupling parameters numerically and analytically.
They found a recurring occurrence of phase-flip bifurcation
in a system at odd multiples of half the time period of limit
cycle oscillations, i.e., for τc = τ/T = n/2, where τ is the
coupling delay, T is the time period of oscillations in the un-
coupled state, and n = 1,3,5, .... In addition to the change in
the relative phase of oscillators, they detected an abrupt jump
in the frequency of the oscillators during the phase-flip bifur-
cation. The amplitude of limit cycle oscillations also shows an
oscillatory pattern, where the maximum amplitude suppres-
sion is observed during the occurrence of phase-flip bifurca-
tion in the system. Having discussed mutual synchronization
in coupled thermoacoustic oscillators, we present the forced
synchronization characteristics of such oscillators in the fol-
lowing subsection.

B. Forced synchronization of a Rijke tube oscillator

Studies on forced synchronization highlight the behavior of
a Rijke tube oscillator in response to external harmonic forc-
ing, as modeled by the following equation119:

dη j

dt
= η̇ j (12)
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FIG. 19. Schematics of the model and the experimental setup of two
coupled Rijke tube oscillators. Coupling parameters in the model are
coupling strength (K ) and coupling delay (τ), while in experiments
these parameters are the length and diameter of the connecting tube.
(b) Reproduced with permission from Dange et al.272.
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where A f is the forcing amplitude and f f is the forcing fre-
quency.

As mentioned previously, the occurrence of forced syn-
chronization is characterized by the state where the forced
oscillator exhibits the same frequency as the forcing system
and the relative phase between these systems remains con-
stant in time. The response of a forced oscillator to forcing
depends on A f and f f of the forcing. Generally, such re-
sponses of a forced oscillator are effectively represented us-
ing an Arnold tongue, which is the synchronization boundary
in the parameter space of amplitude and frequency of forcing.
Nearby the onset of forced synchronization, a plethora of dy-
namical states are observed in the relative phase dynamics of
the forced system, which include phase drifting, intermittent
phase locking, phase trapping, and phase locking38. Further-
more, a forced oscillator shows resonance amplification and
synchronous quenching when forcing is applied near the nat-
ural frequency of the oscillator283.

Recently, forced synchronization of limit cycle, quasiperi-

odic, and chaotic oscillations in a Rijke-tube oscillator have
been studied in great detail. All the aforementioned phenom-
ena, which have been previously observed in forced paradig-
matic oscillators such as Van der pol and Stuart-Landau oscil-
lators, are witnessed in the dynamics of a forced Rijke tube
oscillator110,119,184,284–286. Kashinath et al.284 studied forced
synchronization of limit cycle, quasiperiodic and chaotic os-
cillations in a model for a laminar premixed flame Rijke tube
burner. In an experimental study, Mondal et al.119 examined
forced synchronization of limit cycle oscillations in the acous-
tic pressure of a horizontal Rijke tube system, while Guan
et al.286 and Roy et al.287 investigated forced synchroniza-
tion of limit cycle oscillations in both the acoustic pressure
and heat release rate fluctuations of a laminar premixed flame
Rijke tube burner. Furthermore, Guan et al.286 and Sato et

al.288 extended the experimental investigation to study forced
synchronization of quasiperiodic oscillations in a laminar pre-
mixed flame Rijke tube burner and a gas filled resonance
tube, respectively. In a different study, Sahay et al.274 exam-
ined forced synchronization of two coupled identical and non-
identical horizontal Rijke tube oscillators with forcing being
applied to one of the oscillators, both experimentally and nu-
merically.

Next, we discuss the key properties of forced synchroniza-
tion of limit cycle oscillations in a Rijke tube oscillator. In Fig.
20a, we show the Arnold tongue (i.e., V-shaped synchroniza-
tion boundaries) observed experimentally for the forced re-
sponse of limit cycle oscillations in the acoustic pressure of a
horizontal Rijke tube oscillator119. Inside the Arnold tongue,
limit cycle oscillations in the Rijke tube are synchronized with
the forcing, but outside the Arnold tongue, these oscillations
are desynchronized with each other. The value of A f required
for forced synchronization of the oscillator at a fixed value of
f f exhibits a near linear variation with increasing frequency
detuning (| fn0 − f f |) on either side of the natural frequency
( fn0) of the oscillator. A subsequent study by Sahay et al.274

found that an increase in the amplitude of the limit cycle os-
cillations in the unforced state narrows the Arnold tongue re-
gion, causing a corresponding increase in the value of forcing
amplitude for forced synchronization of the oscillator.

We notice that the occurrence of forced synchronization
happens via two routes, namely the locking route and the sup-
pression route38, indicated by route A and route B in Fig. 20a,
respectively. When the difference between the forcing and the
natural frequency of the oscillator is high (shown as route B
in Fig. 20a), the transition occurs via the route of suppression.
In this route, an increase in A f causes the transition to the
phase-locking state through a torus-death bifurcation, where
the magnitude of natural frequency ( fn0) in the spectrum is
suppressed without shifting the value of fn0 towards the forc-
ing frequency f f

38. On the other hand, when the difference
between f f and fn0 is low (shown as route A in Fig. 20a), we
observe the occurrence of the locking route to forced synchro-
nization. The oscillator undergoes a saddle-node bifurcation
to attain phase-locking, where the position of the natural fre-
quency peak gradually shifts towards the forcing frequency
with an increase in the forcing amplitude38.

Furthermore, in the Arnold tongue (Fig. 20), we notice the
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FIG. 20. (a) Arnold tongue highlighting the boundaries between the
region of occurrence of (I) phase locking, (II) phase trapping, and
(III) phase drifting in the two-parameter bifurcation plot between
the amplitude of forcing (A f ) and the relative frequency of forc-
ing ( f f / fn0, where f f is the forcing frequency and fn0 is the nat-
ural frequency of oscillation). (b) Variation of normalized amplitude
response of spectral peak corresponding to self-excited oscillations
(An/A0), forcing oscillations (A f /A0), and overall acoustic pressure
signal (Prms/P0

rms) in the horizontal Rijke tube. Exhibition of syn-
chronous quenching of self-excited oscillations and resonance am-
plification of forcing oscillations is observed in the phase-locking
region. The dotted circle in (a) represents the region where phase
trapping is not observed. Reproduced with permission from Mondal
et al.119.

presence of the region of phase trapping (Fig. 21c) in between
the regions of phase drifting (Fig. 21a) and phase locking
(Fig. 21d) for the suppression route, while a direct transition
from phase drifting to phase locking is noticed for the locking
route. Here, phase drifting is a state of desynchronization be-
tween the forced oscillator and the forcing system, where the
unwrapped relative phase between the forced and forcing os-
cillations exhibits a continuous increase/decrease in time (in-
set in Fig. 21a-II). The pressure signal observed during this
state shows limit cycle oscillations (inset in Fig. 21a-I) and
the corresponding Poincaré section (first return map) shows
a single small cluster of points (Fig. 21a-I). During the state
of phase trapping, the relative phase between the systems is
bounded and oscillates about the mean phase difference (inset
in Fig. 21c-II). The pressure signal exhibits amplitude mod-
ulation (inset in Fig. 21c-I), its amplitude spectrum shows a
dominant peak at the forcing frequency (Fig. 21c-II), and the
Poincaré section shows a closed-loop orbit (Fig. 21c-I), in-
dicating the presence of quasiperiodic oscillations in acoustic

FIG. 21. (I) Poincaré section with an inset of the pressure time se-
ries and (II) the frequency spectrum along with an inset of the un-
wrapped relative phase time series, corresponding to the dynamical
states of (a) phase drifting, (b) intermittent phase locking, (c) phase
trapping, and (d) phase locking in a forced Rijke tube system. In (II),
the red dot on the abscissa represents the forcing frequency, whereas
the dashed vertical line indicates the natural frequency of limit cycle
oscillations in the absence of forcing. Reproduced with permission
from Mondal et al.119.

pressure during this state. For phase locking (forced synchro-
nization) state, the unwrapped relative phase between the forc-
ing and forced oscillations remains constant in time (inset in
Fig. 21d-II), the pressure signal shows limit cycle oscillations
(inset in Fig. 21d-I) at the forcing frequency (Fig. 21d-II),
and the Poincaré section shows a single clutter of point (Fig.
21d-I).

Moreover, prior to the occurrence of phase trapping, an in-
termediate state called intermittent phase locking is observed
in the forced system. During this state, the unwrapped rela-
tive phase between the forced and the forcing systems demon-
strates an alternate occurrence of epochs of phase locked and
phase drifting oscillations, where the phase drifting region is
associated with phase jumps covering integer multiples of 2π
rad (inset in Fig. 21b-II). Due to the presence of strong peaks
at both the forcing and the natural frequencies (Fig. 21b-II),
we notice the presence of modulations (beating) in the am-
plitude envelope of the acoustic pressure signal (inset in Fig.
21b-I), where the modulation frequency is equal to the dif-
ference between these frequency peaks. The Poincaré section
of this state shows a closed-loop orbit, indicative of quasi-
periodic oscillations (Fig. 21b-I).
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Furthermore, we observe an interesting behavior of the si-
multaneous occurrence of resonance amplification of the forc-
ing signal and the synchronous quenching of natural oscilla-
tions inside the Arnold tongue119. In Fig. 20b, we present the
variation of normalized spectral amplitude of self-excited os-
cillations (An/A0) and forced oscillations (A f /A0) along with
the root-mean-square (rms) amplitude of the acoustic pressure
signal (Prms/P0

rms) in a horizontal Rijke tube with increasing
f f at a fixed value of A f . The spectral amplitude of self-
excited oscillations gradually decreases as the frequency ratio
( f f / fn0) approaches the Arnold tongue and attains zero in-
side the boundaries of the Arnold tongue. This behavior is
regarded as the occurrence of synchronous quenching283. In
contrast, the spectral amplitude of forced oscillations shows
a gradual increase near the Arnold tongue, followed by an
abrupt jump to a high amplitude as the frequency ratio enters
the Arnold tongue from the left-hand-side. This behavior is
attributed to the occurrence of resonant amplification283. This
is followed by a gradual decrease in the amplitude of forcing
oscillations with a further increase in the frequency ratio.

The simultaneous occurrence of synchronous quenching
and resonance amplification, also referred to as synchronance
(synchronization-resonance) by Mondal et al.119, leads to the
dominance of the forcing signal in the final response signal
of the forced acoustic pressure oscillations. When the forcing
frequency is much higher than the natural frequency, both the
spectral amplitude curves (i.e., An/A0 and A f /A0) saturate and
become independent of changes in the forcing frequency. The
combined behavior of the two spectral amplitudes is observed
in the variation of the rms value of the response pressure sig-
nal (Prms/P0

rms).
Unlike forced synchronization of limit cycle oscillations,

forced synchronization of quasiperiodic oscillations happens
via a complicated path and involves various variants of
quasiperiodic oscillations286,288. The system first transitions
from quasiperiodic oscillations having two dominant frequen-
cies to another variant of quasiperiodic oscillations having
three dominant frequencies (two natural frequencies and one
forcing frequency). This is followed by the transition to a res-
onant quasiperiodicity corresponding to partial synchroniza-
tion, where one of the natural frequencies undergoes synchro-
nization, whereas the other remains desynchronized with the
forcing frequency. Ultimately, the system reaches complete
forced synchronization of oscillations, where both natural fre-
quency modes synchronize with the forcing frequency. Guan
et al.286 observed the presence of two Arnold tongues, each
centered at their corresponding dominant frequencies.

Sahay et al.274 studied the characteristics of the forced re-
sponse of coupled thermoacoustic oscillators, where two hor-
izontal Rijke tube oscillators are mutually coupled using a
connecting tube and one of the two oscillators is externally
forced using speakers. Figure 22 presents the Arnold tongue
obtained from experiments through the simultaneous applica-
tion of forcing and coupling in two identical Rijke tube oscil-
lators, A and B. Here, acoustic forcing is applied only to Rijke
tube A and Rijke tube B is indirectly forced through the cou-
pling tube. The Arnold tongue of oscillator A is observed to be
larger when compared to that observed for oscillator B which

FIG. 22. Arnold tongue of (a) Rijke tube oscillator A and (b) Rijke
tube oscillator B, where both these oscillators are mutually coupled
to each other using a single coupling tube and oscillator A alone is
forced using loudspeakers. Adapted with permission from Sahay et

al.274.

is not directly forced. Therefore, the region of synchronance
(i.e., the combined presence of synchronous quenching and
resonance amplification) is small for oscillator B when com-
pared to oscillator A. However, in the case of non-identical
Rijke tube oscillators, forced synchronization of oscillator B
is rarely observed, while that of oscillator A remains nearly
the same as that observed in the case of identical oscillators.

The consequences of the interaction between coupled sys-
tems were also investigated by Zhang et al.289 using the
Balasubramanian-Sujith model of a horizontal Rijke tube with
sinusoidal excitation. Periodic oscillations were observed
when the value of f f is much lower and higher than fn. In
specific ranges of f f , the system exhibited alternate occur-
rences of quasi periodicity and periodic oscillations. Further-
more, they concluded that the regime of periodic oscillations
is composed of devil’s staircases. The devil’s staircase, other-
wise known as the cantor function, is a monotonic continuous
function mapping the set [0,1] onto itself while maintaining
zero derivatives throughout the interval290.

C. Synchronization between the self-excited acoustic field
and the heat release rate fluctuations

As we know, thermoacoustic instability is the result of a
positive interaction between the acoustic field in the combus-
tor and the heat release rate fluctuations in the flame. As dis-
cussed before, the Rayleigh criterion (Eq. 3) is a well-known
condition to detect the onset of thermoacoustic instability. As
per this criterion, when the mean phase difference between the
acoustic pressure and the heat release rate fluctuations of the
flame lies between −π/2 and π/2, the energy from the flame
is periodically added to the acoustic field giving rise to ther-
moacoustic instabilities. Mondal et al.200 examined the cou-
pled behavior of these two subsystems in a laminar premixed
Rijke tube burner during the quasi-periodicity route to chaos
using the framework of synchronization theory. Such an anal-
ysis may be viewed as analogous to the investigation of the
coupled behavior between the human heart and respiratory or
brain using synchronization theory291–293.

Mondal et al.200 found that during the state of periodic (or
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limit cycle) oscillations, the acoustic pressure and heat re-
lease rate fluctuations are phase-locked (i.e., synchronized).
However, in the regime of quasiperiodic oscillations, differ-
ent behaviors of synchronization of these oscillators are ob-
served which include phase-locking, phase trapping, intermit-
tent phase locking, and phase drifting. While during chaotic
oscillations, states of intermittent phase locking and phase
drifting are observed. The different phase dynamics observed
during these states occur primarily due to the dissimilar spec-
tral content of two locked frequencies. They also proposed
various statistical measures (see Fig. 23), such as the phase
locking value (PLV ), correlation coefficient (r), and relative
mean frequency (∆ω) to quantitatively characterize the syn-
chronization behavior between the acoustic pressure and the
heat release rate fluctuations during self-excited states of ther-
moacoustic instability. These measures can help in detecting
the boundaries of different states of synchronization observed
during the quasiperiodicity route to chaos.

Weng et al.191 developed a nonlinearly coupled damped os-
cillator model to study the coupled behavior of acoustic pres-
sure (p′) and heat release rate (q̇′) fluctuations in a laminar
premixed Rijke tube burner. The governing equations are
given below:

p̈+ζ1 ṗ(t)+ω2
p′ p(t) =Cpq(1−q(t − τ2)

2) ṗ(t) (13)

q̈+ζ2q̇(t)+ω2
q̇′q(t) =Cqp(p(t − τ1)

3 −1) (14)

where τ1 = 2π/ωp′ , τ2 = 2π/ωq̇′ , and Cqp (or Cpq) indicates
the coupling strength between p′ and q̇′ (or q̇′ and p′). ωp′ ,
ωq̇′ are the angular frequency of the acoustic and the heat
release rate fluctuations, and ζ1 and ζ2 are damping terms.
This model is able to capture the experimentally observed
quasiperiodicity route to chaos (discussed in Sec. III.4.2) by
Kabiraj et al.109 and the state of strange non-chaos identi-
fied by Premraj et al.178. Furthermore, this model also qual-
itatively replicates the synchronization behavior between the
acoustic pressure and heat release rate fluctuations observed
by Mondal et al.200, as shown in Fig. 23.

In the preceding sections, we have discussed various behav-
iors and characteristics exhibited by a general nonlinear oscil-
lator and elaborated on the existence of such dynamical be-
havior in Rijke tube systems. We established the vast potential
of Rijke tubes in experimentally verifying complex dynamical
behaviors commonly reported in literature through nonlinear
oscillator models. Next, we move our focus towards various
prediction and control strategies devised to warn the undesired
impending thermoacoustic oscillations or to suppress them af-
ter their onset.

VI. CONTROL AND PREDICTION STRATEGIES FOR
THERMOACOUSTIC INSTABILITY

As discussed in the previous section, thermoacoustic insta-
bilities have been observed in the form of large amplitude self-
sustained oscillations in the acoustic field of the combustor.
We showed that such oscillations occur via a Hopf bifurcation

FIG. 23. (a) The variation of the phase locking value (PLV ), (b) the
correlation coefficient (r), and (c) the relative mean frequency (∆ω)
between the acoustic pressure and heat release rate fluctuations for
different regimes of quasiperiodicty route to chaos, when the loca-
tion of the flame (x f ) inside the laminar premixed Rijke tube burner
is varied as a control parameter. Different regions of synchronization
are indicated as phase locking (I and V), intermittent phase lock-
ing (II and IV), and phase drifting (III). Reproduced with permission
from Mondal et al.200.

in the Rijke-type thermoacoustic systems. The presence of
thermoacoustic instabilities is undesirable in practical systems
as they cause severe vibrations leading to heavy structural
damage and loss in the performance of the engine. There-
fore, it is necessary to keep the system away from the regime
of operation of thermoacoustic instability. There have been
several studies dedicated to develop control strategies that can
mitigate and forewarn thermoacoustic instability. Due to the
simple nature and ease of handling, Rijke-type thermoacoustic
systems remain the primary choice for many researchers to ex-
periment or model novel control methodologies that can mit-
igate or predict thermoacoustic instabilities46,294. In this sec-
tion, we will summarize traditional as well as recently discov-
ered control methodologies based on synchronization theory
to suppress thermoacoustic instability in Rijke tube systems.
We will also discuss recent developments in early warning
technologies to forewarn critical transition to thermoacoustic
instabilities in rate-dependent experiments on Rijke tube sys-
tems.

The control strategies developed for suppression of ther-
moacoustic instabilities have been classified as passive and
active80,295. Passive control strategies aim at evading the oc-
currence of thermoacoustic instability by introducing modi-
fications in the hardware design of the components, such as
combustor geometry, fuel injection system or using acous-
tic dampers such as resonators or liners to remove acoustic
energy from the system18,80,296–299. In contrast, active con-
trol strategies are based on interrupting the coupling between
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the acoustic field and the heat release rate field of the com-
bustor through external perturbations, leading to the decay of
thermoacoustic oscillations in the system71,300. Active con-
trols are further classified into open-loop and closed-loop con-
trol (or commonly known as feedback control) depending on
whether the control strategy is independent or dependent on
the system response, respectively301. In the following sub-
sections, we will discuss control strategies, such as feedback
control and open-loop control, developed for the mitigation of
limit cycle oscillations in a single Rijke-type thermoacoustic
system.

A. Feedback control

Feedback control strategy involves the usage of external
actuators to perturb the inlet flow field of the Rijke tube in
response to the behavior of a dynamical variable measured
from the system71,302,303. To elaborate this, we supply a por-
tion of the information of the system to its input through con-
trollers (Fig. 24a); thus, both the input and the output of the
system are dependent on each other. The controller adjusts
the phase and the gain of the output signal before feeding it
back into the input. Hence, this strategy involves three crucial
steps301,304. The acquisition of the signal of thermoacoustic
instability from the system using sensors, such as a pressure
transducer or a thermal sensor. This signal is then fed into a
controller, where the signal is processed and supplied to an
actuator. Actuators use this processed information to alter the
inlet conditions of the system, thus, changing the coupling be-
tween the acoustic field and the heat release rate fluctuations,
causing the mitigation of thermoacoustic instabilities. Actua-
tion devices used in thermoacoustic systems are loudspeakers
that perturb the acoustic velocity or the acoustic pressure field
and fuel valves that change the heat release rate field in the
Rijke tube burners305–309. Delayed feedback has been used
as a common methodology to suppress limit cycle oscillations
in general oscillator systems310–312 starting from the early im-
plementation of feedback control in a laminar flame Rijke tube
burner by Dines313, Ffowcs314 and Heckl302. Recently, such
methods have been rigorously studied in the thermoacoustic
literature to mitigate limit cycle oscillations71,80,301–304,313,315.

B. Open-loop control via asynchronous quenching

As discussed in Sec. V.2, the application of external peri-
odic forcing to an oscillator can entrain the frequency of self-
excited oscillations with forcing during the onset of forced
synchronization. Further, we argued that forced synchroniza-
tion can occur through the locking-route or the suppression-
route (asynchronous quenching) depending on whether the
frequency detuning is small or large38,263. External periodic
forcing has been commonly used in practice to suppress self-
sustained oscillations in hydrodynamically unstable flows316

and wakes317, ionization waves318, oscillatory reactions319,
transmission electrical lines320, etc., through the phenomenon
of asynchronous quenching. In order to achieve such asyn-

FIG. 24. Schematic diagrams representing the application of (a)
closed-loop (or feedback) control and (b) open-loop control to miti-
gate limit cycle oscillations in a thermoacoustic system.

chronous quenching, the oscillator must be forced at a fre-
quency far from its natural frequency263. In the thermoacous-
tic literature, this method of forcing is referred to as open-loop
control71,299,321.

During open-loop control, external periodic forcing is used
to perturb limit cycle oscillations in a thermoacoustic system
at different amplitudes and frequencies. Unlike feedback con-
trol, we do not need any input from the combustor dynamics to
drive the actuator in open-loop controls. The external pertur-
bations either affect the flow field incoming to the system or
affect the acoustic field developed in the system (Fig. 24b). At
appropriate values of the forcing parameters, external pertur-
bations interrupt the coupling between the acoustic field and
the heat release rate field, thereby quenching thermoacoustic
instabilities in the system.

Recently, an approach based on forced synchronization
(Sec. V.2) of limit cycle oscillator has been used to explain
the mitigation of thermoacoustic instabilities through open-
loop controls119,190,274,285,287,322,323. In Fig. 25, we show
the forced response of limit cycle oscillations in the acoustic
pressure field of a horizontal Rijke tube for different param-
eters of periodic forcing generated through loudspeakers274.
In this figure, the distribution of different colors indicates the
relative change in the amplitude of forced pressure fluctua-
tions, p′rms, against the amplitude of these oscillations in the
unforced state, p′0 (i.e., ∆p′rms/p′0, where ∆p′rms = p′0 − p′rms)
and a V-shaped plot signifies the Arnold tongue (i.e., forced
synchronization boundary).

We notice that the introduction of forcing significantly af-
fects the amplitude of limit cycle oscillations in the system.
When forcing is applied close to the natural frequency of the
oscillator, we find the occurrence of resonance amplification
of synchronized limit cycle oscillations (i.e., synchronance)
in the Arnold tongue, where the growth of the amplitude is
greater than twice the amplitude of limit cycle oscillations in
the unforced state, i.e., ∆p′rms/p′0 <−1119,274,286. In contrast,
when forcing is introduced at a frequency lower than the nat-
ural frequency of limit cycle oscillations (see for f f / f f 0 < 1),
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FIG. 25. The amplitude response (shown as the fractional change in
the amplitude ∆p′rms/p′0 indicated by the colormap) and synchroniza-
tion properties (indicated by black lines) of limit cycle oscillations,
observed experimentally in a horizontal Rijke tube oscillator. Here,
p′rms and p′0 are the root-mean-square (rms) values of acoustic pres-
sure fluctuations in the forced and the unforced state. f and f f / fn are
normalized forcing amplitude and forcing frequency. Adapted with
permission from Sahay et al.274.

we observe the quenching of limit cycle oscillations in the
system due to asynchronous quenching324. The maximum
suppression of limit cycle oscillations (i.e., ∆p′rms/p′0 → 1)
is observed along the Arnold tongue, i.e., at forcing parame-
ters required for achieving forced synchronization in the sys-
tem (Fig. 25). Asynchronous quenching is not observed for
f f / f f 0 > 1 in the horizontal Rijke tube system119,274; how-
ever, asynchronous quenching of limit cycle oscillations has
been reported for both sides of fn0 in a laminar premixed
flame Rijke tube burner by Guan et al.322. Furthermore,
Roy et al.287 provided physical reasons behind asynchronous
quenching of limit cycle oscillations by analyzing the forced
response of coupled acoustic pressure and heat release rate
fluctuations in the system. They found that these oscillations
are locked at -90 degrees during the state of asynchronous
quenching; as a result, the driving of the acoustic field by
the heat release rate field is very low which in turn leads to
suppression of acoustic oscillations in the system.

C. Mitigation of thermoacoustic instabilities through mutual
coupling

In Sec. V.1, we saw that coupling two or more oscil-
lators can either synchronize their oscillations or mitigate
them through the amplitude death phenomenon. During am-
plitude death, all oscillators reach the same steady state46.
Similarly, coupling a system to itself via self-feedback can
also quench limit cycle oscillations in a single Rijke tube
oscillator269. Various coupling schemes have been developed
to mitigate self-excited oscillations in a system of coupled
oscillators46,50. Here, we will discuss the application of the
amplitude death phenomenon in quenching limit cycle oscil-
lations in a system of coupled thermoacoustic oscillators.

Practical gas turbine engines such as can or can-annular
combustors often consist of a ring array of multiple com-
bustion units (known as “cans”), working simultaneously to
provide the required thrust325. Hence, these combustors tend
to interact with each other and are therefore coupled through
components such as the plenum chamber, the turbine stage,
and cross-fire tubes277. Most of the traditional active and pas-
sive control strategies discussed before to mitigate thermoa-
coustic instability are expensive and are devised for an iso-
lated combustion system. However, the application of these
strategies to simultaneously mitigate thermoacoustic instabil-
ities in a system with multiple combustors is yet to be explored
in detail.

Recent developments in the suppression of thermoacous-
tic instabilities in single or multiple thermoacoustic systems
rely on implementing different schemes of coupling between
oscillators. Towards this purpose, both experimental and
theoretical studies have been performed on a single Rijke
tube oscillator269 and a system of two coupled Rijke tube
oscillators262,270–272,274,280. For suppressing the limit cycle
in a single system through self-delayed feedback, the acous-
tic field of the system is fed back into the system after a fi-
nite time delay, which is achieved experimentally by using
a single coupling tube269,326,327. For coupled Rijke oscilla-
tors, suppression of low amplitude limit cycle oscillations is
achieved experimentally by connecting the oscillators using
one272,280 or two273 coupling tubes. On the other hand, sup-
pression of high amplitude limit cycle oscillations is achieved
by adding a frequency mismatch between the oscillators272.
Both time delay and dissipative coupling schemes have been
used to mitigate limit cycle oscillations in thermoacoustic os-
cillators. The coupled behavior of such oscillators is similar to
that observed in Van der Pol oscillators280 and Stuart-Landau
oscillators184. Thus, the possibility of mitigation of limit cy-
cle oscillations developed in single and multiple thermoacous-
tic systems through the mechanism of mutual coupling has
emerged as a promising and cost-effective methodology.

Figure 26 shows the dynamical behavior of a system of two
identical Rijke tube oscillators coupled using a single connect-
ing tube272. A two-parameter bifurcation diagram is shown
between the amplitude of acoustic pressure fluctuations (p0)
in the isolated oscillator and the length of the connecting tube
(L). We notice that low amplitude limit cycle oscillations can
be easily quenched through the method of mutual coupling for
a larger range of length of the coupling tube, while it is diffi-
cult to quench large amplitude limit cycle oscillations in two
identical Rijke tube oscillators. The coupling of such large
amplitude limit cycle oscillations results in phase-flip bifurca-
tion on increasing the length of the coupling tube in the sys-
tem.

In order to quench high amplitude limit cycle oscillations
in two Rijke tube oscillators, Dange et al.272 introduced fre-
quency detuning in the system (see Fig. 27). Frequency de-
tuning can be introduced by varying the natural frequency of
one of the oscillators, while keeping the natural frequency of
the other one a constant. In a Rijke tube system, the frequency
of acoustic oscillations is varied by changing the length of the
duct, note that the frequency is inversely proportional to the
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FIG. 26. Two-parameter bifurcation diagram between the isolated
amplitude of each oscillator (p0) and the length of the coupling tuhe
(L) highlighting the dependency of the coupling and the system pa-
rameters on the occurrence of amplitude death in a system of cou-
pled identical Rijke tube oscillators. Colors for AP, IP, and AD indi-
cate regions of anti-phase synchronization, in-phase synchronization,
and amplitude death, respectively. Reproduced with permission from
Dange et al.272.

FIG. 27. Variation of (a) relative suppression in pressure amplitude
and (b) frequency of each oscillator with frequency detuning in a
pair of Rijke tube oscillators. Introduction of frequency detuning
in the coupled systems engendered (c, d) enhanced suppression, (e)
amplitude death and (f) partial amplitude death with an increase in
the frequency detuning between the oscillators. Reproduced with
permission from Dange et al.272.

length of the duct (i.e., fn ∝ 1/L). In Fig. 27c,d, we notice that
the mutual interaction between detuned Rijke tube oscillators
having high amplitude of limit cycle oscillations facilitates a
small suppression of oscillations. Increasing the detuning be-
tween the oscillators gradually increases the suppression of
limit cycle oscillations (Fig. 27a), and at sufficiently large de-
tuning, the state of amplitude death is observed in the system
(Fig. 27e). A further increase in the detuning engenders the
state of partial amplitude death (Fig. 27f), where large ampli-
tude limit cycle oscillations are restored in one Rijke tube os-
cillator while the other remains in a state of nearly suppressed
periodic oscillations. These results are qualitatively similar to
the occurrence of amplitude death and partial amplitude death
in non-identical diffusively and time delay coupled weakly
nonlinear oscillators328.

Srikanth et al.262 theoretically studied the effect of varia-
tion in the coupling and system parameters on the occurrence
of amplitude death in two time-delay coupled Rijke tube os-
cillators given in equations (11). Amplitude death is observed
for a specific range of coupling delay (τc), where the size of
such death islands decreases with an increase in the value of
coupling strength (K ). Furthermore, they found that the oc-
currence of amplitude death is highly dependent on the heater
power (K), and thus the amplitude of limit cycle oscillations
in the uncoupled state; an increase in the amplitude narrows
the amplitude death regions and eventually suppresses them
completely. They showed that the transition between ampli-
tude death and oscillatory state (i.e., limit cycle oscillations)
depends on the nature of the bifurcation of the isolated oscil-
lator. To elaborate, this transition is explosive and hysteric
for an oscillator exhibiting a subcritical Hopf bifurcation in
the uncoupled state, whereas it is continuous for an oscillator
undergoing a supercritical Hopf bifurcation.

Furthermore, Srikanth et al.269 extended the effectiveness
of delayed acoustic coupling through a connecting tube to sup-
press thermoacoustic instabilities in a single Rijke tube oscil-
lator, both experimentally and theoretically. Thomas et al.271

investigated the effect of Gaussian white noise on the occur-
rence of amplitude death in the model of coupled Rijke tube
oscillators and showed that the abrupt transition from the os-
cillatory to the steady state becomes continuous due to prebi-
furcation noise amplification329.

Having discussed various studies on the mitigation of ther-
moacoustic instabilities in Rijke-tube oscillators utilizing dif-
ferent approaches from synchronization theory, we next dis-
cuss studies that utilize Rijke tube systems to develop and
demonstrate the efficacy of various early warning signals for
critical transitions.

D. Early warning signals (Precursors)

As discussed in Sec. III, many dynamical systems undergo
abrupt transitions, also called tipping or critical transitions,
as the control parameter is varied. In such systems, an early
warning for the occurrence of these transitions is necessary to
avoid the consequences that arise after their onset. In some
cases where the variation of the control parameter is continu-
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FIG. 28. (a) Time series of the acoustic pressure (P) exhibiting sub-
critical transition to limit cycle and the effectiveness of early warn-
ing signals such as (b) variance (Var) and (c) lag-1 autocorrelation
(AR(1)) in identifying the onset of the impending thermoacoustic in-
stability. The onset of such instability is marked using a solid black
vertical line, whereas the dotted line represents the time step from
which the measures are calculated. Adapted with permission from
Gopalakrishnan et al.330.

ous, the rate at which such a parameter is varied greatly affects
the performance of early warning measures for such critical
transitions. In this section, we discuss various early warning
measures developed in Rijke tube systems to detect the occur-
rence of critical transitions. Rijke tube has been utilized to
evaluate the efficacy of early warning signals prior to extend-
ing the measures in other thermoacoustic systems.

In thermoacoustic systems, different measures have been
invented to obtain early warning signals that predict the oc-
currence of thermoacoustic instability331. These measures ex-
hibit a drastic change in their values prior to the onset of such
instability. Tracking the changes in the measure can help us
to provide early warning for the impending instability. Thus,
we can prevent the system from reaching the state of thermoa-
coustic instability and thereby evade its consequences. This
approach goes along with the saying, ‘prevention is better than
cure’.

Gopalakrishnan et al.330 applied the knowledge of a critical
slowing down on approaching the tipping point in a horizon-
tal Rijke tube to predict the occurrence of a subcritical Hopf
bifurcation in the system. The phenomenon of critical slow-
ing down is associated with the loss of stability of the system
as the control parameter approaches the bifurcation point. It
also indicates the slow recovery rate of the system to the ex-
ternal perturbations introduced close to a critical transition28.
Their study obtained early warning signals from variance and
lag-1 autocorrelation of the acoustic pressure data from exper-
iments as well as from the model of the Rijke tube (Fig. 28).
Figure 28(a) shows the acoustic pressure signal obtained from
the horizontal Rijke tube as the heater power is varied con-
tinuously at a fixed rate. The onset of limit cycle oscillations
in the system is observed at t = 644 s. The measures, vari-
ance and lag-1 autocorrelation, are calculated for a moving
window. Gopalakrishnan et al.330 observed an increase in the
variance (Fig. 28b) and a decrease in the lag-1 autocorrelation
(Fig. 28c) well before the onset of thermoacoustic instability.
Furthermore, they suggested that the variance of the signal is

FIG. 29. Variation of (a,g,m) the rms amplitude of the pressure data
obtained from a horizontal Rijke tube and the early warning measures
such as (b,h,n) lag-1 autocorrelation, (c,i,o) variance, (d,j,p) skew-
ness, (e,k,q) kurtosis, and (f,l,r) Hurst exponent applied to identify
the impending thermoacoustic instability with respect to the control
parameter, heater power. Each column corresponds to the varying
rate of change of the control parameter. The dashed vertical line in-
dicates the onset of limit cycle oscillations in the system and the red
arrow points at the quasistatic Hopf point (µ). Adapted with permis-
sion from Pavithran and Sujith164.

more robust to external noise imposed by the loudspeaker in
predicting the onset of thermoacoustic instability when com-
pared to the autocorrelation function.

A recent study by Pavithran and Sujith164 examined the im-
pact of the rate of change of control parameter on the perfor-
mance of different early warning signals of thermoacoustic
instability in a horizontal Rijke tube. Various early warn-
ing measures, such as lag-1 autocorrelation (AC), variance
(VAR), skewness (SKEW ), kurtosis (K), and Hurst exponent
(H), were chosen for the investigation (Fig. 29). During
the onset of thermoacoustic instability, the root mean square
value of the acoustic pressure fluctuations indicates signifi-
cant growth in the amplitude (Fig. 29a,g,m). Autocorrelation
(Fig. 29b,h,n) and variance (Fig. 29c,i,o) tend to increase
much before the actual transition on approaching the onset of
thermoacoustic instability due to critical slowing down163,332.
Skewness which also tends to increase on approaching the tip-
ping point (Fig. 29d,j,p) does not have any relation with criti-
cal slowing down163. As the system approaches the transition
to thermoacoustic instability, the skewness of the distribution
changes from being negative to positive. Kurtosis (K) exhibits
a value of 3 for a normal distribution; however, it does not
show any perceivable trend during the onset of thermoacous-
tic instability (Fig. 29e,k,q).

The Hurst exponent (H = 2−D, D is the fractal dimen-
sion) computes the correlations in the time series333,334. When
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H > 0.5, the signal is said to be persistent, while for H < 0.5,
the signal is anti-persistent. When H = 0.5, the signal is un-
correlated. Hence, as the system transitions from a regime of
uncorrelated oscillations to a state of periodic high amplitude
oscillations, the Hurst exponent decreases from 0.5 to zero,
serving as a potential measure to detect the transition to ther-
moacoustic instability with changing fractal characteristics of
the pressure signal (Fig. 29f,l,r). Comparing the behavior of
each of the aforementioned early warning measures at differ-
ent rates of change of the control parameter, Pavithran and
Sujith164 noticed that measures such as lag-1 autocorrelation
and Hurst exponent can predict the transition well before the
tipping point for both slow and high rates; thus, providing ad-
equate warning time for control actions (Fig. 29).

Although these measures provide warnings about an up-
coming critical transition, they cannot provide information
about what bifurcation is to be expected. As the system ap-
proaches the tipping point, its dynamical behavior can be
simplified into a limited number of possible “normal forms”.
This, in turn, provides information about the new state (i.e.,
oscillatory or steady state) that may occur after the tipping
point. Towards this, Bury et al.170 proposed a deep learning
algorithm that provides early warning signals by using infor-
mation about normal forms and scaling behavior of the dy-
namics near tipping points in a horizontal Rijke tube system.

Lee et al.218 proposed a framework for performing input-
output system identification near a Hopf bifurcation. By us-
ing the data from the steady state behavior, they were able to
predict the location and the criticality of Hopf bifurcation in a
laminar Rijke tube burner and a model of the Duffing-Van der
Pol oscillator perturbed with additive white noise. This novel
methodology does not involve the crossing of threshold val-
ues (unlike other measures discussed before) and can be ap-
plied to various other dynamical systems that exhibit a Hopf
bifurcation (or systems that can be reduced to Stuart-Landau
equations). Premraj et al.180 investigated the occurrence of
a catastrophic transition, such as flame blowout, in a laminar
premixed Rijke tube burner. During flame blowout, the flame
ceases to exist in the combustor as the time scales of flow
fluctuations become much larger than the reaction timescales
in the system. After the flame blowout, the amplitude of the
acoustic pressure fluctuations in the system drops to a very
low value. Premraj et al.180 noticed that the occurrence of
flame blowout is preceded by the existence of extreme events
in the acoustic field of the system and found the presence of
special kind of extreme events called the dragon-king extreme
events just prior to flame blowout. Thus, the early warning to
flame blowout can be provided by identifying the dragon-king
extreme events in the acoustic field of the system.

Early warning measures have been investigated extensively
in many systems including Rijke tubes and to date remain a
topic of immense attention due to their potential applications.
The readers are guided towards a recent review on critical
transitions and early warning signals by Pavithran et al.335 for
a more elaborate discussion.

VII. CONCLUSIONS

In the present review, we have introduced the Rijke tube
oscillator as a novel paradigmatic oscillator to the nonlinear
dynamics community. Towards this purpose, we have system-
atically presented the potential applications of the Rijke tube
oscillator in obtaining experimental verification of various dy-
namical phenomena that are observed in general paradigmatic
oscillators. We have shown that, depending on the operat-
ing conditions, the onset of limit cycle oscillations in a Ri-
jke tube can happen either through subcritical or supercritical
Hopf bifurcation. We have also observed the occurrence of
secondary bifurcations to various dynamical phenomena such
as quasiperiodic, period-k, chaotic, and strange nonchaotic os-
cillations, along with the presence of different routes to chaos
in the Rijke tube system. We have further emphasized the ex-
istence of different noise-induced transitions, such as coher-
ence resonance, stochastic bifurcation, and subcritical excita-
tion to limit cycle oscillations in the subthreshold and bistable
regimes of the system operation. We have examined mutual
synchronization and forced synchronization properties of cou-
pled and forced Rijke tube oscillators, respectively, and sum-
marized different states of synchronization witnessed in such
systems. We further discussed the application of different
concepts from synchronization theory to control and mitigate
the limit cycle oscillations using the phenomena of amplitude
death, partial amplitude death, and asynchronous quenching
in the Rijke tube systems. Finally, we have presented the use
of a Rijke tube system as a platform to develop validate vari-
ous early warning measures for catastrophic transitions.

We hope that this review paves way for the dynamical sys-
tems community to utilize the Rijke tube oscillator for per-
forming both experimental and theoretical studies in the fu-
ture. Although there has been significant progress in studying
the nonlinear behavior of Rijke tube oscillators over the years,
there are still many interesting phenomena that are yet to be
experimentally or theoretically discovered, examined and val-
idated in Rijke tube oscillators. Next, we discuss possible ar-
eas of research that can be explored to unravel several hidden
dynamical and coupled behaviors in the Rijke tube systems.

As discussed in Sec. IV B, the occurrence of stochastic res-
onance has not been examined in Rijke type systems. There-
fore, future investigations are required in order to obtain the
experimental or theoretical discovery of stochastic resonance
in Rijke tube oscillators. There are many theoretical stud-
ies that report the occurrence of the period-doubling route to
chaos in different Rijke tube systems74,150. However, the ex-
perimental evidence of this route to chaos is yet to be reported
in a Rijke tube system.

Furthermore, in this paper, we have restricted our discus-
sion on the application of Rijke tube oscillators to investi-
gate the dynamical behavior of a single and a pair of oscil-
lators, for the variation of both systems and coupling param-
eters. However, we know that with an increase in the num-
ber of oscillators in a system (i.e., a network) or a change
in their coupling structures (e.g., local, non-local, and global
couplings or star, line, and ring topologies), we can observe
many complex dynamical phenomena resulting from the cou-
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pling of oscillators47,48. These phenomena include clustering,
splay states, bare minimum chimera, weak chimera, ampli-
tude death, aging, etc. in a minimal network of coupled oscil-
lators, where the number of oscillators is less (approximately,
3 to 10). Different modeling studies in the past showed the
occurrence of these phenomena in small networks of oscil-
lators. In the future, we can construct a minimal network of
Rijke tube oscillators and through appropriate coupling mech-
anisms, we can experimentally validate theoretically discov-
ered phenomena. Furthermore, we have also discussed the
possibility of oscillation quenching via amplitude death in a
system of coupled oscillators. However, in some systems,
such suppression of oscillations is undesirable. Recently,
through various theoretical studies46, restoring of oscillations
in a system is shown by adding a processing delay factor in
the coupling term of oscillators. Developing a controlled ex-
periment on a network of Rijke tube oscillators to revoke the
oscillations from the death state by varying the feedback fac-
tor in the coupling of oscillators is an interesting study worth
future investigations.

In practical systems, the control parameter of a system does
not change quasi-statically; however, it varies continuously in
time with different rates. Many studies have been performed
investigating rate-dependent tipping (bifurcation) on a single
system. Such investigations can be extended to multiple cou-
pled oscillators. Moreover, in a system of two coupled oscil-
lators, the effect of the rate of change of control parameters in
one system on the tipping behavior of the other can be stud-
ied theoretically and validated experimentally using coupled
Rijke tube systems. Furthermore, the presence of noise on the
coupled behavior of Rijke tube oscillators, in terms of their
transition from steady state to limit cycle oscillations or the
occurrence of different dynamical states, can also be included
in future investigations.
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