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It is well known that a detector, coupled linearly to a quantum field and accelerating through the

inertial vacuum with a constant acceleration g, will behave as though it is immersed in a radiation

field with temperature T = (g/2π). We study a generalization of this result for detectors moving with

a time-dependent acceleration g(τ ) along a given direction. After defining the rate of excitation of the

detector appropriately, we evaluate this rate for time-dependent acceleration, g(τ ), to linear order in

the parameter η = ġ/g2. In this case, we have three length scales in the problem: g−1, (ġ/g)−1 and

ω−1 where ω is the energy difference between the two levels of the detector at which the spectrum

is probed. We show that: (a) When ω−1 ≪ g−1 ≪ (ġ/g)−1, the rate of transition of the detector

corresponds to a slowly varying temperature T (τ ) = g(τ )/2π , as one would have expected. (b) However,

when g−1 ≪ ω−1 ≪ (ġ/g)−1, we find that the spectrum is modified even at the order O (η). This is

counter-intuitive because, in this case, the relevant frequency does not probe the rate of change of the

acceleration since (ġ/g) ≪ ω and we certainly do not have deviation from the thermal spectrum when

ġ = 0. This result shows that there is a subtle discontinuity in the behavior of detectors with ġ = 0

and ġ/g2 being arbitrarily small. We corroborate this result by evaluating the detector response for a

particular trajectory which admits an analytic expression for the poles of the Wightman function.

 2010 Elsevier B.V.

1. Introduction

One of the key results which emerge from the study of quan-

tum field theory in non-inertial coordinate systems (and curved

spacetime though we will not consider it in this Letter) is that both

the particle content of the quantum states, as well as the pattern

of vacuum fluctuations, are not generally covariant. This can be

explicitly demonstrated by studying the response of detectors lin-

early coupled to the quantum field (usually called Unruh–DeWitt

detectors) in different states of motion ([1,2]; see [3] for a review).

The probability that a detector traveling along the trajectory X i
∗(τ )

will get excited can be expressed as an integral over the Wightman

function of the field in the form

P =

∞
∫

−∞

dτ2

∞
∫

−∞

dτ1 exp(−iωu)G+
[

X i
∗(τ2), X

j
∗(τ1)

]

=

∞
∫

−∞

dt

∞
∫

−∞

du exp(−iωu)G+[u, t] (1)
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where ω is the energy difference between the two levels and

the coordinates (u, t) are introduced through the definitions: u =

τ2 − τ1 , 2t = τ2 + τ1 , and we have absorbed a factor dependent

upon the internal details of the detector in the definition of P .

When the trajectory X i
∗(τ ) is along the integral curve of a

time-like Killing vector field in flat spacetime (we will call such

trajectories ‘stationary’), the Wightman function G+[u, t] will only

depend on the time difference u so that G+[u, t] = G[u]. Then the

second integral over t in Eq. (1) will lead to a divergent result. This

is handled by the usual procedure of time-dependent perturbation

theory which involves ignoring the integral over t and interpreting

the rest of the result as providing the rate of transitions between

the two levels. For the stationary trajectories, this rate will be a

constant.

It is also worth mentioning at this point that the rate so defined

is a real number. This is easily seen by noting that, the imaginary

part of the rate will be given by

Im[Ṗ] =
1

2i

∞
∫

−∞

du
{

exp(−iωu)G+[u, t]

− exp(iωu)
(

G+
)∗

[u, t]
}

(2)

We now note that the Hadamard function satisfies: (G+)∗[P , Q ] =

G+[Q , P ] for any two points (P , Q ), here characterized by (τ1,τ2).
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Further, it follows from the definitions of u and t that interchang-

ing the points amounts to u → −u and t → t , so that (G+)∗[u, t] =

G+[−u, t]. It is then easy to see that Im[Ṗ ] = 0.

To avoid possible confusion, we must also point out that our

definition for the response function differs from certain other

definitions found in literature (often motivated by arguments of

causality, etc.). Essentially, the difference lies in the choice of the

“time” variable with respect to which the rate is defined (which,

in our case, is t). Similarly, our choice of regularization scheme is

also different from some other choices found in literature. Hence,

the result we shall obtain cannot be directly compared with other

results based on a different choice of definition for the rate or reg-

ularization scheme. We shall have more to say on this in the last

section.

Since flat spacetime admits ten independent Killing vector

fields, one can construct several linear combinations of these

Killing vectors which will be time-like in parts of the spacetime.

The response of detectors on these trajectories have been stud-

ied extensively in the literature (see, e.g., Refs. [4–6]). In a generic

situation, the detector will respond to the pattern of vacuum fluc-

tuations which can coincide with the particle content of the quan-

tum field determined by Bogoliubov coefficients in specific cases

but not always. (E.g., for a circular trajectory, the particle detector

“clicks” but the number of particles calculated using the Bogoli-

ubov coefficients turns out to be zero. Many of these conceptual

issues have been discussed and clarified in the literature [6–8].)

The uniformly accelerated trajectory corresponds to the integral

curve of the Killing vector field corresponding to the Lorentz boost

along the direction of the acceleration g . In this case1 we obvi-

ously have G+[u, t] = G[u]. In this particular case, the pattern of

vacuum fluctuations match with the particle content of the quan-

tum state and the rate of excitation of the detector will correspond

to a thermal spectrum of particles with a temperature T = g/2π .

This is of particular importance because it allows us to associate

a temperature with the Rindler horizon with obvious implications

for black hole physics.

Unfortunately, a detector which is uniformly accelerated from

τ = −∞ to τ = +∞ is not physically realizable. The question

arises as to what happens in the case of more realistic detectors.

One possible way of addressing this question is to keep the cou-

pling to the field switched on only for a finite interval of time

(see, e.g., Ref. [9]). But this introduces transients and one needs

to handle them with care. It also does not seem very natural to

switch off the coupling in this manner. A more obvious and phys-

ically interesting way of attacking the problem would be to study

the response of a detector moving along a given direction with a

time-dependent acceleration g(τ ) which is what we will do in this

Letter.

There are three further motivations for taking up this study

which are somewhat indirect.

First, we know that there is a direct correspondence between

the detector response in a uniformly accelerated trajectory and the

phenomena which takes place in the Hartle–Hawking vacuum state

around a black hole. By extending this analogy, we would expect a

sub-class of time-dependent accelerations — especially those g(τ )

which vanish at early times and become constant at late times —

to correspond to the phenomena which takes place in a collapsing

1 Incidentally, this can also be seen directly in the Euclidean sector, in which the

hyperbolic trajectory of the uniformly accelerated detector maps to a circle of con-

stant radius g−1
0 . Now, G+ for any two points on the circle depends on the chordal

distance between the points, and it follows from trivial geometry that this chordal

distance can be completely expressed in terms of sin(�θ) where �θ is the an-

gular separation between the points. Analytically continuing back, we see that G+

depends only on u = i�θ .

black hole scenario in the Unruh vacuum state. (For preliminary

discussions along these lines, see Section 5.1 of Ref. [10].) This

would be interesting to study.

Second, there has been considerable amount of work in recent

years which attempts to interpret the field equations of gravity as a

thermodynamic identity. This body of work [11] uses the concept

of local Rindler observers that corresponds to trajectories which,

in the local inertial frames around any given event, will be a hy-

perbola. While one expects such a local concept to be valid as a

first approximation, it is important to verify it explicitly (and in-

deed our results in this Letter will justify this notion and make it

sharper).

Finally, this subject has thrown up fair number of surprises

and subtleties in the past and one cannot take it for granted

that intuitively obvious results will arise when we rigorously an-

alyze the case of, say, a slowly varying acceleration! It requires

explicit verification. Our naive expectation will be that, for suffi-

ciently slowly varying acceleration (with (ġ/g2) ≪ 1) one would

expect the detection rate to correspond to a time-dependent tem-

perature T (τ ) ∝ g(τ ). At the same time, one will not expect such a

result to hold for all frequencies of the thermal spectrum. There is,

in fact, a good reason to expect some modification due the pres-

ence of (local acceleration) horizon. This sets a length scale g−1 in

the problem, which can be compared with the length scale probed

by a particular mode, ω−1 . Of course, we know that the spectrum

is Planckian for all values of g−1ω when g is constant; it is there-

fore interesting to see whether a varying g makes any difference.

As we shall show, one does get low frequency (g−1ω ≪ 1) modifi-

cations when ġ is non-vanishing even when ġ/g ≪ ω, which is a

surprising result.

In Section 2, we describe the setup appropriate for calculating

the response function. In Section 3, we evaluate the Unruh–DeWitt

detector response for time-dependent acceleration, g(τ ), to linear

order in the parameter η = ġ/g2 . We find that, to this order, the

spectrum can indeed be approximated in the UV region (ω ≫ g) by

Planck spectrum with time-dependent temperature, T = g(τ )/2π .

However, the spectrum is modified even at O (η) for ω ≪ g . In

Section 4, we corroborate this result by evaluating the detector

response for a particular trajectory which admits an analytic ex-

pression for the poles (under a particular approximation). Finally,

we conclude with few relevant comments. We use the metric sig-

nature (−,+,+,+).

2. Detector response: Background

The trajectory of an observer moving with a time-dependent

acceleration, g(τ ), with τ being the proper time, is given by

T∗(τ ) =

τ
∫

dα coshχ(α)

X∗(τ ) =

τ
∫

dα sinhχ(α) (3)

where

dχ(τ )

dτ
= g(τ ); χ(τ ) =

τ
∫

0

dαg(α) (4)

and (X0, X1) = (T , X) are inertial coordinates. (We have chosen

χ(0) = 0 to obtain the integral form.) The local coordinates of the

observer, (τ , x), can be constructed easily; these are given by (see,

for e.g., Eq. (73) of Ref. [10])
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T (τ ) =

τ
∫

dα
[

1+ g(α)x
]

coshχ(α)

X(τ ) =

τ
∫

dα
[

1+ g(α)x
]

sinhχ(α) (5)

In the local coordinates, the observer is always located at x = 0.

We shall assume τ2 > τ1 without loss of generality.

The probability of transition for the detector is given by Eq. (1)

which is valid for any trajectory. In general, for an arbitrary g(τ ),

there is no time translational symmetry and G+ will depend on

both u and t . Following the procedure adapted for stationary tra-

jectories, we shall again define the transition rate by ignoring the

integral over t . But now this rate will be time-dependent, due to

the t-dependence of G+ , which, of course, is to be expected. So,

we shall define the transition rate to be

Ṗ =

∞
∫

−∞

du exp(−iωu)G+(u, t) (6)

The Wightman function is given by

G+(1,2) =
1

4π2

1

ℓ2

ℓ2(1,2) = −
[

T∗(τ2) − T∗(τ1)
]2

+
[

X∗(τ2) − X∗(τ1)
]2

(7)

with an iǫ prescription which is implicit in the difference of the

time coordinates. Substituting Eqs. (3), the expression for ℓ2 can

be written in the following convenient form:

ℓ2 = −I+ I− (8)

where

I± =

τ2
∫

τ1

dα exp±χ(α) (9)

We see that the detector response is essentially determined by the

poles of ℓ2 . For the constant acceleration case, the poles of I+ and

I− coincide, so that we have an infinity of second order poles, the

residues at which gives the well-known thermal response function.

Our task, therefore, reduces to identifying the poles of I± and eval-

uating the integral in Eq. (9). We shall now turn to this task.

3. Detector response for ġ/g2 ≪ 1

As one can easily see, it is impossible to determine the struc-

ture of the poles for a general g(α). Hence, we shall attack this

problem in two steps. First, in this section, we will consider a

slowly varying acceleration and obtain the detector response. In

the next section, we shall work out the response for a specific form

of g(τ ).

Consider a general g(τ ), which varies slowly compared to its

value g0 at τ = 0 which can be chosen to be an arbitrary instant of

proper time. We shall now expand g(τ ) in a Taylor series retaining

the lowest order terms:

g(τ ) = g0 + ġ0τ + O
(

g̈0τ
2
)

χ(τ ) = g0τ +
1

2
ġ0τ

2 + O
(

g̈0τ
3
)

≈ g0τ

[

1+
1

2

(

ġ0

g0

)

τ

]

(10)

Therefore, we have

exp±χ(τ ) = exp(±g0τ )

[

1±
1

2
η0(g0τ )2 + O

(

η2
0

)

]

(11)

where we have defined η0 = ġ0/g
2
0 , and we shall do subsequent

calculations keeping terms up to O (η0). A trajectory is, of course,

not completely specified by η0 . For our result to remain valid, the

contribution of higher derivatives of acceleration must be ignorable

compared to ġ . Although a restriction, this condition will almost

always be fulfilled in physically relevant cases, when there is only

one small parameter in the problem. If not we will get the same

result when all the corresponding higher derivatives of the accel-

eration are small.

We now proceed to analyze the pole structure of ℓ2 to de-

termine the detector response. Evaluation of I± involves trivial

integrations; we obtain

I± =
1

g0

[(

1±
1

2
η0

d2

dα2

)

Q±(ξ1, ξ2;α)

]

α=1

(12)

where we have defined

Q±(ξ1, ξ2;α) =

ξ2
∫

ξ1

dξ exp±αξ (13)

with ξ1(2) = g0τ1(2) . Therefore, we obtain

1

I+ I−
≈

g20

Q+Q−

[

1+
η0

2

1

Q+Q−

(

Q+Q ′′
− − Q−Q ′′

+

)

]

(14)

where ≈ sign implies that we have ignored O (η2
0) terms, as we

should for consistency. (The prime stands for d/dα, with α being

set to unity in the end.)

The zeroth order term is just the constant acceleration Rindler

contribution. We shall now analyze the pole structure of the sec-

ond term. This term can be further simplified using expressions

for Q± . Specifically, the term in the round brackets in Eq. (14) can

be written as

Q+Q ′′
− − Q−Q ′′

+ = 2AQ− − 2BQ+ (15)

where

A = [ξ exp+ξ ]
ξ2
ξ1

−
1

2

[

ξ2 exp+ξ
]ξ2

ξ1

B = [ξ exp−ξ ]
ξ2
ξ1

+
1

2

[

ξ2 exp−ξ
]ξ2

ξ1
(16)

with the obvious notation:

[· · ·]
ξ2
ξ1

= [· · ·](ξ2) − [· · ·](ξ1) (17)

It can be shown that A and B are both finite at the poles. The

second term in Eq. (14) therefore has cubic order poles determined

by zeros of Q± . Substituting the above expressions into Eq. (14),

we obtain

1

I+ I−
≈

g20

Q+Q−

+ η0

g20

Q+Q−

[

A

Q+

−
B

Q−

]

(18)

The first term is the standard Rindler contribution, and it is well

known that this term gives a second order pole at uk = −iβ0k

with k > 0, and β0 = 2π/g0 . From here onwards, we shall de-

note derivatives with respect to u by an overdot. We note that

Q̇+ Q̇−/g20 = 1 at the poles, which is the standard result for

Rindler and can be easily verified by explicit computation (usu-

ally, one uses the well-known infinite image sum representation

of (sinh x)−2 to obtain the same result). The pole structure is now

determined by



204 D. Kothawala, T. Padmanabhan / Physics Letters B 690 (2010) 201–206

Q+Q−Q± = Q̇+ Q̇− Q̇±(u − uk)
3 + O

(

(u − uk)
4
)

(19)

where the u derivatives are to be evaluated at uk . To compute the

residues, we need to evaluate second derivatives with respect to

u of the functions A exp−iωu and B exp−iωu, at u = uk . This

is straightforward and we relegate the details to Appendix A. The

calculations are enormously simplified by noting that, as t → −t ,

B → A, so that we need to consider only terms odd in t in

Eq. (18); the remaining terms (which would otherwise be tedious

to evaluate) cancel.

The transition rate of the detector is given by Eq. (6)

Ṗ =

∞
∫

−∞

du exp(−iωu)G+(u, t)

= −
1

4π2

∞
∫

−∞

du
exp(−iωu)

I+ I−
(20)

Substituting the residues at the poles, calculated in Appendix A,

we obtain

Ṗ =
1

2π

∞
∑

k=1

ω exp−β0ωk

+ (η0t)ω
2

[

1−

(

π

β0ω

)2] ∞
∑

k=1

k exp−β0ωk (21)

which is correct to O (η0). Hence, we see that the resultant spec-

trum will not be thermal at all frequencies even to order O (η0),

due to the second term in the square brackets, which becomes sig-

nificant at low frequencies. (A similar result was arrived at recently

in [13] in a different physical context.)

In the UV region (i.e., β0ω ≫ 1), we get

Ṗ =
1

2π

∞
∑

k=1

ω exp−β0ωk

+ (η0t)ω
2

∞
∑

k=1

k exp−β0ωk (22)

Noting that δβ = −2πη0t , this can be written as

Ṗ =
1

2π

[

1+ δβ
∂

∂β

]

β=β0

∞
∑

k=1

ω exp−βωk

=
1

2π

[

1+ δβ
∂

∂β

]

β=β0

(

ω

expβω − 1

)

(23)

Therefore, to O (η0), we have

Ṗ =
1

2π

ω

exp[β(t)ω] − 1
≈

1

2π
ω exp−

[

β(t)ω
]

(24)

where β(t) = 2π/g(t). This result is intuitively understandable; at

sufficiently high frequencies, we just recover the usual result with

g replaced by g(τ ) when the acceleration varies with time.

However, note that it is valid only in the UV region; our result

also shows that the spectrum will be modified for β0ω ≪ 1. In

fact, the second sum in Eq. (21) is easily evaluated, and we obtain

Ṗ = I P [g0] + ηtω2

[

1−

(

π

s

)2]
exp[s]

[exp[s] − 1]2
(25)

where, for convenience, we have defined s = β0ω, and I P [g0] rep-

resents Planck spectrum at temperature g0/(2π). As stated above,

for s ≫ 1, the second term in square brackets can be neglected and

the remaining terms combine to give Ṗ ≈ I P [g(t)].

We want to analyze the s ≪ 1 case a bit further, to highlight a

counter-intuitive fact. In this limit, we obtain

Ṗ ≈ I P [g0] − ηtω2

(

π

s

)2[
1

s2
−

1

12
+ O

(

s2
)

]

≈ I P [g0] − ηtω2

(

π

s2

)2

(26)

In the same limit, I P [g0] ≈ ω/(2π s) = C (say), so that we can

rewrite the above expression as

Ṗ ≈ C

[

1−
(

2π3
) η

s2

ωt

s

]

= C
[

1−
(

2π3
)

ba2ωt
]

(27)

where b and a are the dimensionless quantities,

a = 1/s = g0/2πω; b = ġ0/(g0ω) (28)

Evidently, there are two possibilities, depending on whether b

is greater than or less than one. When

s ≪ η ≪ 1, or

1 ≪ b ≪ a (29)

we see that the frequency is probing the change in acceleration be-

cause ω−1 ≫ (ġ/g)−1 . So we certainly expect the spectrum to be

distorted and this is what happens and the result is understand-

able. However, when

η ≪ s ≪ 1, or

b ≪ 1 ≪ a (30)

we see that ġ/g ≪ ω and so these frequencies are not probing the

change in acceleration at all. Therfore, one would have expected

to recover the results of constant acceleration in which case there

are no distortions from the thermal spectrum at any frequency. But

we see that, in this case, we can still have ba2 ≪ 1 and produce a

distortion of thermal spectrum at low frequencies.

Before proceeding further, we must highlight an important as-

sumption that has gone into the derivation. For calculating the

residues, we have first expanded the integrand and then evalu-

ated the residues. The true expression is, of course, to be obtained

by first doing the contour integral and then expanding in η. We

have assumed that the two steps, Taylor expansion and integration,

commute. Our result will be invalidated for functions g(τ ) which

fail to satisfy this criterion. Moreover, we have also assumed that

the u integration goes all the way from −∞ to +∞, while doing

a Taylor series in t . It is important to understand better whether

such an approximation is valid, and, if not, what difference will it

make to the result. In particular, the low frequency modification

we obtain may be an artifact of such a truncation, and this caveat

must always be kept in mind.

4. Detector response for a specific trajectory

We shall now study the response function corresponding to a

particular detector trajectory determined by

g(τ ) =
g0

1+ ǫg0|τ |
(31)

where ǫ is a small, dimensionless parameter. The response can

now be evaluated in a straightforward manner. We expect a split-

ting of the quadratic poles at O (ǫ) from their constant acceleration
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values, so that we essentially have a couple of first order poles sep-

arated infinitesimally. For the above g(τ ), we have

χ(τ ) = (1/ǫ) ln
(

1+ ǫg0|τ |
)

sgn(τ ) (32)

Because of the dependence on |τ |, we need to consider the cases

(i) 0 < τ1 < τ2 , (ii) τ1 < τ2 < 0 and (iii) τ1 < 0, τ2 > 0 separately

while evaluating I± (we take τ2 > τ1 without loss of generality).

While the first two cases admit analytic expressions for the poles,

the same is not true of (iii). We shall evaluate the response func-

tion for the first two cases, and comment on the possible effect of

(iii) later on.

The integrals involved in I± are trivial; for clarity, we refer to

values of I± for case (ii) as IN± , and those for case (i) simply as I± .

Then, it is easy to see that IN±(τ1,τ2) = I∓(−τ2,−τ1). So, we can

obtain IN± from I± simply by changing t to −t (see definitions of

u and t above), or, what is the same thing, by replacing t with |t|

in the expression for case (i). With this understanding, we simply

write t rather than |t| in the expressions below. We also define

ξ1(2) = 1+ ǫg0τ1(2) and η = ξ2/ξ1 . Then,

I± = (ξ1/g0)(ǫ ± 1)−1
[

ηξ
±(1/ǫ)

2 − ξ
±(1/ǫ)

1

]

(33)

The poles (i.e., the zeros of I±) are determined by: (1± ǫ−1) lnη =

2π ik. Now rewrite ξ1 and ξ2 in terms of u and t , to obtain

u±
k

=
2i

g0

(

ǫ−1 + g0t
)

tan

(

χ±
k

2

)

(34)

where χ±
k

= 2πk/(1 ± ǫ−1). As a check, note that this reduces to

the standard constant acceleration values, ±2iπk/g0 for ǫ = 0.

Rest of the calculation involves standard residue calculus,

and is quite lengthy. Since the poles are now split at O (ǫ),

we need to evaluate the quantities R+ = I ′+(u+
k

)I−(u+
k

) and

R− = I ′−(u−
k

)I+(u−
k

) for calculating the residues. The quantity

R± × g0/(1 + ǫg0t) is given by

1+ exp[±i
χ±
k

ǫ ] − exp[iχ±
k

(1∓ 1
ǫ )] − exp[iχ±

k
]

(−ǫ ± 1)(1+ exp[iχ±
k

)]
(35)

It is now a straightforward exercise to use Eqs. (34) and (35) and

evaluate the response function. This turns out to be

Ṗ =
1

2π

∞
∑

k=1

(

ω − ǫ2πω2tk + O
(

ǫ2
))

exp

(

−
2π

g0
ωk

)

(36)

No further calculations are required, since it easy to see that, with

δg = −ǫg20t+O (ǫ2), the two terms above combine to give a Planck

spectrum with temperature g(t)/2π .

Let us now turn to the contribution of poles which we have

not accounted for. In the above calculation, we left out the contri-

bution to the integral of the u-range where τ1 , τ2 have opposite

signs. Unfortunately, this case does not admit analytic expressions

for the poles. But, from the result in Section 3, we expect that this

contribution will be irrelevant at high frequencies. Apart from this,

it is not possible to make any comments about this contribution.

As already mentioned in the Introduction, this is typical of most of

the calculations that attempt a rigorous evaluation (in particular,

[12] discusses characteristics of detector response in curved space-

time) although the explicit result we have obtained is very close to

what one would have expected for a slowly changing acceleration.

5. Conclusions

The result brings out another interesting fact associated with

the combined effect of presence of the horizon and varying accel-

eration and we shall discuss this briefly.

We see that, for modes with ω−1 ≪ g−1 , the result essentially

involves replacing the acceleration by its instantaneous value so

that T (τ ) = g(τ )/2π but the thermal spectrum gets distorted for

ω−1 ≫ g−1 . At first sight, one would have thought that this is

to be expected. We know that for an accelerated trajectory, g−1

gives the approximate location of the local horizon. (The exact lo-

cation of the horizon will change with τ , see Appendix B.) On the

other hand, a mode with frequency ω will probe a length scale

∼ ω−1 . Such a mode will be within the region ‘outside the hori-

zon’ if ω−1 ≪ g−1 , or βω ≫ 1 but will probe the horizon scale and

beyond if ω−1 ≫ g−1 . So one may think that it is natural for the

spectrum to be distorted in the latter case.

There is, however, a subtlety here. Our problem actually has

three length scales not just two: ω−1 , g−1 , and quite crucially,

(ġ/g)−1 . It would have been no surprise, if the spectral distor-

tion arose for ω−1 ≫ (ġ/g)−1; these are the frequencies which

see the change in the acceleration and there will be some dis-

tortion. But this is not what we found! Instead we find that in

a typical situation with g−1 ≪ (ġ/g)−1 , with very slowly varying

acceleration, the spectral distortions occur already when g−1 ≪

ω−1 ≪ (ġ/g)−1 . So whether ġ �= 0 or whether ġ = 0 makes a dif-

ference to the spectrum even when the relevant frequency is not

probing the time variation of the acceleration. Obviously, this ef-

fect does not exist in the case of ġ = 0; so we need to conclude

that one cannot take the limit continuously for all frequencies.

We believe this arises due to the changing distance to the hori-

zon but only further investigations will nail down the precise rea-

son.

It is known that viewed from the inertial frame the final state

of the field is a one-particle state so that the ‘detection’ is actu-

ally accompanied by an emission. It has been suggested (see [7])

that it is better to think of the detector as radiating a Minkowski

particle, rather than “detecting” anything. From this point of view,

it would be interesting to see whether the response function we

have obtained has some simple interpretation, particularly the ġ

term.

Finally, as promised in the Introduction, we briefly discuss the

issue of comparing our results with other results in literature. In

doing so, one must realize that our expressions for the rate as

well as the regularization are different from the ones used in the

literature. Our choices are based on the simple fact that it is clos-

est to what one does in the standard, constant acceleration case.

A different choice of variables for defining the rate (and even a dif-

ferent regularization scheme) can alter the results since the pole

structure will change. In this context, we would particularly like

to mention the analysis presented in [12,14]. Our choice of reg-

ularization (with an iǫ prescription on u) is actually similar to

the one employed in [14] (see their Eq. (21)). However, the differ-

ence lies in the definition of the response rate itself. In particular,

the relevant function which gives transition rate at time t , for

e.g., in Refs. [12] and [14], is G(t, t − u). It is not difficult to see

that this would have a completely different functional dependence

on t and u as compared to our case, since the definition of t is

manifestly different. So, effectively one is integrating completely

different functions of u in the two cases; the results cannot, there-

fore, be directly compared as such. Additional physical criteria are

needed to choose one definition over another (for e.g., in [12] and

[14], the motivation is causality. In our case, the coordinates t and

u corresponding to the two points on the trajectory actually corre-

spond to the so-called “radar coordinates” which are natural set of

local coordinates assigned to nearby points connected to (τ1,τ2)
by light beams. By their very construction, these coordinates are

non-local, and the transition rate must be interpreted keeping this

in mind. However, further work is needed to make a precise con-

nection).
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Appendix A. Evaluation of residues of Eq. (20)

In this appendix, we outline the evaluation of residues at the

cubic order poles of Eq. (20). We would only stress certain steps

which are crucial to minimize the algebra in the otherwise ele-

mentary calculation.

To begin with, define two new variables, a = g0u/2 and b = g0t ,

so that, ξ1 = b − a and ξ2 = b + a. We then have

A = 2e+b cosha

[

a(1− b) + tanha

(

+b −
1

2
b2 −

1

2
a2

)]

B = 2e−b cosha

[

a(1+ b) + tanha

(

−b −
1

2
b2 −

1

2
a2

)]

(A.1)

It is evident that B(a,b) = A(a,−b), as mentioned in the text. We

essentially require (see Eq. (18)) A/Q̇+ and B/Q̇− . From their def-

inition (13), we have

Q̇± = g0e
±b cosha (A.2)

Note that Q̇+ Q̇−/g20 = 1 at the poles, which, as was empha-

sized in the text, is the standard result for Rindler. So, we have

[A/Q̇+](a,b) = [B/Q̇−](a,−b). Therefore, the contribution of the

O (η0) term in Eq. (18) to Ṗ becomes

(

−
1

4π2

)

×

(

−2π i

2!

)

η0

Q̇+(uk)

[

d2

du2
(A exp−iωu)

]

u=uk

(A.3)

plus a similar term for B, and a sum over all relevant k’s (such that

uk ’s lie on the negative imaginary axis, with the contour closed in

the lower-half complex u-plane). All that remains is to pick out the

terms in A which are odd in b, calculate the second derivatives

which are required, evaluate at uk , and then multiply by 2 for the

contribution of the B part. These are all straightforward, though

lengthy, steps. The object of interest is (see Eqs. (A.1), (A.2) and

(A.3))

f = e−b
A = 2(cosha)

[

b(tanha − a)
]

+ (terms even in b) (A.4)

and, at the poles, we obtain

ḟ = 0, f̈ = −2akȧ
2
kb coshak and f = −2akb coshak (A.5)

Putting everything together, we finally obtain Eq. (21). (Note that

the second term in the square brackets in Eq. (21), which becomes

significant in IR, arises from the f̈ term above.)

Appendix B. Local horizon for a trajectory with time-dependent

acceleration

In the local coordinates based on a trajectory with time-

dependent acceleration (see Eq. (5)), the metric becomes (see for

e.g., Ref. [10])

ds2 = −
[

1+ g(τ )x
]2

dτ 2 + dx2 + dY 2 + dZ2 (B.1)

The equation for a null surface can be written as Φ(τ , x) =

x − f (τ ) = 0. The function f (τ ) is determined by the condition

∂aΦ∂aΦ = 0. Doing this leads to a differential equation for f (τ );

it’s solution yields the following expression for the horizon loca-

tion

xH(τ ) = p exp−ξ(τ )

τ
∫

dy exp ξ(y) (B.2)

where

ξ(τ ) = ∓

τ
∫

g(x)dx (B.3)

For g(τ ) ≈ g0 + ġ0τ , we have

xH(τ ) = −g−1
0

[

1− η(±1 + g0τ ) + O
(

η2
)]

(B.4)

We can also invert this to write, to the same order of accuracy,

g(τ ) ≃ −x−1
H [1 ∓ η] (B.5)

The temperature T (τ ) = g(τ )/2π , associated with the detector re-

sponse at O (η) and in the UV limit, can be cast in an interesting

form by further noting that v = ẋH = η + O (η2):

T (τ ) ≃
g(τ )

2π
≃ −

1

2πxH

1

1± v
(B.6)
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