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Motivated by the numerous applications of spherical shell models in micro and nano scales (such

as microbubbles, bacterial cells, and viral capsids), we have considered the axisymmetric free

vibrations of a spherically isotropic fluid-filled thick microspherical shell suspended in another

unbounded fluid. A partial-slip condition is considered at the solid-fluid interface(s). Three-

dimensional linear elasticity equations for the spherically isotropic shell dynamics and linearized

Navier-Stokes equations for the two compressible viscous fluids are used in the analysis. The eigen-

value problem is discretized and solved to find the resonances and quality factors. A perfectly

matched layer technique is used to separate the solid driven spectrum from the boundary reflecting

spectrum. An example of air filled polymer shell suspended in water is presented. The added mass

effect and partial-slip condition from water (air) on the frequencies and quality factors are found to

be significant (negligible). Spherical isotropy is found to have major influence on the low frequency

and large meridional wave number region of the resonance spectrum. High quality eigenmodes are

observed due to very small viscous penetration depth compared to the shell size. In the thin-shell

limit, the eigenvalue problem can have only two modes of vibration for any meridional wave num-

ber greater than or equal to two. This explains the reason for the second resonance frequency found

for the quadrupole shape oscillations of various bacterium cells in the earlier work. The partial-slip

condition is found to have very small influence on the first few modes of vibration. Surface tension

is found to have significant influence only on the lowest frequency trend of the eigenspectrum.

Perfectly matched layer technique used in the present analysis is found to be very effective in han-

dling the boundary truncated problems.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4926783]

I. INTRODUCTION

Submerged fluid-filled spherical shells can be found at

different length scales in many modern engineering, biomed-

ical, biological, and geophysical applications. In most of

these applications, the dynamic behavior of the spherical

shell with fluid coupling is of primary importance. Many

researchers have studied the free vibrations of spherically

isotropic (SI) macroscopic spherical shells with inviscid fluid

coupling in various contexts.1–3 It has been found that a

spherical shell with few micrometers in outer diameter has

fundamental frequencies in the ultrasound range. At micro

scales, ultrasound has been shown to be an effective means

for diagnostic ultrasound imaging,4–7 killing bacteria,8–12 de-

formation of cells,13,14 and targeted drug delivery.15–18

Many of the cells, microbubbles, and other microorganisms

can also be modeled as fluid-filled submerged spherical

shells. In a recent study, axisymmetric free vibrations of a

viscous-fluid-filled piezoelectric thin spherical shell have

been reported.19 The effects from fluid interaction with the

shell on the natural frequencies and damping components

have been reported. It has been shown that the piezoelectric

parameters have very little influence on the resonances of the

shell. The quality of the natural vibrations of specified

bacteria cells has been investigated using a thin-shell

model12 by taking into account the elasticity of the shell

(neglecting the inertia of shell) and inertial effects from the

cytoplasm modeled as a fluid. The interaction of microbub-

bles with bacteria has been studied20 using this thin-shell

model.

In the past few decades, microbubbles have gained

much attention due to their applications in the biomedical

and biological fields as contrast agents for diagnostic ultra-

sound imaging.4,21 More recently, contrast agents driven by

ultrasound have been introduced for targeted drug delivery.15

The strength of the driving pressure field and the frequency

has critical influence on the behavior of the microbubble and

its surroundings. These bubbles are coated with a stabilizing

layer to avoid coalescence or dissolution during circulation.

Typically, there are two types of coatings: flexible phospho-

lipid coating or solid encapsulation (rigid coating), e.g.,

polymers. The coating thickness varies from application to

application and depends on the coating material used.

Flexibly coated microbubbles are a few nanometers in thick-

ness. On the other hand, encapsulated microbubbles are hun-

dreds of nanometers thick and their behavior observed in

experiments is different from that of the bubbles with flexi-

ble coating.15 Many models have been presented as an exten-

sion to Rayleigh-Plesset based equation to account for the

shell rheology from these coatings.22–27 However, no con-

sensus exists on the best model to describe the observed
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microbubble phenomena.28 All the extended Rayleigh-

Plesset models are useful in understanding the spherical

oscillations of the microbubbles with various parameters. On

the other hand, drug-delivery and other applications require

good knowledge of phenomena like non-spherical oscilla-

tions, microstreaming, shear stress, and jetting. For the driv-

ing and excitation of these bubbles, good estimates for the

mode shapes, resonances, and the quality factors associated

with these modes are required.29 These various applications

of submerged fluid-filled spherical shell have motivated us to

study the general free vibration analysis of a thick micro-

spherical shell with viscous fluid interaction.

In this work, we have considered a fluid-filled thick

spherical shell suspended in an unbounded fluid. We have

primarily aimed at spheres of few micrometers in outer di-

ameter. In many applications, proper estimation of shell

linear resonances suffices to understand the experimentally

observed behavior. In the present analysis, we have consid-

ered axisymmetric linear free vibrations of the shell. The

two fluids inside and outside the shell are considered to be

compressible and viscous, and can be of different proper-

ties. In reality, the shell is not isotropic and homogeneous.

Hence, in the present analysis, the shell material is consid-

ered to be SI, which is transversely isotropic with a princi-

pal axis in the radial direction. The density of the shell is

considered to be varying as a function of the radial coordi-

nate, for instance, reflecting a variable porosity in the shell

material. From the recent experimental, numerical, and

theoretical investigations,30 it has become apparent that

the no-slip boundary condition at the solid-fluid interface

is unphysical, especially, when considering micro and

nano scales. Therefore, understanding of the solid-fluid

interface boundary condition is becoming increasingly im-

portant.31 For the present analysis, we have considered a

partial-slip boundary condition at the solid-fluid interface

which also reflects the porous flow of the inner and outer

medium. The displacement vector field of the solid is

expanded in terms of spherical harmonics with radial coor-

dinate dependent amplitudes. Using these displacement

fields in the three-dimensional elasticity equations for the

linear shell dynamics, second order ordinary differential

equations are obtained in the radial coordinate. Linearized

Navier-Stokes equations are considered for the fluids

inside and outside the shell. Using a Helmholtz decomposi-

tion, the axisymmetric first order velocity field of the fluid

is decomposed using a scalar potential and a vector poten-

tial satisfying the solenoidal condition. The governing

equations for the fluid potentials are obtained by expanding

the potential fields in terms of spherical harmonics. The

outer fluid boundary has been truncated for the purpose of

numerical computation. To avoid reflections from the trun-

cated boundary, we have introduced a perfectly matched

layer (“PML”)32 at the truncated boundary. The six second

order ordinary differential equations and twelve boundary

conditions for the axisymmetric free vibration of the

microsphere shell filled with a fluid and suspended in an

unbounded fluid are discretized using a finite difference

technique. The quadratic eigenvalue problem obtained af-

ter the discretization is solved to find the modes of

vibration. The modes are characterized by the eigenfre-

quencies and quality factors. The PML method used here

has been considered as very efficient in separating the

actual eigenspectrum containing the solid driven modes

from the spurious eigenspectrum containing the reflecting

fluid modes. The present model is used to estimate the

resonances of various bacterium cells, which is compared

with the earlier results. The effect of spherical isotropy,

partial-slip, surface tension, and density variation along

the thickness on the resonances and qualities of micro-

sphere modes is discussed.

The paper is organized as follows. In Section II, the

mathematical formulation of the problem is presented. The

solution method and quantitative analysis of mode shapes

are presented in Section III. The numerical results and com-

parisons are presented and discussed in Section IV. The pa-

per is concluded with Section V wherein some future

directions are also indicated.

II. PROBLEM FORMULATION

Let r; h, and u be the radial, meridional, and azimuthal

coordinates of the spherical coordinate system with orthonor-

mal basis ð er; eh; euÞ, as shown in Fig. 1. Consider a thick

microspherical shell of inner radius ri and outer radius ro. In

most applications, the shell material is not isotropic and its

properties change along the spherical layers. Therefore, we

have considered a spherical shell with radially stratified iso-

tropic material, also known as a SI material, with density

varying as a function of the shell radial coordinate r. In other

words, spherical isotropy implies that the elasticity of the

shell is identical in all directions tangent to the spherical sur-

face r ¼ constant. However, the formulation presented here

can be extended to a shell with material properties varying

radially.33 The microsphere is filled with a fluid and is sus-

pended in an other unbounded steady fluid. Both fluids,

inside and outside the microsphere, are assumed to be com-

pressible and viscous.

A. Solid governing equation

In most of the macro and micro applications, the density

of the spherical shell is not uniform, but varies radially. In

FIG. 1. A thick microspherical shell filled with a fluid and suspended in an

other unbounded fluid.
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the present analysis, the radial variation of shell density qðrÞ
is considered as

q rð Þ ¼ qs 1þ a r � rið Þ
qs r � ro þ robð Þ

� �

;

where a and b are two real constants and qs is the shell den-

sity at the inner surface.

Let u ¼ ður; uh; uuÞ be the displacement vector field of

the solid. The governing equation for a linear elastic spheri-

cal shell can be written as

qðrÞ@2
t u ¼ $ � rs; (1)

where @tð�Þ ¼ @ð�Þ=@t; $ is the gradient operator and rs is

the linear stress tensor of the spherical shell. For a SI spheri-

cal shell, the components of the stress tensor can be

expressed in terms of strain tensor ð�Þ components as

rhh ¼ c11�hh þ c12�uu þ c13�rr; rrh ¼ 2c44�rh;

ruu ¼ c12�hh þ c11�uu þ c13�rr; rru ¼ 2c44�ru;

rrr ¼ c13�hh þ c13�uu þ c33�rr; rhu ¼ 2c66�hu;

(2)

where, c11; c12; c13; c33, and c44 are the five elastic constants

and c66 ¼ ðc11 � c12Þ=2: The necessary and sufficient condi-

tions for positive definiteness of the fourth-order elasticity

tensor relating the stress and strain are

c11 > 0; c11 > c12; c211 > c212;

c44 > 0; c33ðc11 þ c12Þ > 2c213:

We consider a radially inhomogeneous elastic material with

spherical anisotropy restricted to SI, which is transverse iso-

tropy with the principal axis as er. Then, the time-harmonic

displacement field uðr; h;u; tÞ can be expanded in a separa-

tion of variables form with the dependence on h and u

described by the spherical harmonics, with r-dependent am-

plitude.33 Introducing the potentials1,34 for the displacement

field uðr; h;u; tÞ, we have

ur ¼ v; uh ¼ � 1

sin h
@uW� @hU; uu ¼ @hW� 1

sin h
@uU:

(3)

For the axisymmetric vibration of the shell, the displacement

field u is independent of the azimuthal coordinate u.

Therefore, the three field variables W;U, and v can be

expressed as follows:33

Wðr; h; tÞ ¼
X

1

n¼1

~unðrÞPnðcos hÞest;

Uðr; h; tÞ ¼
X

1

n¼1

~vnðrÞPnðcos hÞest;

vðr; h; tÞ ¼
X

1

n¼0

~wnðrÞPnðcos hÞest;

(4)

where s is the eigenparameter and Pn is the Legendre polyno-

mial of degree n. Substituting (2), (3), and (4) in (1), and

using the orthogonality property of Legendre and associated

Legendre polynomials, gives the first order radial coordinate

dependent equations

D1 � q nð Þs2 � a20

n2

 !

un ¼ 0; (5a)

D1�qðnÞs2� a21

n2

 !

vn�
�

ð1þ c3Þ
1

n

d

dn
þ a22

n2

�

wn ¼ 0; (5b)

c4D1 � qðnÞs2 � a23

n2

 !

wn þ nðnþ 1Þ

�
�

ð1þ c3Þ
1

n

d

dn
þ a24

n2

�

vn ¼ 0; (5c)

where D1 ¼ ð1=n2Þðd=dnÞðn2ðd=dnÞÞ and we have used the

non-dimensional quantities

un; vn;wn; nð Þ ¼ ~un;~vn; ~wn; rð Þ
ro

;

c1; c2; c3; c4ð Þ ¼
c11; c12; c13; c33ð Þ

c44
;

k;
1

s

� �

¼ s;
1

t

� �

ffiffiffiffiffiffiffiffiffi

r2oqs
c44

s

:

The constants, a20; a
2
1; a

2
2; a

2
3, and a24 are defined as

a20 ¼
c1 � c2ð Þ n nþ 1ð Þ � 2ð Þ þ 4

2
;

a21 ¼ n nþ 1ð Þ � 1ð Þc1 þ c2 þ 2; a22 ¼ 2þ c1 þ c2ð Þ;
a23 ¼ n nþ 1ð Þ þ 2 c1 � c3 þ c2ð Þ; a24 ¼ c3 � c1 � c2 � 1:

(6)

In general, Eqs. (5b) and (5c) are coupled except when n¼ 0,

for which the equation is given by

c4D1 � q nð Þs2 � a23

n2

 !

wn ¼ 0: (7)

The non-dimensional radial and tangential components

of the stress in the solid are given by

rsrr ¼
�

2c3w0 þ nc4w
0
0 þ

X

1

n¼1

n nþ 1ð Þc3vnð

þ 2c3wn þ nc4w
0
nÞPn cos hð Þ

�

eks

n
; (8)

rsrh ¼
1

n

X

1

n¼1

vn þ wn � nv0n
� �

P1
n cos hð Þeks; (9)

where ð�Þ0 ¼ dð�Þ=dn and P1
n is the associated Legendre poly-

nomial of first order and degree n.

B. Fluid governing equation

For the fluid motion set by the small amplitude vibra-

tions of the shell, we have considered linearized Navier-

Stokes equation along with equation of continuity and linear-

ized state equation. As the size of the microsphere is much

smaller than the sound wavelength, but much greater than
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the viscous penetration depth, acoustic microstreaming phe-

nomena can be observed away from the boundary layer, set

by the attenuated acoustic energy in the boundary layer.35,36

Therefore, the Reynolds number of the flow set by the solid

away from the interface is not small for micro-scale objects,

and to understand the fluid flow completely, one has to solve

the Navier-Stokes equation for second order effects.36

However, in the current analysis, for the linear free vibration

of a shell, we restrict the study to first order effects in the

fluid, to understand the resonances and quality factors of the

mode shapes of vibration of the solid.

For small amplitude perturbations of the fluid, caused by

the vibration of the shell, the equation of continuity can be

written as follows:

@tqf þ qf ð$ � vÞ ¼ 0; (10)

and the linearized Navier-Stokes equation as

qf @t v ¼ $ � rf : (11)

Here, qf is the perturbed fluid density, v is the first-order ve-

locity field of the fluid, and rf is the fluid stress tensor given

by

rf ¼ �p I þ g $vþ $v
T � 2

3
$ � vð Þ I

� �

þ gb $ � vð Þ I;

(12)

where p is the perturbed fluid pressure, g and gb are the shear

and bulk viscosities of the fluid, and the linear equation of

state is p� p0 ¼ c2f ðqf � qf0Þ, cf is the speed of sound in the

fluid, and p0 and qf0 are the equilibrium pressure and density,

respectively. Using the expression for the oscillating acoustic

pressure field p ¼ ~p est in the equations of state, (10) and

(11), to eliminate ~p, the simplified first-order equation of

motion for the fluid can be written as follows:

qf @t v ¼ $
qf c

2
f

s
þ gb þ 4

3
g

� �

 !

$ � v
" #

� g $� $� v:

(13)

The first-order velocity field in the fluid can be written as the

superposition of a potential part and a vorticity part, given by35

v ¼ sð$/þ $� wÞ; (14)

where / is the fluid scalar displacement potential field and w

is the vorticity displacement potential field.

For the axisymmetric velocity field of the fluid, we can

express the potentials as

/ðr; h; tÞ ¼
X

1

n¼0

~/nðrÞPnðcos hÞest;

wðr; h; tÞ ¼ eu

X

1

n¼1

~wnðrÞP1
nðcos hÞest;

(15)

where eu is the unit azimuth vector of the spherical coordi-

nate system. Substituting (14) and (15) into (13) and simpli-

fying (taking divergence and curl), using the orthogonality

property of Legendre and associated Legendre polynomials,

gives the following uncoupled radial dependent non-

dimensional equations of the fluid

c2 þ cþ 4

3
b

� �

k

q

 !

Dr/n � k2/n ¼ 0; n � 0

k
b

q
Drwn � k2wn ¼ 0; n � 1; (16)

where Dr ¼ ðd2=dn2Þ þ ð2=nÞðd=dnÞ � nðnþ 1Þ=n2 and the

non-dimensional parameters used are

q ¼
qf

qs
; c ¼ cf

ffiffiffiffiffiffi

qs
c44

r

; b; cð Þ ¼ g; gb
� �

ro
ffiffiffiffiffiffiffiffiffiffi

c44qs
p ;

/n;wnð Þ ¼
~/n;

~wn

� �

r2o
:

The non-dimensional radial and tangential velocity com-

ponents of the fluid are given by

vr ¼ k/0
0e

ks � k
X

1

n¼1

/0
n �

n nþ 1ð Þ
n

w0
n

� �

Pn cos hð Þeks;

(17)

vh ¼
k

n

X

1

n¼1

/n � wn � nw0
n

� �

P1
n cos hð Þeks: (18)

The non-dimensional radial and tangential components of

the stress in the fluid are given by

rfrr ¼ 2b @nvr þ qc2 þ c� 2

3
b

� �

k

� �

Dr/; (19)

r
f
rh ¼ b

1

n
@hvr þ @nvh �

vh

n

� �

: (20)

The surface tension pressure ~pst on the surface can be written

as36,37

~pst ¼
Tf

r2o

X

1

n¼0

n� 1ð Þ nþ 2ð ÞwnPn cos hð Þeks;

where Tf ¼ T0=roc44 is the non-dimensional surface tension

coefficient at the fluid-solid interface, and defined from the

dimensional surface tension coefficient T0.

Although the fluid outside the microsphere is considered

to be unbounded, the computation has to be limited by trun-

cating the outer boundary (Fig. 2). Because of the boundary

truncation, there will be reflecting fluid modes from the trun-

cated boundary which are of no interest. The “PMLs”32

approach provides a convenient way to deal with these

reflecting modes. Here, we will use a spherical coordinate

FIG. 2. Non-dimensional radial coordinate variation in different mediums.
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system PML. The PML approximation can be seen as a com-

plex shift in the coordinate system normal to the boundary.

Let n1ð> 1Þ and n2ð� n1Þ be the inner and outer radii

of the PML. The complex shifting of the non-dimensional

radial coordinate is given by ~n ¼ nð1þ i~rðnÞÞ, where

~r 2 C2ðRþÞ is a function satisfying

~rðnÞ ¼
0 for 1 < n < n1

increasing for n1 � n < n2

r0 for n2 � n;

8

>

<

>

:

(21)

where r0 is a real positive constant, which quantifies the

damping of a PML layer. A typical C2 function in ½n1; n2�
with this property is given by32

~r nð Þ ¼ r0

Ð

n

n1

x� n1ð Þ2 n2 � xð Þ2dx

Ð

n2

n1

x� n1ð Þ2 n2 � xð Þ2dx
:

The modified governing equations with the complex

coordinate stretching for the fluid outside the microsphere

can be written as

c2 þ cþ 4

3
b

� �

k

q

 !

~Dr/n � k2/n ¼ 0; n � 0

k
b

q
~Drwn � k2wn ¼ 0; n � 1: (22)

Here, ~Dr ¼ Dr for 1 � n < n1, and it is given by

~Dr ¼
1

p~p2n2
d

dn

~p2n2

p

d

dn

 !

� n nþ 1ð Þ
~p2n2

;

where ~p ¼ 1þ i~r and p ¼ ~r 0 ¼ 1þ ir with r ¼ ~r þ i~r0.

C. Boundary conditions

The classical no-slip boundary condition at the solid-

fluid interface has been found to be unphysical in recent

experimental studies at micro and nano scales,30 and no con-

sensus exists for the origin of this partial-slip condition.

However, it has been observed in many experiments30,38,39

that the surface slip velocity is in proportion to the local

shear rate of the fluid. Therefore, the surface slip velocity

can be expressed as

vslip ¼
L

b
r
f
rh;

where vslip is the non-dimensional slip velocity of the fluid

and L is the non-dimensional slip-length defined as the ratio

of dimensional slip-length and outer radius of the shell.

In the present analysis, we are interested in studying the

effect of partial-slip interface condition on the resonances

and quality factors of the microspherical shell. The boundary

conditions for the fluid inside the solid at n¼ 0 are

/0
n ¼ 0;w0

n ¼ 0. The boundary conditions at the fluid-solid

interface n ¼ ni and n¼ 1 are

vr ¼ kur; vh � kuh ¼ vslip; r
s
rr ¼ rfrr � ~p

f
st; r

s
rh ¼ r

f
rh:

At the end of the PML n ¼ n2, we have considered simple

Dirichlet boundary condition for both the potentials, ~/n ¼ 0

and ~wn ¼ 0.

III. SOLUTION METHOD

A. Discretization

Using the orthogonality property of the Legendre and

associated Legendre polynomials, the governing equations for

the solid and the fluid with boundary conditions in the radial

directions can be separated. The radial coordinate dependent

equations (5), (16), and (22) together with the boundary condi-

tions for the vibration of a thick microspherical shell with

fluid interaction are solved using a finite difference method

(FDM). The equations are discretized using the central differ-

ence technique by replacing the zeroth, first, and second order

derivatives of a field variable, say, V at a grid point m, with

V ¼ Vm; V0 ¼ Vmþ1 � Vm�1

2h
; V00 ¼ Vmþ1 � 2Vm þ Vm�1

h2
;

(23)

where h is the grid size, nmþ1 ¼ nm þ h; m ¼ 1; 2; 3;…:
The non-dimensional radial coordinate n for the inner

fluid (0 < n � ni), shell (ni � n � 1), and the outer fluid

with PML (1 � n � n2) is divided into n1, n2, and n3 inter-

vals, respectively. Then, X1; X2, and X3 are the correspond-

ing nodal point vectors given by

X1 ¼ f/2;/3;…;/n1þ1;w2;w3…;wn1þ1gT;
X2 ¼ fv1; v2…; vn2þ1;w1;w2…;wn2þ1gT;
X3 ¼ f~/1;

~/2…; ~/n3þ1;
~w1;

~w2…; ~wn3þ1gT:
(24)

The complete nodal vector can be written as X ¼ fXT
1 ;

X
T
2 ; X

T
3g

T
. As each nodal point has two field parameters, af-

ter excluding the n¼ 0 node using the zero gradient bound-

ary condition, we thereby obtain 2ðn1 þ n2 þ n3 þ 2Þ linear
algebraic nodal equations. Using the twelve discretized

boundary conditions, the unknown nodal field parameters in

the boundary nodal equations are eliminated to obtain a lin-

ear matrix equation

AðkÞX ¼ 0; (25)

where AðkÞ ¼ A0 þ A1kþ A2k
2 is the matrix quadratic

polynomial in k with coefficient matrices A0; A1, and A2.

The quadratic eigenvalue problem (25) is rewritten in

one of the two possible general eigenvalue problem forms as

0 I

�A0 �A1

� �

� k
I 0

0 A2

� �	 


X

kX

	 


¼ 0: (26)

Solving the transformed eigenvalue problem (26) gives the

eigenparameter k and the eigenvector X.
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B. Deformation measures

The strain tensor can be decomposed into two irreduci-

ble parts, namely, the dilatoric (trace part) and the deviatoric

(trace free part) strain tensors as

� ¼ 1

3
# I þ c;

where the trace of the strain tensor is the dilatation scalar

# ¼ trð�Þ and c is the trace-free deviatoric strain tensor.

These tensors allow us to define two invariant deformation

measures over the shell as follows.40,41 The dilatoric mea-

sure may be defined as

J# ¼
ð

2p

0

ð

p

0

ð

ro

ri

#2r2 sin h dr dh du;

which reflects the stretching of the shell. The deviatoric mea-

sure may be defined as

Jr ¼
ð

2p

0

ð

p

0

ð

ro

ri

trð cT cÞr2 sin h dr dh du;

which quantifies the amount of shear suffered by the shell.

After finding the eigenvectors using the solution method pre-

sented above, the deformation measures are calculated by

numerical integration to quantify the mode shapes in terms

of the dilatoric and deviatoric components.

IV. RESULTS AND DISCUSSION

In the present analysis, we have considered an air-filled

thick polymer shell submerged in water. For the present com-

putation, the dimensional properties of the shell considered are

the following: ro ¼ 1:9 lm; ri ¼ 1:5lm; qs ¼ 1296 kgm�3;
c44 ¼ 7MPa; T0 ¼ 0:075Nm�1. The dimensional properties

of air are the following: qair ¼ 1:23 kgm�3; gair ¼ 1:8�
10�5 Pa s; gbair¼1:6�10�5Pas; cair¼343ms�1;Lair¼100nm.

The dimensional properties of water are the following: qwater

¼1000kgm�3; gwater¼10�3Pas; gbwater¼0:0026Pas; cwater
¼1500ms�1; Lwater¼33:33nm:

The non-dimensional parameters used for the computa-

tion are ni ¼ 0:7895; n0 ¼ 1; n1 ¼ 4; n2 ¼ 10; a ¼ 140:6;
b ¼ �0:1; c1 ¼ 55; c2 ¼ 50; c3 ¼ 50; c4 ¼ 62; r0 ¼ 2. For

the case of isotropic material, c44 is the shear modulus and

c4 ¼ c1 ¼ c2 þ 2 ¼ c3 þ 2 ¼ 62 (Poisson’s ratio � ¼ 30=61)
is used in the computation.

The non-dimensional eigenparameter is complex and

can be expressed as

k ¼ �aþ ix;

where x is the angular frequency of oscillation and a is the

decay rate of these oscillations. The decaying oscillation

may be characterized by a quality factor given by42

Q ¼ x

2a
;

and the eigenparameter can thereby be rewritten as

k ¼ x
�1

2Q
þ i

� �

: (27)

Here, we use the dimensional frequency as X ¼ x
ro

ffiffiffiffiffi

c44
qs

q

.

A. Eigenspectrum

The eigenfrequencies for the variation of meridional

wave numbers from n¼ 1 to n¼ 15 are shown in Fig. 3, for

both isotropic and SI materials, for an air filled polymer shell

suspended in unbounded water. As expected, the coupling

between air and shell has very little influence on the eigens-

pectrum. The added mass effect from water on the eigens-

pectrum is also observed to be significant (result are not

shown here), because of the higher water density compared

to air density. We have considered the properties of SI mate-

rial slightly deviated from the isotropic case. It is interesting

to note that the SI eigenspectrum shows significant differen-

ces from the isotropic eigenspectrum in the large wave num-

ber region, Fig. 3(a), and low frequency region, Fig. 3(b).

FIG. 3. (a) Variation of eigenfre-

quency ðx=2pÞ for the meridional

wave number from n¼ 1 to n¼ 15, for

isotropic and SI material cases. (b)

Magnified view of the inset (a) in the

low frequency range.
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The eigenspectrum has various non-crossing frequency

trends along the meridional wave number (n), which are

actually present in the shell eigenspectrum without fluid

interaction. However, it is interesting to see two frequency

trends which are crossing the non-crossing frequency trends.

The first such crossing frequency trend (from n¼ 1 to n¼ 8)

is almost unaffected by SI. The reason is that the mode shape

corresponding to this frequency is a shear-dominated mode,

similar to that shown in Fig. 4(c), with lower quality factor.

On the other hand, the second crossing trend (starting at

n¼ 4) is affected by SI.

All the frequencies shown are corresponding to solid

modes with high quality factors. The first mode correspond-

ing to meridional wave number n¼ 0 (purely radial

vibrations) with frequency X=2p ¼ 12:42 MHz has a very

high quality factor Q0 ¼ 89. All the other eigenmodes for

n¼ 0 are found to have quality factors less than five.

However, the smallest eigenfrequency corresponds to n¼ 2.

For n¼ 2, the first two modes do not have any spherical

nodal surface/curve/point and they have quadrupole shape

oscillations. The variations of the radial coordinate depend-

ent normal and tangential displacements along the thickness

of the shell and the fluid potentials are shown in Fig. 5, for

the two quadrupole modes. For the first quadrupole mode in

Fig. 4(a), the tip of the displacement vector at the top pole

rotates through an angle of �p=2 when its tail moves from

pole to equator. On the other hand, for the second quadrupole

mode in Fig. 4(b), the tip of the displacement vector rotates

FIG. 5. Variation of radial dependent amplitude functions for the two quadrupole mode shapes and the corresponding responses of air and water along the ra-

dial coordinate.

FIG. 4. Vector field plots of different mode shapes for n¼ 2 and 3, and the corresponding eigenfrequencies and deformation measures.
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by an angle 3p=2 when its tail moves from pole to the equa-

tor. The reason for this difference is that, for n¼ 2, the two

radial coordinate dependent displacements v2 and w2 in Eq.

(4), are in out-of-phase and in-phase for the first and second

quadrupole modes, respectively, as shown in Fig. 5.

As the wavelength of sound waves is much longer than

the size of the microsphere, purely radial modes can be

excited very easily by a plane acoustic wave. On the other

hand, for the excitation of non-spherical oscillations, break-

ing of spherical symmetry around the microsphere is

required. However, in most of the applications, symmetry

breaking is likely to occur due to the presence of micropar-

ticle cluster and wall effects.

With decrease in shell thickness, the variations along the

thickness in Figs. 5(a) and 5(b) become almost independent

of radial coordinate, but the phase difference still remains.

This phase difference gives two eigenmodes in the thin-shell

limit for n> 1. This explains why the two roots correspond-

ing to a quadrupole mode shape observed43,44 for the disper-

sion equation were presented to estimate the mechanical

resonances of various cells using an isotropic thin-shell

model.12,45 Using the geometric and material properties of

various bacteria cells,12,44 the resonance calculations with

the present model were performed, with some results.

Properties of water are considered for fluids inside and out-

side the shell. For these calculations, the density of the shell

is taken as qs ¼ 10�9 kg m�3. A non-dimensionalization

used with the speed of sound in water to improve the condi-

tion of matrices Ak; k ¼ 0; 1; 2 in Eq. (25). For the first quad-
rupole mode, the resonance calculations are in close match

with Zinin et al.,12 Choi et al.44 and Zinin and Allen,43

except for the E. coli and B. yeast cells due to inadequate

surface tension data. For the second quadrupole mode, the

resonances are in good match,44 where the authors con-

cluded that the quadrupole mode shape has more than one

natural frequency, but with several quality factors.

However, from our calculations, the cells can have only

two quadrupole mode shapes with different resonances and

quality factors. The minor discrepancies of the present

calculations from the literature data are due to the numeri-

cal difficulties in applying this model to very thin shells

with negligible inertia and truncated boundary conditions

(Table I).

For the isotropic/SI material case, the first mode corre-

sponding to n¼ 3 has octupole shape and its vector field plot

for the isotropic case is shown in Fig. 4(d). For n¼ 1, the

mode shape with displacement field along the thickness, sim-

ilar to that shown in Fig. 5(a), cannot exist.41 From the val-

ues of J# and Jr, the mode shapes shown in Figs. 4(a), 4(b),

and 4(d) are mixed modes. On the other hand, the mode

shape in Fig. 4(c) is very close to a pure shear mode.

B. Quality factors

As reported in the previous studies, the viscous shear

waves are the main source of dissipation of microsphere oscil-

lations. The influence of viscosity on the shell vibration can

be understood from the relation between the size of the micro-

sphere and the viscous penetration depth d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g=qfX
q

. For

d > ro, the viscous shear wave effect will be present for more

volume around the shell, and the modes of vibration are

damped effectively. For d < ro, the damping effect is very

small on the shell oscillations. The variation of non-

dimensional eigenfrequency x=2p and the corresponding

quality factor Q for n¼ 2 is shown in Fig. 6(a) for a SI mate-

rial. The magnified plot for the first few resonances is shown

in Fig. 6(b). Considering base model as partial-slip interface

condition, these are shown for calculation based on various

conditions like no-slip of water, no-slip of air, no-slip, no sur-

face tension, and average shell density (1183:6 kgm�3). The

horizontal dotted lines in Fig. 6 correspond to shell frequen-

cies without these two fluids. The microsphere is found to

have very high quality factors. This can be understood by find-

ing the critical frequency ðxc=2pÞ, for which the viscous pen-

etration depth becomes equal to the outer radius of the shell.

For the present study, the non-dimensional frequency

xc=2p ¼ 0:00226, which is much lower than the fundamental

non-dimensional frequency of the shell.

It is interesting to note that the relation between quality

factor and eigenfrequency is almost linear or even propor-

tional for the frequency range shown in Fig. 6(a), except for

the few lowest frequency modes. However, the region for

which this linear relationship holds is highly dependent on

shear viscosity. The slope of the line for the partial-slip con-

dition is lower than for the no-slip condition in Fig. 6(a).

TABLE I. Natural frequencies X2=2p (MHz) and quality factors Q2 for the quadrupole oscillations for different bacterial cells. Comparison of present model

calculations with Zinin et al.,12 Choi et al.,44 and Zinin and Allen43 are also given in this table. l : cell’s shell shear modulus, � : Poisson’s ratio, and h : cell’s

shell thickness.

Cell type12 ro (lm) h (nm) l (MPa) �
X2

2p
Q2

X2

2p
(Refs. 12 and 43) Q2

X2

2p
(Ref. 44) Q2

E. coli 0.5 6 10.7 0.16 3.61 0.74 4.58 0.63 3.62 0.63

14.4 0.49 … … 14.4 0.49

C. eugametos 8 60 433.5 0.49 3.53 15.31 3.41 15.7 … …

28.92 0.37 … … … …

B. emersonii 10 450 47.7 0.49 2.34 16.7 2.24 15.8 2.24 16.0

23.81 0.48 … … 24.2 0.9

D. carota 30 100 308 0.49 0.532 23.0 0.517 23.2 0.517 23.5

7.7 0.5 … … 7.0 0.9

B. yeast 4.5 100 0.2 0.5 0.247 3.23 0.16 1.2 0.16 1.6

0.579 0.66 … … 0.584 0.6
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This is due to the fact that the partial-slip condition helps in

reducing the dissipation of energy. The partial-slip at the

inner (outer) boundary from air (water) has minor (major)

influence on the quality of the microsphere resonances. It is

interesting to note that the first crossing frequency trend in

Fig. 3 occurs only when there is a partial-slip condition from

gas and is independent of the partial-slip from water. This

trend disappears for the no-slip interface condition. As

expected, the partial-slip condition also increases the fre-

quency due to the reduced fluid inertial effects; this is, how-

ever, not significant (0.1MHz and 1.1MHz for the first and

second quadrupole modes, respectively). We have also

observed that the resonances of the system are not strongly

affected by the surface tension,12 except for the first quadru-

pole mode. For the first quadrupole mode shape of the iso-

tropic shell, increasing the surface tension T0 at the outer

surface interface (T0 ¼ 0 at the inner surface interface) from

0.075 to 0.75N m�1 increases the corresponding dimen-

sional frequency (quality factor) from 6.13MHz (5.35) to

7.17MHz (5.8). On the other hand, further increase in the

surface tension has negligible influence on the second quad-

rupole mode and other higher modes. This has been also

observed44 for the second quadrupole mode shape of an E.

coli cell. This surface tension effect is observed for the low-

est frequency trend in the eigenspectrum, starting with the

first quadrupole mode. The density variation along the thick-

ness has very small influence on the resonances, when com-

pared with the average shell density calculations.

C. Effect of PML

The resonance spectrum for a meridional wave number

n¼ 2 is shown in Fig. 7 for two cases of computations,

namely, without PML (r0 ¼ 0) and with PML (r0 ¼ 2), at

the truncated boundary. As the PML introduces a complex

coordinate system, the eigenspectrum is not symmetric about

the horizontal axis. However, the solid driven frequencies

shown in Fig. 3 correspond to a group of points close to the

origin in Fig. 7, and are not at all influenced by the PML. On

the other hand, the points corresponding to the reflecting

modes are breaking the symmetry. With the introduction of

PML, these points in the upper (lower) left-half of the

complex plane start moving towards (away from) the real

axis. In this way, the actual resonance spectrum is efficiently

separated from the spurious/reflecting spectrum by the per-

fectly matched layer technique. The movement/separation of

these points is highly dependent on the attenuation parameter

r0 and also on the PML thickness. However, it is not possi-

ble to eliminate the complete spurious spectrum. The best

value of r0 can be decided by few numerical experiments

and it has an inverse relationship with the damping present

in the system. As the attenuation of waves entering into the

PML is frequency dependent, few low frequency (large wave

length) reflecting modes are not separated from the actual

spectrum, even with a large PML thickness. However, for

a=2p < 4, we have achieved very good separation of the

solid driven spectrum from the boundary reflecting spectrum.

Cases can be found, by changing the problem parameters,

for which solid driven spectrum and reflecting spectrum

overlap, and PML technique is very useful in the separation

of such spectra. When solving the problem without PML, we

have used the condition of no backward traveling longitudi-

nal waves and zero shear stress at the truncated boundary.

FIG. 7. Eigenspectrum for a meridional wave number n¼ 2 without PML

(r0 ¼ 0) and with PML (r0 ¼ 2).

FIG. 6. Eigenfrequency x=2p and the

corresponding quality factor Q of SI

shell for n¼ 2 (with base model as

partial-slip interface condition) for var-

ious conditions like no-slip of water,

no-slip of air, no-slip, no surface ten-

sion, and average density of the shell.

The horizontal dotted lines correspond

to eigenfrequencies of the SI shell

without fluid interaction. In inset (a),

the cluster of points falling approxi-

mately on the line with smaller slope

has major influence from the partial-

slip of water. The line with larger slope

corresponds to no-slip interface

condition.
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V. CONCLUSIONS

Axisymmetric free vibrations of a fluid-filled thick

microspherical shell suspended in another fluid is considered

in the present analysis. A model for finding the eigenfrequen-

cies and quality factors for the linear vibrations of a SI shell

with partial-slip solid-fluid interface condition is presented

for two compressible viscous fluids. The quality factors of

the natural vibrations of the shell are found by solving the

eigenvalue problem for an air-filled thick polymer micro-

spherical shell suspended in water. High quality resonances

are observed due to the very small viscous penetration depth

compared to the shell radius. The added mass effect and

partial-slip of water (air) have major (minor) influence on

the resonance spectrum. The effect of partial-slip on the first

few fundamental modes is found to be very low. The density

variation along the thickness has very little influence on the

resonances when compared with the average density calcula-

tions. The surface tension has very little influence on the

eigenspectrum, except for the fundamental frequency trend

starting with first quadrupole mode. The perfectly matched

layer technique, used in the computation to handle the trun-

cated boundary, is found to be very efficient in separating

the solid driven resonance spectrum from the spurious/

reflecting spectrum.

For the thin-shell limit, the problem reduces to an eigen-

value problem of dimension two for any meridional wave

number n � 2. Using this model for the thin-shell limit,

resonances and quality factors are calculated for the two

quadrupole shapes for various bacteria and compared with

previous studies. We have also explained the deformation

pattern of these modes which were not clear in the earlier

studies.12,43,44 Certain invariant deformation measures are

calculated to quantify the mode shapes in terms of the dilato-

ric and deviatoric components present.

The model presented can be extended to study the reso-

nance and quality factors of a shell with elastic and viscous

properties varying radially. Parametric analysis can be done

with this model for various applications with different geo-

metric and material properties of the shell and fluids.

Further, nonlinear analysis of submerged fluid-filled micro-

spherical shell with size dependent material properties is

required for various applications.15,21

ACKNOWLEDGMENTS

Major funding of the present project from the Swedish

Research Council was gratefully acknowledged.

1W. Q. Chen and H. J. Ding, J. Acoust. Soc. Am. 105, 174 (1999).
2W. Q. Chen, X. Wang, and H. J. Ding, J. Acoust. Soc. Am. 106, 2588

(1999).

3W. Q. Chen, J. B. Cai, G. R. Ye, and H. J. Ding, ASME J. Appl. Mech. 67,

422 (2000).
4E. Stride and N. Saffari, Proc. Inst. Mech. Eng., Part H 217, 429 (2003).
5S. Zhao, K. W. Ferrara, and P. A. Dayton, Appl. Phys. Lett. 87, 134103

(2005).
6L. Hoff, Acoustic Characterization of Contrast Agents for Medical

Ultrasound Imaging (Kluwer, Dordrecht, 2001).
7T. Faez, M. Emmer, K. Kooiman, M. Versluis, A. Van Der Steen, and

N. De Jong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 7

(2013).
8E. Joyce, S. S. Phull, J. P. Lorimer, and T. J. Mason, Ultrason. Sonochem.

10, 315 (2003).
9T. Blume and U. Neis, Ultrason. Sonochem. 11, 333 (2004).

10K. Hoover, M. Bhardwaj, N. Ostiguy, and O. Thompson, Mater. Res.

Innov. 6, 291 (2002).
11P. V. Zinin, Ultrasonics 30, 26 (1992).
12P. V. Zinin, J. S. Allen, and V. M. Levin, Phys. Rev. E 72, 061907 (2005).
13P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003).
14H. Chen, W. Kreider, A. A. Brayman, M. R. Bailey, and T. J. Matula,

Phys. Rev. Lett. 106, 034301 (2011).
15K. Kooiman, H. J. Vos, M. Versluis, and N. de Jong, Adv. Drug Delivery

Rev. 72, 28 (2014).
16S. Hernot and A. L. Klibanov, Adv. Drug Delivery Rev. 60, 1153 (2008).
17K. Hynynen, Adv. Drug Delivery Rev. 60, 1209 (2008).
18K. Tachibana and S. Tachibana, Jpn. J. Appl. Phys., Part 1 38, 3014 (1999).
19J. Hu, Z. Qiu, and T. C. Su, J. Sound Vib. 330, 5982 (2011).
20P. V. Zinin and J. S. Allen, Phys. Rev. E 79, 021910 (2009).
21A. A. Doinikov and A. Bouakaz, IEEE Trans. Ultrason. Ferroelectr. Freq.

Control 58, 981 (2011).
22C. C. Church, J. Acoust. Soc. Am. 97, 1510 (1995).
23L. Hoff, P. C. Sontum, and J. M. Hovem, J. Acoust. Soc. Am. 107, 2272

(2000).
24K. Sarkar, W. T. Shi, D. Chatterjee, and F. Forsberg, J. Acoust. Soc. Am.

118, 539 (2005).
25S. M. van der Meer, B. Dollet, M. M. Voormolen, C. T. Chin, A. Bouakaz,

N. de Jong, M. Versluis, and D. Lohse, J. Acoust. Soc. Am. 121, 648

(2007).
26K. Tsiglifis and N. A. Pelekasis, J. Acoust. Soc. Am. 123, 4059 (2008).
27A. A. Doinikov, J. F. Haac, and P. A. Dayton, Ultrasonics 49, 269 (2009).
28T. Faez, M. Emmer, K. Kooiman, M. Versluis, A. van der Steen, and N. de

Jong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 7 (2013).
29D. Grishenkov, C. Pecorari, T. B. Brismar, and G. Paradossi, Ultrasound

Med. Bio. 35, 1127 (2009).
30E. Lauga, M. Brenner, and H. A. Stone, in Springer Handbook of

Experimental Fluid Mechanics (Springer Berlin Heidelberg, 2007), pp.

1219–1240.
31S. Hanot, M. Belushkin, and G. Foffi, Soft Matter 9, 291 (2013).
32S. Kim and J. E. Pasciak, Math. Comput. 78, 1375 (2009).
33A. N. Norris and A. L. Shuvalov, Proc. R. Soc. London, Ser. A 468, 467

(2011).
34J. N. Sharma and N. Sharma, ASME J. Appl. Mech. 77, 021004 (2010).
35L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press,

1959), Vol. 6.
36A. A. Doinikov and A. Bouakaz, J. Acoust. Soc. Am. 127, 1218 (2010).
37H. W. Jackson, M. Barmatz, and C. Shipley, J. Acoust. Soc. Am. 84, 1845

(1988).
38P. A. Thompson and S. M. Troian, Nature 389, 360 (1997).
39Y. Zhu and S. Granick, Phys. Rev. Lett. 87, 096105 (2001).
40G. Tamadapu and A. DasGupta, Int. J. Eng. Sci. 60, 25 (2012).
41A. DasGupta and G. Tamadapu, Eur. J. Mech. A: Solids 39, 280 (2013).
42I. Main, Vibrations and Waves in Physics (Cambridge University Press, 1993).
43P. V. Zinin and J. S. Allen, Phys. Rev. E 82, 033901 (2010).
44Y. Choi, W.-S. Ohm, and Y.-T. Kim, Phys. Rev. E 82, 013901 (2010).
45P. V. Zinin, V. M. Levin, and R. G. Maev, Biophys. J. 32, 202 (1987).

044903-10 Tamadapu, Nordmark, and Eriksson J. Appl. Phys. 118, 044903 (2015)


	s1
	l
	n1
	n2
	n3
	s2
	s2A
	f1
	d1
	d2
	d3
	d4
	d5
	d5a
	d5b
	d5c
	s2A
	d6
	d7
	d8
	d9
	s2B
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	s2B
	f2
	d21
	d22
	s2B
	s2C
	s3
	s3A
	d23
	d24
	d25
	d26
	s3B
	s4
	d27
	s4A
	f3
	f5
	f4
	s4B
	t1
	s4C
	f7
	f6
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45

