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Abstract. Efficient rhodium-catalyzed Sommelet-Hauser type rearrangement of 3-diazoindolin-2-ones with

a-thioesters has been accomplished for the synthesis of C4-thioalkylated oxindoles. The developed reaction

offers the selective functionalization of C4-position of oxindole via generation of S-ylide and [2, 3]-sig-

matropic rearrangement and allows access to diverse C4-thioalkylated oxindoles in good to excellent yield.

Furthermore, the method was successfully extended to the synthesis C4-selenoalkylated oxindoles employing

the corresponding a-selenoester.
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1. Introduction

Substituted oxindoles have drawn special attention in

synthetic organic and medicinal chemistry due to their

widespread biological activity.1 For instance, the drug

molecule having oxindoles skeletons exhibits extensive

bio-activities,2 which include anti-HIV, protein kinase

inhibitors,3 anti-bacterial agents, etc.4 Some of the repre-

sentative examples of therapeutically important oxindole

containing molecules are shown in Figure 1. In addition,

aryl sulfonanilide substitutedoxindole hybrid also exhibits

enhanced activity and inhibits the growth of cancer cells

by partial depletion of intracellular calcium stores and

phosphorylation of elF2a.5 Similarly, C4-substituted

oxindole derivatives also show diverse biological activi-

ties.6 Due to their biological importance, during past

decades, numerousmethods for the synthesis of oxindoles

have been developed.7 Most of the known methods are

limited to the construction of pyrrolidone ring system of

oxindole from functionalized arene and selective func-

tionalization of oxindole is rather limited.8 Hence, the

development of a practical and general method for the

selective synthesis of substituted oxindole, which will

minimize the number of steps and increases complexity

and diversity, is an attractive subject in organic synthesis.9

On the other hand, diazocarbonyl compounds, a vital

coupling partner in organic synthesis for the construction

of various complex molecule,10 in the presence of metal

catalyst generates important reactive intermediate, viz.,

metal carbeniods. This intermediate undergoes various

useful transformations including insertion into C-H11 and

X–H/C bond,12 ylide generation-cum-functionalization,13

etc. Among these transformations, ylide generation from

diazo compound and Lewis base, in particular, sulfides,14

followed by either [2, 3]/[1, 2]-sigmatrophic rearrange-

ment or Sommelet-Hauser type rearrangement15 affords

an interesting possibility for the construction of diverse

sulfur-based building blocks andheterocycles.16Although

[2, 3]/[1, 2]-sigmatrophic rearrangements of sulfur ylides

have been extensively studied, Sommelet-Hauser type

rearrangement of sulfur ylides is rather limited. For

instance, rhodium-catalyzed Sommlet-Hauser type rear-

rangement of sulfur ylide was disclosed byWang and co-

workers,17 wherein the reaction of aryl-substituted dia-

zoacetates with ethyl phenylthioacetate in the presence of

Rh2(O2CCF3)4 affords ortho-substituted arylacetates
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(Scheme 1a). Inspired from this work and our continued

interest in functionalization of metal carbenoids,18 we

envisioned the rhodium-catalyzed Sommelet-Hauser type

rearrangement of sulfur ylides derived from 3-diazoin-

dolin-2-ones and a-thioester (Scheme 1b). The successful

development of the reaction would offer selective rho-

dium-catalyzed synthesis of C4-thioalkylated oxindole, a

biologically important structural motif.

2. Experimental

2.1 General information

All reactions were carried out under an atmosphere

of dry nitrogen using reaction tubes. Dry

dichloromethane (DCM) was prepared by distilling

over calcium hydride and stored over 4Å molecular

sieves under N2 atmosphere. All the 3-diazoindolin-2-

ones were synthesized from isatin and tosylhydrazine

employing literature procedure.19 a-Thioester20 and

a-selenoester21 were prepared using literature proto-

col. Column chromatography was performed using

Rankem Silicagel (100–200 mesh) and the solvent

system used unless otherwise specified, was ethyl

acetate–hexanes with various percentage of polarity

depending on the nature of the substrate. NMR data

were recorded on Bruker DPX 400 MHz spectrome-

ters. 13C and 1H NMR spectra were referenced to

signals of deutero and residual protiated solvents,

respectively. Infrared spectra were recorded on a

Thermo Nicolet iS10 FT spectrometer. HRMS were

Figure 1. Biologically important oxindole derivatives.

(a)

(b)

Scheme 1. Rhodium catalyzed Sommelet-Hauser type rearrangement.
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recorded by electron spry ionization (ESI) method on a

Q-TOF Micro with lock spray source.

2.2 Typical procedure for the rhodium-catalyzed

synthesis of substituted oxindole 3

a-Thioester/a-selenoester 1 (0.4 mmol, 1 equiv),

Rh2(OAc)4 (0.008 mmol, 2 mol%) and dichlor-

omethane (2 mL) were added under nitrogen atmo-

sphere to an oven-dried 10 mL reaction tube equipped

with stir bar. The reaction tube was sealed with septa

and stirred at room temperature. Subsequently, the

solution of 3-diazoindolin-2-one 2 (0.8 mmol, 2 equiv)

in dichloromethane (0.3 mL) was introduced slowly

through syringe pump (addition rate = 0.01 mL/min).

After the addition of diazo compound, the reaction

mixture was stirred for 2 h at same temperature. After

the TLC analysis, solvent was removed under reduced

pressure. Purification of the resultant crude through

column chromatography using mixture of hexane/ethyl

acetate as an eluent afforded oxindole 3 in high yield

and purity

3a: Brick red solid; yield: 81%; M.p.: 98–100 �C; Rf

= 0.55 in 30:70 ethyl acetate/hexane; FTIR (KBr):

3061, 2931, 2362, 1719, 1606, 1469, 1348, 1301,

1253, 1150, 1095, 1026, 982 cm-1; 1H NMR (400

MHz, CDCl3): d 7.38–7.32 (m, 2H), 7.30–7.15 (m,

5H), 6.75 (d, 1H, J = 7.6 Hz), 4.85 (s, 1H), 4.24–4.03

(m, 2H), 3.59 and 3.34 (ABq, 2H, J = 22.1 Hz), 3.18

(s, 3H), 1.18 (t, 3H, J = 7.1 Hz); 13C{1H}NMR (100

MHz, CDCl3): d 174.6, 169.6, 145.3, 133.2, 133.1,

132.1, 129.1, 128.5, 128.4, 123.7, 122.2, 107.9, 62.0,

54.4, 34.7, 26.3, 14.0; HRMS: calcd. for C19H19NO3S

? Na: 364.0978; found: 364.0982.

3b: Red semi solid; yield: 76%; Rf = 0.39 in 30:70

ethyl acetate/hexane; FTIR (KBr): 3056, 2982, 2850,

2306, 1717, 1605, 1469, 1352, 1262, 1156, 1102,

1030, 900 cm-1; 1H NMR (400 MHz, CDCl3): d
7.32–7.29 (m, 1H), 7.8–7.23 (m, 2H), 7.16 (d, 1H, J =

7.9 Hz), 6.82–6.77 (m, 1H), 6.77–6.70 (m, 2H), 4.71

(s, 1H), 4.24–4.01 (m, 2H), 3.77 (s, 3H), 3.56 and 3.32

(ABq, 2H, J = 21.8 Hz), 3.18 (s, 3H), 1.19 (t, 3H, J =

7.0 Hz); 13C{1H} NMR (100 MHz, CDCl3): d 174.6,

169.7, 160.4, 145.3, 136.4, 132.3, 128.4, 123.7, 123.2,

122.2, 114.6, 107.8, 61.9, 55.3(9), 55.3(3), 34.7, 26.3,

14.1; HRMS: calcd. for C20H21NO4S?H: 372.1264;

found: 372.1279.

3c: Red semi solid; yield: 64%; Rf = 0.47 in 30:70

ethyl acetate/hexane; FTIR (KBr): 3055, 2980, 2931,

2372, 2307, 1718, 1608, 1468, 1351, 1298, 1262,

1149, 1098, 1031, 738 cm-1; 1H NMR (400 MHz,

CDCl3): d 7.31–7.18 (m, 3H), 7.00 (s, 1H), 6.89 (d,

1H, J = 7.7 Hz), 6.74 (d, 1H, J = 7.1 Hz), 4.71 (s, 1H),

4.20–4.02 (m, 2H), 3.58 and 3.29 (ABq, 2H, J = 21.5

Hz), 3.18 (s, 3H), 2.34 (s, 3H), 2.27 (s, 3H), 1.17 (t,

3H, J = 7.1 Hz); 13C{1H} NMR (100 MHz, CDCl3): d
174.6, 169.8, 145.3, 141.2, 139.0, 134.6, 132.3, 131.4,

128.7, 128.5, 127.4, 123.7, 122.3, 107.8, 61.9, 53.8,

34.7, 26.3, 21.1, 20.6, 14.0; HRMS: calcd. for

C21H23NO3S ? Na: 392.1291; found: 392.1298.

3d: Red semi solid; yield: 71%; Rf = 0.34 in 40:60

ethyl acetate/hexane; FTIR (KBr): 3057, 2982, 2928,

2857, 2686, 2522, 2413, 2372, 2306, 2134, 1715,

1610, 1504, 1463, 1422, 1264, 1179, 1147, 1096,

1033, 740 cm-1; 1H NMR (400 MHz, CDCl3): d
7.30–7.23 (m, 1H), 7.16 (d, 1H, J = 7.9 Hz), 7.04–6.96

(dd, 1H, J = 1.5, 8.2 Hz), 6.79 (d, 1H, J = 1.5 Hz), 6.76

(s, 1H), 6.74 (s, 1H), 4.75 (s, 1H), 4.21–4.09 (m, 2H),

3.85 (s, 3H), 3.74 (s, 3H), 3.58 and 3.32 (ABq, 2H, J =

22.2 Hz), 3.19 (s, 3H), 1.20 (t, 3H, J = 7.0 Hz);
13C{1H} NMR (100 MHz, CDCl3): d 174.5, 169.7,

150.0, 148.8, 145.3, 132.3, 128.8, 127.8, 123.8, 123.4,

122.3, 117.5, 111.3, 107.8, 62.0, 55.9(6), 55.9(2), 55.3,

34.7, 26.3, 14.1; HRMS: calcd. for C21H23NO5S ?

Na: 424.1189; found: 424.1195.

3e: Brick red liquid; yield: 78%; Rf = 0.49 in 30:70

ethyl acetate/hexane; FTIR (KBr): 3057, 2982, 2928,

2857, 2686, 2522, 2413, 2372, 2306, 2134, 1715,

1610, 1504, 1463, 1422, 1264, 1179, 1147, 1096,

1033, 740 cm-1; 1H NMR (400 MHz, CDCl3): d
7.46–7.32 (m, 2H), 7.31–7.18 (m, 3H), 7.14 (t, 1H, J =

7.4 Hz), 6.75 (d, 1H, J = 7.4 Hz), 5.05 (s, 1H),

4.22–4.04 (m, 2H), 3.67 and 3.49 (ABq, 2H, J = 22.1

Hz), 3.19 (s, 3H), 1.16 (t, 3H, J = 6.9 Hz); 13C{1H}

NMR (100 MHz, CDCl3): d 174.6, 169.3, 145.5,

137.5, 134.7, 132.2, 131.4, 130.1, 129.7, 128.7, 127.3,

123.9, 122.3, 108.1, 62.2, 52.3, 34.8, 26.4, 14.1;

HRMS: calcd. for C19H18ClNO3S ? Na: 398.0588;

found: 398.0597.

3f: Orange liquid; yield: 75%; Rf = 0.50 in 30:70

ethyl acetate/hexane; FTIR (KBr): 3061, 2977, 2930,

2373, 2181, 2129, 1717, 1656, 1610, 1470, 1354,

1301, 1262, 1225, 1155, 1092, 1029, 817 cm-1; 1H

NMR (400 MHz, CDCl3): d 7.36 (t, 1H, J = 7.4 Hz),

7.33–7.24 (m, 2H), 7.18 (d, 1H, J = 7.7 Hz), 7.09–7.00

(m, 2H), 6.78 (d, 1H, J = 7.5 Hz), 4.99 (s, 1H),

4.23–4.01 (m, 2H), 3.65 and 3.48 (ABq, 2H, J = 22.3

Hz), 3.19 (s, 3H), 1.15 (t, 3H, J = 7.1 Hz); 13C{1H}

NMR (100 MHz, CDCl3): d 174.6, 169.5, 145.5,

136.0, 131.7, 131.4 (d, J = 51.2 Hz), 131.1, 128.6,

124.6 (d, J = 3.9 Hz), 123.9, 122.2, 116.1 (d, J = 22.2

Hz), 108.1, 62.1, 52.6, 34.7, 26.4, 14.1; HRMS: calcd.

for C19H18FNO3S ? Na: 382.0884; found: 382.0888.

3g: Red solid; yield: 80%; M.p.: 110–112 �C; Rf =

0.49 in 30:70 ethyl acetate/hexane; FTIR (KBr): 3057,
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2978, 2937, 2364, 2314, 1719, 1607, 1470, 1350,

1300, 1261, 1152, 1096, 1023, 983 cm-1; 1H NMR

(400 MHz, CDCl3): d 7.31–7.18 (m, 5H), 7.13 (d, 1H,

J = 8.0 Hz), 6.76 (d, 1H, J = 7.6 Hz), 4.83 (s, 1H),

4.22–4.05 (m, 2H), 3.63 and 3.44 (ABq, 2H, J = 22.5

Hz), 3.19 (s, 3H), 1.19 (t, 3H, J = 7.1 Hz); 13C{1H}

NMR (100 MHz, CDCl3): d 174.4, 169.3, 145.5,

134.7, 134.5, 131.6(6), 131.6(0), 129.2, 128.6, 123.6,

122.2, 108.1, 62.1, 54.4, 34.7, 26.3, 14.0; HRMS:

calcd. for C19H18ClNO3S ? Na: 398.0588; found:

398.0589.

3h: Orange solid; yield: 81%; M.p.: 154–156 �C; Rf

= 0.45 in 30:70 ethyl acetate/hexane; FTIR (KBr):

3057, 2983, 2833, 2359, 2309, 1720, 1602, 1463,

1346, 1266, 1153, 1101, 1026, 944, 896 cm-1; 1H

NMR (400 MHz, CDCl3): d 7.10–7.03 (m, 3H), 6.98

(d, 1H, J = 7.9 Hz), 6.59–6.49 (m, 3H), 4.56 (s, 1H),

4.07–3.83 (m, 2H), 3.40 and 3.16 (ABq, 2H, J = 21.6

Hz), 3.01 (s, 3H), 1.01 (t, 3H, J = 7.1 Hz), 0.78 (s, 9H),

0.01 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3): d
174.5, 169.7, 156.7, 145.3, 136.3, 132.3, 128.4, 124.1,

123.8, 122.3, 120.8, 107.7, 61.9, 55.1, 34.7, 26.3, 25.6,

18.2, 14.1, –4.4; HRMS: calcd. for C25H33NO4SSi ?

Na: 494.1792; found: 494.1789.

3i: Red solid; yield: 88%; M.p.: 122–124 �C; Rf =

0.34 in 40:60 ethyl acetate/hexane; FTIR (KBr): 3061,

2971, 2931, 2367, 1717, 1655, 1608, 1464, 1415,

1348, 1298, 1253, 1160, 1128, 1032 cm-1; 1H NMR

(400 MHz, CDCl3): d 8.39 (d, 1H, J = 4.7 Hz), 7.47 (t,

1H, J = 7.8 Hz), 7.27 (t, 1H, J = 7.3 Hz), 7.22 (d, 1H,

J = 7.8 Hz), 7.16 (d, 1H, J = 8.0 Hz), 7.03–6.95 (m,

1H), 6.75 (d, 1H, J = 7.4 Hz), 5.76 (s, 1H), 4.29–4.09

(m, 2H), 3.73 (s, 2H), 3.19 (s, 3H), 1.22 (t, 3H, J = 7.0

Hz); 13C{1H} NMR (100 MHz, CDCl3): d 174.8,

170.0, 156.8, 149.3, 145.4, 136.2, 132.1, 128.6, 124.2,

122.1, 121.9, 120.1, 107.9, 62.1, 48.8, 35.0, 26.3, 14.1;

HRMS: calcd. for C18H18N2O3S ? Na: 343.1111;

found: 343.1123.

3m: Red semi solid; yield: 73%; Rf = 0.44 in 30:70

ethyl acetate/hexane; FTIR (KBr): 3057, 2989, 2412,

2359, 2308, 1728, 1608, 1467, 1424, 1354, 1265,

1213, 1159, 1025, 967 cm-1; 1H NMR (400 MHz,

CDCl3): d 7.42–7.31 (m, 2H), 7.30–7.19 (m, 5H), 6.64

(d, 1H, J = 7.0 Hz), 4.84 (s, 1H), 4.46 and 4.41 (AB q,

2H, J = 17.6 Hz), 4.26-4.09 (m, 4H), 3.66 and 3.39

(ABq, 2H, J = 22.2 Hz), 1.27 (t, 3H, J = 7.1 Hz), 1.19

(t, 3H, J = 7.1 Hz); 13C{1H} NMR (100 MHz, CDCl3):

d 174.5, 169.6, 167.6, 144.0, 133.4, 133.2, 132.4,

129.2, 128.6, 123.6, 122.7, 108.0, 62.1, 61.9, 54.5,

41.5, 34.5, 14.2, 14.1; HRMS: calcd. for C22H23NO5-

S? H: 414.1370; found: 414.1379.

3n: Red solid; yield: 82%; M.p.: 112–114 �C; Rf =

0.48 in 30:70 ethyl acetate/hexane; FTIR (KBr): 3063,

2977, 2927, 2861, 2360, 1729, 1607, 1468, 1353,

1310, 1207, 1160, 1025, 969 cm-1; 1H NMR (400

MHz, CDCl3): d 7.37 (d, 2H, J = 6.8 Hz), 7.31–7.20

(m, 4H), 6.67 (d, 1H, J = 8.4 Hz), 5.49 (s, 1H),

4.31–4.07 (m, 2H), 3.77 and 3.29 (ABq, 2H, J = 22.3

Hz), 3.17 (s, 3H), 1.23 (t, 3H, J = 7.1 Hz); 13C{1H}

NMR (100 MHz, CDCl3): d 174.4, 168.8, 144.4,

134.0, 132.9, 131.3, 129.2, 129.1, 128.7, 127.7, 126.0,

108.7, 62.5, 52.9, 35.7, 26.4, 14.1; HRMS: calcd. for

C19H18ClNO3S ? Na: 398.0588; found: 398.0599.

3o: Orange liquid; yield: 81%; Rf = 0.50 in 30:70

ethyl acetate/hexane; FTIR (KBr): 3063, 2974, 2929,

1721, 1601, 1465, 1342, 1291, 1236, 1151, 1100,

1026, 809 cm-1; 1H NMR (400 MHz, CDCl3): d 7.46

(d, 1H, J = 8.5 Hz), 7.38 (d, 2H, J = 7.9 Hz), 7.30–7.20

(m, 3H), 6.62 (d, 1H, J = 8.2 Hz), 5.54 (s, 1H),

4.27–4.12 (m, 2H), 3.83 and 3.36 (ABq, 2H, J = 22.4

Hz), 3.16 (s, 3H), 1.22 (t, 3H, J = 7.2 Hz); 13C{1H}

NMR (100 MHz, CDCl3): d 174.2, 168.8, 145.0,

133.9, 133.2, 132.8, 132.4, 129.0, 128.6, 125.9, 117.6,

109.1, 62.4, 55.4, 35.7, 26.3, 14.1; HRMS: calcd. for

C19H18BrNO3S ? Na: 442.0083; found: 442.0085.

3p: Red semi solid; yield: 74%; Rf = 0.47 in 30:70

ethyl acetate/hexane; FTIR (KBr): 3057, 2985, 2936,

2306, 1716, 1619, 1472, 1425, 1361, 1265, 1163, 740

cm-1; 1H NMR (400 MHz, CDCl3): d 7.35 (d, 2H, J =

7.7 Hz), 7.28–7.22 (m, 3H), 6.95 (t, 1H, J = 9.4 Hz),

6.66 (dd, 1H, J = 3.8, 8.5 Hz), 5.24 (s, 1H), 4.26–4.14

(m, 2H), 3.72 and 3.31 (ABq, 2H, J = 22.9 Hz), 3.17

(s, 3H), 1.22 (t, 3H, J = 7.1 Hz); 13C{1H} NMR (100

MHz, CDCl3): d 174.6, 168.8, 156.5 (d, J = 242.5 Hz),

141.5, 133.7, 132.8, 129.1, 128.7, 125.7 (d, J = 3.4

Hz), 121.7 (d, J = 16.6 Hz), 114.4 (d, J = 24.9 Hz),

108.2 (d, J = 8.5 Hz), 62.5, 49.0, 35.6, 26.4, 14.1;

HRMS: calcd. for C19H18FNO3S ? Na: 382.0884;

found: 382.0893.

3q: Orange solid; yield: 67%; M.p.: 132–134 �C; Rf

= 0.42 in 40:60 ethyl acetate/hexane; FTIR (KBr):

3368, 3302, 2926, 2855, 2360, 1713, 1610, 1473,

1358, 1286, 1251, 1160, 1073, 1028, 747 cm-1; 1H

NMR (400 MHz, CDCl3): d 8.17 (d, 1H, J = 8.3 Hz);

7.39 (d, 2H, J = 7.6 Hz), 7.33–7.21 (m, 3H), 6.82 (d,

1H, J = 8.6 Hz), 5.26 (s, 1H), 4.25 (q, 2H, J = 7.0 Hz),

3.58 and 2.97 (ABq, 2H, J = 21.8 Hz), 3.23 (s, 3H),

1.26 (t, 3H, J = 7.0 Hz); 13C{1H} NMR (100 MHz,

CDCl3): d 174.0, 168.3, 149.7, 142.3, 134.1, 133.8,

130.8, 129.4, 129.1, 127.8, 125.9, 107.1, 62.7, 54.0,

35.0, 26.6, 14.1; HRMS: calcd. for C19H18N2O5S ?

Na: 409.0829; found: 409.0835.

3r: Orange semi solid; yield: 70%; Rf = 0.41 in

40:60 ethyl acetate/hexane; FTIR (KBr): 3057, 2986,

2308, 1711, 1611, 1472, 1431, 1358, 1266, 1163,

1076, 1029, 897 cm-1; 1H NMR (400 MHz, CDCl3): d
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7.34 (d, 2H), 7.28–7.17 (m, 3H), 6.75 (d, 1H, J = 8.4

Hz), 6.66 (d, 1H, J = 8.4 Hz), 5.33 (s, 1H), 4.18 (q, 2H,

J = 7.0 Hz), 3.70 (s, 3H), 3.61 and 3.12 (ABq, 2H, J =

22.0 Hz), 3.15 (s, 3H), 1.21 (t, 3H, J = 7.2 Hz);
13C{1H} NMR (100 MHz, CDCl3): d 174.5, 169.6,

152.2, 138.1, 133.8, 133.7, 128.8, 128.3, 125.5, 123.3,

110.1, 107.7, 62.0, 56.4, 49.9, 35.4, 26.2, 14.2; HRMS:

calcd. for C20H21NO4S ? H: 372.1264; found:

372.1278.

5a: Red semi solid; yield: 71%; Rf = 0.51 in 40:60

ethyl acetate/hexane; FTIR (Neat): 3426, 3064, 2984,

2252, 1709, 1608, 1470, 1349, 1301, 1251, 1184,

1131, 1027, 984, 912 cm-1; 1H NMR (400 MHz,

CDCl3): d 7.50–7.38 (m, 2H), 7.31 (t, 1H, J = 7.3 Hz),

7.27 (m, 4H), 6.76–6.66 (m, 1H), 4.83 (s, 1H),

4.22–4.05 (m, 2H), 3.47 and 3.18 (ABq, 2H, J = 22.1

Hz), 3.18 (s, 3H), 1.19 (t, 3H, J = 7.1 Hz); 13C{1H}

NMR (100 MHz, CDCl3): d 174.5, 170.3, 145.2,

136.0, 132.7, 129.1, 129.0, 128.4, 128.2, 123.5, 122.6,

107.6, 61.9, 45.9, 34.6, 26.4, 14.1; HRMS: calcd. for

C19H19NO3Se?H: 390.0603; found: 390.0608.

5b: Red semi liquid; yield: 76%; Rf = 0.55 in 30:70

ethyl acetate/hexane; FTIR (Neat): 3431, 3061, 2935,

1718, 1618, 1469, 1228, 1125, 1025, 956, 811 cm-1;
1H NMR (400 MHz, CDCl3): d 7.48–7.40 (m, 2H),

7.32 (t, 1H, J = 7.4 Hz), 7.28–7.16 (m, 5H), 6.71 (d,

1H, J = 7.4 Hz), 4.85 (s, 1H), 3.68 (s, 3H), 3.47 and

3.15 (ABq, 2H, J = 22.2 Hz), 3.18 (s, 3H); 13C{1H}

NMR (100 MHz, CDCl3): d 174.5, 170.8, 145.2,

136.1, 132.7, 131.6, 129.2, 129.1, 128.5, 123.5, 122.7,

107.6, 52.9, 45.8, 34.6, 26.4; HRMS: calcd. for

C18H16NO3Se ?H: 376.0446; found: 376.0448.

5c: Red semi liquid; yield: 63%; Rf = 0.40 in 40:60

ethyl acetate/hexane; FTIR (Neat): 3433, 3057, 2978,

2932, 2333, 2091, 1730, 1606, 1466, 1355, 1207,

1025, 932, 871 cm-1; 1H NMR (400 MHz, CDCl3): d
7.49–7.39 (m, 2H), 7.36–7.29 (m, 1H), 7.28–7.18 (m,

4H), 6.60 (d, 1H, J = 7.3 Hz), 4.82 (s, 1H), 4.43 (s,

2H), 4.22 (q, 2H, J = 7.1 Hz), 4.18–4.08 (m, 2H), 3.53

and 3.19 (ABq, 2H, J = 22.2 Hz), 1.27 (t, 3H, J = 7.1

Hz), 1.19 (t, 3H, J = 7.0 Hz); 13C{1H} NMR (100

MHz, CDCl3): d 174.4, 170.3, 167.5, 143.8, 136.1,

133.0, 131.5, 129.1 (8), 129.1 (1), 128.4, 123.2, 123.0,

107.6, 61.9, 61.8, 45.8, 41.4, 34.3, 14.2, 14.0; HRMS:

calcd. for C22H24NO5Se ?H: 462.0814; found:

462.0814.

5d: Red semi liquid; yield: 69%; Rf = 0.51 in 40:60

ethyl acetate/hexane; FTIR (Neat): 3419, 3055, 2980,

2930, 1955, 1717, 1605, 1462, 1340, 1229, 1162,

1026, 965 cm-1; 1H NMR (400 MHz, CDCl3): d
7.47–7.37 (m, 2H), 7.36–7.23 (m, 6H), 7.23–7.15 (m,

3H), 7.11 (t, 1H, J = 7.9 Hz), 6.60 (d, 1H, J = 7.7 Hz),

4.90 and 4.84 (ABq, 2H, J = 15.6 Hz), 4.84 (s, 1H),

4.23–4.03 (m, 2H), 3.53 and 3.20 (ABq, 2H, J = 22.2

Hz), 1.19 (t, 3H, J = 7.1 Hz); 13C{1H} NMR (100

MHz, CDCl3): d 174.5, 170.3, 144.1, 136.2, 135.8,

132.8, 129.1, 128.8, 128.3, 128.1, 127.7, 127.4, 123.5,

122.6, 108.5, 61.9, 45.7, 43.8, 34.5, 14.1; HRMS:

calcd. for C25H23NO3Se ?H: 466.0916; found:

466.0918.

5e: Red semi liquid; yield: 66%; Rf = 0.51 in 40:60

ethyl acetate/hexane; FTIR (Neat): 3407, 3059, 2926,

2858, 1720, 1602, 1465, 1345, 1302, 1224, 1134,

1027, 806 cm-1; 1H NMR (400 MHz, CDCl3): d
7.48–7.38 (m, 3H), 7.34–7.27 (m, 1H), 7.24–7.15 (m,

2H), 6.57 (d, 1H, J = 8.3 Hz), 5.58 (s, 1H), 4.28–4.09

(m, 2H), 3.69 and 3.17 (ABq, 2H, J = 21.9 Hz), 3.19

(s, 2H), 1.24 (s, 3H, J = 7.1 Hz); 13C{1H} NMR (100

MHz, CDCl3): d 174.2, 169.3, 144.8, 136.5, 133.1,

132.4, 129.1, 129.0, 127.8, 126.1, 117.7, 108.8, 62.5,

47.0, 35.8, 26.3, 14.1; HRMS: calcd. for C19H18-

BrNO3Se ?H: 467.9708; found: 467.9704.

5f: Red semi liquid; yield: 71%; Rf = 0.51 in 40:60

ethyl acetate/hexane; FTIR (Neat): 3454, 3061, 2934,

1718, 1618, 1472, 1347, 1289, 1236, 1125, 1026, 957

cm-1; 1H NMR (400 MHz, CDCl3): d 7.41(d, 2H, J =

7.6 Hz), 7.33–7.24 (m, 1H), 7.18 (t, 2H, J = 7.3 Hz),

6.90 (t, 1H, J = 9.6 Hz), 6.62 (dd, 1H, J = 8.4, 3.7 Hz),

5.27 (s, 1H), 4.20 (q, 2H, J = 6.9 Hz), 3.58 and 3.13

(ABq, 2H, J = 22.2 Hz), 3.16 (s, 3H), 1.23 (t, 3H, J =

7.0 Hz); 13C{1H} NMR (100 MHz, CDCl3): d 174.5,

169.3, 156.7 (d, J = 242.7 Hz) 141.3, 136.3, 129.1,

127.9, 125.7, 122.3, 114.3 (d, J = 25.2 Hz), 107.8 (d,

J = 8.7 Hz), 62.4, 40.5, 35.5, 26.4, 14.1; HRMS: calcd.

for C19H18FNO3Se ?H: 407.0436; found: 407.0439.

Synthesis of sulfone 6: m-CPBA (121 mg, 0.7036

mmol) was added to a solution of oxindole 3 (80 g,

0.2345 mmol) in CH2Cl2 (10 mL) in 25 mL round bot-

tom flask. The reaction mixture was stirred at room

temperature for 2 h and analyzed by TLC. After com-

pletion, the reaction mixture was diluted with CH2Cl2
(10 mL) and neutralized by aq. NaHCO3. The organic

layer was separated and evaporated under the reduced

pressure. The resultant residue was purified by column

chromatography using EtOAc/hexane as eluent to give

sulfone 6 as green semi-liquid in 78% yield. Rf = 0.38 in

40:70 ethyl acetate/hexane; FTIR (Neat): 3426, 3064,

2984, 2252, 1709, 1608, 1470, 1349, 1301, 1251, 1184,

1131, 1027, 984, 912 cm-1; 1H NMR (400 MHz,

CDCl3): d 7.73–7.59 (m, 3H), 7.47 (d, 2H, J = 7.6 Hz),

7.22 (m, 1H, J=7.8Hz), 7.15 (d, 1H, J=8.0Hz), 6.83 (d,

1H, J = 7.6 Hz), 5.09 (s, 1H), 4.32–4.06 (m, 2H), 3.46

and 3.37 (ABq, 2H, J = 22.0 Hz), 3.19 (s, 3H), 1.21 (t,

3H, J = 7.1 Hz); 13C{1H} NMR (100 MHz, CDCl3): d
174.0, 164.3, 145.5, 136.6, 134.5, 130.0, 128.8, 128.4,

126.3, 124.3, 123.2, 109.2, 72.3, 62.8, 34.8, 26.4, 13.9;
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HRMS: calcd. for C18H18NO5S ?H: 360.0900; found:

360.0890.

3. Results and Discussion

Initially, a-thioester 1a derived from thiophenol and

3-diazoindolin-2-one 2a derived from isatins, were

chosen as model substrates to study the rhodium-cat-

alyzed Sommelet-Hauser type rearrangement

(Table 1). Thus, one equivalent of a-thioester 1a was

treated with one equivalent of 3-diazoindolin-2-one 2a
in the presence of 2 mol% of rhodium acetate in

toluene at 120 �C. To our delight, the formation of

expected C4-thioalkylated oxindole product 3a was

observed in 76% yield (Table 1, entry 1). The for-

mation and structure of oxindole 3a was unambigu-

ously confirmed by X-ray analysis (Figure 2).22 After

the successful confirmation of the product, attempts

were devoted to optimize the reaction. The use of

DCM as a solvent at 40 �C with equimolar amount of

1a and 2a also afforded the expected product 3a in

comparable yield within 4 h (Table 1, entry 2). Next,

the reaction temperature was decreased from 40 �C to

room temperature in DCM, which gave the product 3a
in decreased yield (Table 1, entry 3). Interestingly,

increasing the amount of 2a in DCM at room tem-

perature showed significant improvement in the reac-

tion (Table 1, entry 4 and 5). The best yield of 81% of

3a was observed with two equivalents of 2a.

On the other hand, the reaction of two equivalents of

1a and one equivalent of 2a gave only 59% of 3a

(Table 1, entry 6). Keeping the equivalents of reagents,

DCM and room temperature as a constant, decrease the

catalyst loading from 2 mol% to 1 mol% gave the pro-

duct 3a in diminished yield (Table 1, entry 7). Fur-

thermore, replacing the catalyst Rh2(OAc)4 with

Rh2(Oct)4 also led to the formation of product 3a in

comparable yield (Table 1, entry 8). Similarly, chang-

ing the solvent from DCM to chloroform also gave the

product in 78% yield (Table 1, entry 9). From all the

above optimization studies, following conditions were

chosen for studying the scope and generality of

the present Sommelet-Hauser type rearrangement:

a-thioester 1a (1 equiv), 3-diazoindolin-2-one 2a (2

equiv), Rh2(OAc)4 (2 mol%), dichloromethane, rt, 2 h.

Table 1. Rhodium-catalyzed Sommelet-Hauser type rearrangemen: optimization studiesa

Entry 1a (X equiv) 2a (Y equiv) Solvent Temp (�C) Time (h) Yield (%)b

1 1 2 Toluene 120 6 76
2 1 1 CH2Cl2 40 4 72
3 1 1 CH2Cl2 rt 4 61
4 1 1.5 CH2Cl2 rt 2 70
5 1 2 CH2Cl2 rt 2 81
6 2 1 CH2Cl2 rt 2 59
7c 1 2 CH2Cl2 rt 2 68
8d 1 2 CH2Cl2 rt 2 80
9 1 2 CHCl3 rt 2 78

a Reaction conditions: a-thioester 1a (X equiv), 3-diazoindolin-2-one 2a (Y equiv), Rh2(OAc)4
(2 mol%), solvent, temp, time
b Isolated yields
c Rh2(OAc)4 (1 mol%) was used
d Rh2(Oct)4 (2 mol%) was used.

Figure 2. ORTEP diagram of oxindole 3a.
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Having found the best-optimized conditions, next,

the generality of the developed transformation was

examined with respect to various a-thioester 1. At first,
scope of various arene substitutions in a-thioester was
investigated. As can be seen in Scheme 2, all the

substituted a-thioester 1 afforded the corresponding

oxindoles 3 in good yield. For instance, replacing of

phenyl with electron-rich arene moieties such as

4-methoxy and 2,3-dimethoxyphenyl substituted

a-thioesters afforded corresponding C4-thioalkylated

oxindoles 3b and 3d in *70% yields under the opti-

mized conditions. Similarly, the present method was

successfully applied to the haloarene-substituted

a-thioesters for the synthesis of synthetically useful

halo substituted oxindoles 3e–3g in excellent yields.

Importantly, sterically hindered ortho-substituted

2,4-dimethylphenyl substituted a-thioesters underwent
smooth reaction with 2a to provide the corresponding

oxindole 3c in 64% yield. Interestingly, acid-sensitive,

silyloxyarene substituted a-thioester was also well-

tolerated under the optimized conditions to give

oxindole 3h in 81% yield. Furthermore, a-thioester
derived from pyridine-2-thiol also worked well under

the optimized conditions to furnish oxindole 3i in 88%

yield. On the other hand, the replacement of ester

moiety with other electron-withdrawing groups, such

as methyl ketone, carboxamide and nitro group, failed

to afford the expected C4-substituted product 3j–3l.
This is possibly due to the less acidity of C-H bond in

carboxamide and high stability of the anion generated

from nitro derivatives.

Successively, the scope of 3-diazoindolin-2-one 2
was also examined under the present optimized condi-

tions (Scheme 3). N-substituted diazo derivatives such

asmethyl and functionalized alkyl groupwere subjected

under rhodium-catalyzed reaction with 1a, which led to
the formation of oxindole products 3a and 3m in 81%

and 73% yields, respectively. C4-Functionalized

chloro, bromo and fluoro substituted oxindole 3n–3p
were achieved in good yield from corresponding sub-

stituted diazo compounds. It is important to note that

both electron-withdrawing, 5-nitro-substituted and

electron-donating, 5-methoxy-substituted diazo

derivatives underwent smooth reaction to afford the

oxindole products 3q and 3r in good yields. Unfortu-

nately, the replacement of 3-diazoindolin-2-one 2 with

cyclic diazoketone 2s under the optimized conditions

failed to afford the corresponding product 3s.

Scheme 2. Synthesis of C4-thioalkylated oxindoles 3: Scope and limitation of a-thioester 1.

J. Chem. Sci. (2019) 131:119 Page 7 of 11 119



After the successful development of Sommelet-

Hauser type rearrangement of 3-diazoindolin-2-one

with a-thioester, next, the extension of the present

reaction to a-selenoesters was envisaged for the syn-

thesis of C4-selenoalkylated oxindole derivatives.

Thus, one equivalent of a-selenoester 4a was subjected
to two equivalents of diazo compound 2a in the

presence of 2 mol% of Rh2(OAc)4 in dichloromethane

at room temperature (Scheme 4). As expected, C4-

selenoalkylated oxindole 5a was observed in 71%

yield. This implies that the developed reaction works

equally well for selenium-ylide derived the a-sele-
noesters. Further, the scope of a-selenoesters with

various N-substituted diazo derivatives as examined.

Replacement of ethyl ester with methyl ester in a-
selenoesters gave the oxindole 5b in comparable yield.

The reaction of functionalized alkyl and benzyl group

containing diazo compound under standard conditions

led to the formation of oxindole products 5c and 5d in

63% and 69% yields, respectively. Similarly, halo

substituted oxindoles 5e–5f were also synthesized in

good yield from corresponding diazo compounds.

Unfortunately, a-selenoesters derived from methyl

2-bromopropionate did not afford the expected oxin-

dole 5g, possibly due to the steric hindrance.

After the successful demonstration of generality of

the developed method, chemoselectivity of Sommelet-

Hauser type rearrangement was examined with

a-thioesters and a-selenoesters (Scheme 5). The

reaction of equimolar mixture of 1a and 4b with diazo

compound 2a in the presence of 2 mol% of rhodium

acetate in DCM afforded the mixture of oxindoles 3a
and 5e in 59% overall yield with 1:1.2 ratio (Sche-

me 5a). This observation suggests that reactivity of

a-selenoester towards Sommelet-Hauser type rear-

rangement under the developed conditions is signifi-

cantly higher compared to a-thioesters. Next, the

possible synthetic conversion of oxindole 3a was also

investigated (Scheme 5b). The sulfur moiety in the

synthesized oxindole 3a was readily oxidized in the

presence of m-CPBA at room temperature in CH2Cl2
to corresponding sulfone 6 in 78% yield, which could

be readily applied for subsequent synthetic

manipulation.

N
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O
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N

CO2EtPhS

O
N
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O
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N
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Scheme 3. Synthesis of C4-thioalkylated oxindoles 3: Scope and limitation of diazo compound 2.

Scheme 4. Synthesis of C4-selenoalkylated oxindoles 5.
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Having demonstrated the efficient synthesis of C4-

chalcogenoalkylated oxindoles, based on the literature

precedence, the plausible mechanism for the rhodium-

catalyzed transformation was postulated (Scheme 6).

The reaction starts with the generation of reactive

rhodium carbenoid A from diazo compound 2 and

Rh2(OAc)4. Subsequent trapping of formed rhodium

carbenoid A with a-thioester/a-selenoester 1/4 via

nucleophilic attached would generate the metal-bound

S/Se-ylide B. Regeneration of rhodium catalyst from

metal-bound ylide B would form the S/Se-ylide B0.
Intramolecular proton transfer in B0 would provide

rearranged ylide C. Formation of enone intermediate

D could be readily realized through the [2, 3]-sigma-

tropic rearrangement of resultant ylide C. Finally, the
expected oxindole product 3/5 could be achieved via

the aromatization of intermediate D.
In conclusion, a general and efficient synthesis of

C4-thioalkylated oxindoles has been accomplished

through rhodium-catalyzed Sommelet-Hauser type

rearrangement of a-thioester with 3-diazoindolin-2-

one. The developed reaction tolerates various reactive

functional groups and allowed the selective synthesis

of various C4-thioalkylated oxindoles in good yield

to excellent yield. Furthermore, the developed reac-

tion was successfully extended to a-selenoester for

the synthesis of C4-selenoalkylated oxindoles.

Importantly, the chemoselective experiment sug-

gested the significant higher reactivity of a-sele-
noesters towards metal carbenoids compared to

a-thioesters.

Supplementary Information (SI)

1H and 13C NMR spectra of isolated compounds and CIF

file containing crystallographic information of compound 3a

are provided in the supporting information. Supplementary

information is available at www.ias.ac.in/chemsci.

(a)

(b)

Scheme 5. Chemoselectivity and synthetic utility.

Scheme 6. A plausible mechanism.
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