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The nonlinear steepening of relativistic acoustic waves is investigated. The nonlinear evolution of

a planar wave in a homentropic flow field is understood well through relativistic simple waves.

However, in situations where the wave is nonplanar and the flow field is nonhomentropic, the

concept of simple waves cannot be used. In the present paper, effect of entropy gradients on the

nonlinear distortion of a spherical wave is analyzed using the wave front expansion technique. It is

shown that the behavior of a relativistic wave in nonhomentropic environment is slightly different

from the nonrelativistic wave. A closed form solution is obtained for the slope at the wave front. A

general criterion for a compression wave to steepen into a shock is obtained. The distortion of

compression and rarefaction waves is examined for some well known equations of state. However,

the method used in this paper is general and can be easily extended to analyze shock formation in

any fluid. Also, expressions for time and location of shock formation are obtained. The effects of

gravity or self-gravity are not taken into account in this paper. © 2005 American Institute of

Physics. fDOI: 10.1063/1.1904083g

I. INTRODUCTION

The profile of finite amplitude waves gets distorted due

to the nonlinearity of the evolution equation. This can lead to

formation of discontinuities in flow quantities. Physically,

this is interpreted as shock formation. In reality, however,

only those waves that survive dissipation by viscosity and

heat conduction can form shocks.

The steepening of relativistic acoustic waves in a ho-

mentropic environment has been well understood using

simple waves. Simple waves in relativistic fluid dynamics

were first studied by Taub
1

who introduced them through the

Riemann invariants. Subsequently, they were analyzed in de-

tail in several contexts by Liang.
2

Liang studied the process

of shock formation and obtained a general formula for the

damping and entropy production rate as functions of shock

strength. Anile et al.
3

performed a detailed analysis of the

formation of strong relativistic shock waves and their subse-

quent damping by numerically integrating the equations of

special relativistic fluid dynamics in one dimension. The

breaking of relativistic simple waves in magnetofluid dynam-

ics was studied by Muscato.
4

The characteristics of a simple wave have constant

slopes and the Riemann invariants are constant along these

characteristics. However, in the presence of spherical geom-

etry and entropy gradients, the Riemann variants of the sys-

tem are not constant along the characteristics. As a result, the

time of shock formation is underestimated if the effect of the

spherical geometry is neglected. In the present paper, the

analysis is performed for the case when the effects of

spherical geometry and density variation are taken into

consideration.

The process of shock formation is very important in as-

trophysical situations. Hanasz
5

has explained that the

Kelvin–Helmholtz instability in relativistic jets leads to non-

linear steepening of acoustic waves and formation of shocks.

In some jets the light comes primarily from a regularly

spaced series of bright knots. Rees
6

suggested that the knots

can be attributed to the steepening of nonlinear acoustic

waves in the jet. Liang
2

analyzed the nonlinear evolution of

adiabatic perturbations in the early universe using simple

waves. Also, in models of a spherical accretion, formation of

shocks is an important feature. These waves are affected by

the gravitational effects and by the base flow. Also, these

waves travel through a region of varying thermodynamic

properties due to the presence of density gradients.

In this paper, the effects of density gradients and spheri-

cal geometry on the steepening of both inward and outward

traveling waves are analyzed. However, in the present analy-

sis, effects of gravity and base flow are not taken into con-

sideration. The results presented in this paper are general and

have implications on other areas of physics as well. Also, the

results presented in this paper can be used for testing the

accuracy of numerical codes.

The steepening of nonrelativistic acoustic waves in the

presence of spherical geometry and entropy gradients has

been studied by various authors. The effect of spherical ge-

ometry was discussed by Appert et al.
7

in the context of

nucleation of liquids and by Lin and Szeri
8

in the context of

sonoluminescence effect in bubbles. Lin and Szeri,
8

Tyagi

and Sujith,
9

and Muralidharan and Sujith
10

investigated the

steepening of nonrelativistic acoustic waves in the presence

of entropy gradients. They used the wave front expansion

technique to obtain an evolution equation for the slope at the

wave front. In the present paper, the analysis is further gen-

eralized to describe the case of nonlinear distortion of rela-

tivistic acoustic waves in the presence of density gradients.

Also the effect of spherical geometry can be analyzed using

this method.
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The rest of this paper is organized as follows. In Sec. II,

the relativistic fluid dynamic equations were manipulated to

obtain the equations in the characteristic form. A closed form

solution for the evolution of slope at the wave front was

obtained in Sec. III using the method of wave front expan-

sion. Also, expressions for the time and location of shock

formation were derived. Some examples highlighting the ef-

fects of spherical geometry and entropy gradients are pre-

sented in Secs. IV and V. Hereafter, the system of units is

chosen such that the speed of light c=1.

II. GOVERNING EQUATIONS

The relativistic fluid dynamics equations describing the

radial flow of a perfect gas are the following:
11

Baryon conservation

S ]ng

]t
+

]snugd

]r
+

2nug

r
D = 0, s1d

Euler’s equation

]swg2ud

]t
+

]swg2u2d

]r
+

2wg2u2

r
+

]p

]r
= 0, s2d

energy equation

]swg2d

]t
+

]swg2ud

]r
+

2wg2u

r
−

]p

]t
= 0. s3d

In the above equations, n is the baryon number density, u

=dr /dt is the spatial velocity, g=1/Î1−u2 is the Lorentz

factor, w=e+ p, e is the relativistic internal energy per unit

volume sincluding the rest massd, p is the thermodynamic

pressure, and w is the enthalpy per unit volume. The fluid

quantities n , p, and w are related by the first law of

thermodynamics:

Tds = dSw

n
D −

dp

n
, s4d

where s is entropy per baryon and T is the absolute tempera-

ture. Using Eqs. s1d, s3d, and s4d, the energy equation can be

reduced to

S ]s

]t
+ u

]s

]r
D = 0. s5d

In general, the above equations are solved in conjunction

with an equation of state. A general equation of state of the

form e=esp ,sd is assumed. Hence,

de = S ]e

]p
D

s

dp + S ]e

]s
D

p

ds . s6d

The derivatives of w in Eqs. s2d and s3d are eliminated using

Eqs. s4d–s6d to yield

s1 − u2d

wa
S ]p

]t
+

u + a

1 + ua

]p

]r
D + S ]u

]t
+

u + a

1 + ua

]u

]r
D

+
2us1 − u2da

s1 + uadr
= 0, s7d

−
s1 − u2d

wa
S ]p

]t
+

u − a

1 − ua

]p

]r
D + S ]u

]t
+

u − a

1 − ua

]u

]r
D

−
2us1 − u2da

s1 + uadr
= 0, s8d

where a is the speed of sound, given by a2= s]p /]eds.

Equations s7d and s8d are equivalent to

d+J+

dt
+

2ua

s1 + uadr
= 0, s9d

d−J−

dt
−

2ua

s1 − uadr
= 0, s10d

where

J+ =
1

2
lnS1 + u

1 − u
D +E dp

wa
, J− =

1

2
lnS1 + u

1 − u
D −E dp

wa
,

and d+ /dt and d− /dt are the derivatives along the character-

istics, given by

d+

dt
=

]

]t
+ S u + a

1 + ua
D ]

]r
,

d−

dt
=

]

]t
+ S u − a

1 − ua
D ]

]r
.

In the nonrelativistic limit, the above equations reduce to the

characteristic equations obtained by Appert et al.
7

and Lin

and Szeri.
8

The system of Eqs. s5d, s9d, and s10d are equiva-

lent to the system s1d–s3d. However, in this system all the

equations are in the characteristic form. The Riemann vari-

ables of the system are J+ ,J−, and s, and the respective char-

acteristic velocities are C+ ,C−, and u, where

C+ = S u + a

1 + ua
D, C− = S u − a

1 − ua
D .

Any disturbance will propagate along the characteristics.

In the case of simple waves, the Riemann variables are con-

stant along the characteristics. However, here the presence of

spherical geometry causes the Riemann variable to change

along the characteristics. The wave front expansion tech-

nique is used to determine the rate of steepening of the lead-

ing edge of the wave front. This method neglects the possi-

bility of shock formation in the middle of the wave.
8,10

In the

case when the entropy changes rapidly within the wave, the

shock can form in the middle of the wave. So, it is assumed

that the entropy does not vary rapidly within the wave. Fur-

ther, this method is limited to a special form of pure com-

pression or rarefaction wave, which has a discontinuity in its

derivative. However, it is possible to get a rough estimate of

the time and location of shock formation for a wave with

continuous profile.
12

This estimate is quite accurate for

waves with high frequencies. Tyagi and Sujith
9

showed that

the slope at the wave front can be expressed as the product of

amplitude and frequency for a sinusoidal wave in the nonrel-

ativistic case, by comparing the solution obtained using wave

front expansion technique with high-frequency solution. The

effects of spherical geometry and entropy gradients sor tem-

perature gradientsd can be determined using this method. It is

also possible to obtain solution in closed form for a general

equation of state.
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III. NONLINEAR STEEPENING OF A WAVE FRONT

A. Evolution equation

Whitham
12

has shown that for a hyperbolic system a

discontinuity in the derivatives propagates along the charac-

teristics. In this paper, a wave with compact support having

discontinuity in its first derivative is considered. In general, it

is difficult to deal with a complex wave having both a com-

pressive and an expansive part. Hence, pure compression and

expansion waves will be treated separately in this paper. The

equation of the wave front can be written as r=Rstd. A flow

variable L is expanded in powers of j at the wave front,

where j=r−Rstd as

Lsj,td = L0fRstdg + L1stdj

+ L2std
j2

2
+ ¯ , for j , 0, s11d

Lsj,td = L0fRstdg + L08fRstdgj

+ L09fRstdg
j2

2
+ ¯ , for j . 0, s12d

where “
8

” indicates spatial derivative. L indicates u ,s, or p,

and L1 ,L2, … denote the corresponding spatial derivatives

behind the wave front. j.0 is the undisturbed quiescent

flow field and j,0 is the disturbed region where the flow is

unsteady. The quantities with subscript “0” are the known

flow quantities in the quiescent field. The leading edge of an

outward traveling wave and an inward traveling wave propa-

gates with velocities C+ and C−, respectively. Since j.0 is

undisturbed, u0fRstdg=0. Hence, the velocity of the wave

front is given by

Ṙstd = S u ± a

1 ± ua
D

j=0

= ± a0fRstdg , s13d

where “ ˙ ” indicates time derivative. Hereafter, “+” corre-

sponds to an outward traveling wave and “−” corresponds to

an inward traveling wave. It is known from thermodynamics

that a=asp ,sd and w=wsp ,sd. Hence,

asp,sd = a0fRstdg + FS ]a

]p
D

s

p1 + S ]a

]s
D

p

s1Gj + ¯ , s14d

wsp,sd = w0fRstdg + FS ]w

]p
D

s

p1 + S ]w

]s
D

p

s1Gj + ¯ .

s15d

The derivatives with respect to t can be obtained using

F ]

]t
G

x

= F ]

]t
G

j

+ F ]j

]t
G

x

F ]

]j
G =

]

]t
− Ṙstd

]

]j
. s16d

Substituting the above power series in Eqs. s5d, s7d, and s8d
and equating the coefficients of j0 we obtain

s08 − s1 = 0, s17d

p08 = 0, s18d

p1 ± w0u1a0 = 0. s19d

Equating coefficients of j1,

ṗ1 + u1a0
2sp08 − p1d + u1p1

± a1p1 ± w0a0fu̇1 + u1
2s1 − a0

2d ± a1u1g

+
2u1w0a0

2

Rstd
= 0, s20d

where a1 is the coefficient of j1 in the expression for asp ,sd
given by

a1 = Fs1S ]a

]s
D

p

+ p1S ]a

]p
D

s

G .

Equations s17d–s20d can be manipulated to yield

u̇1 + Fs1 − a0
2d + S ]a

]p
D

s

w0a0Gu1
2

± FS ]a

]s
D

p

s08 +
w08a0 + w0a08

2w0

+
a0

Rstd
Gu1 = 0. s21d

Using the fact that p08=0, the above equation can be reduced

to

u̇1 +
§

2
u1

2 ± Fw08a0 + 3w0a08

2w0

+
a0

Rstd
Gu1 = 0, s22d

where § is the relativistic compressibility parameter given by

§ = 2Fs1 − a0
2d + S ]a

]p
D

s

w0a0G . s23d

The fluid is said to be thermodynamically normal if §.0 and

it is said to be thermodynamically anomalous if §,0.
13

In the nonrelativistic limit and in the absence of spheri-

cal geometry, the above equation reduces to the equation

obtained by Muralidharan and Sujith
10

for a general equation

of state. The coefficient of u1 becomes zero for a simple

wave. Hence, for a simple wave, Eq. s22d reduces to

u̇1 +
§

2
u1

2 = 0. s24d

It is easier to deal with the position of wave front Rstd as an

independent variable instead of t. Therefore, Eq. s22d can be

rewritten as

du1

dy
+ Sw08a0 + 3w0a08

2w0a0

+
1

y
Du1 ±

§

2a0

u1
2 = 0. s25d

Here, y=Rstd is the position of the wave front. The above

nonlinear equation can be transformed into a linear differen-

tial equation in 1/u1:

d

dy
S 1

u1

D − S w08

2w0

+
3a08

2a0

+
1

y
D 1

u1

= ±
§

2a0

. s26d

If r0 denotes the initial position of the wave front, then the

solution to the above equation with an initial slope of u1sr0d
can be written as
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1

u1syd
=

1

u1sr0d

IFsr0d

IFsyd
±

1

IFsyd
E

r0

y §syd

2a0syd
IFsyddy , s27d

where IFsyd is the integrating factor given by

IFsyd = expF−E Sw08a0 + 3w0a08

2w0a0

+
1

y
DdyG

= y−1fw0sydg−1/2fa0sydg−3/2. s28d

Equation s27d describes the nonlinear evolution of a wave

front moving into a gas governed by a general equation of

state in the presence of entropy sor densityd gradients. The

slope at the wave front in the case of nonhomentropic envi-

ronment is determined by specifying a spatial variation of the

thermodynamic properties of the undisturbed medium. A

shock forms when uu1sydu→`. In a homentropic environ-

ment, the thermodynamic properties of the undisturbed me-

dium a0 , p0 ,e0, and w0 do not vary with y, since p08=0. The

integrating factor IFsyd is a constant for a simple wave.

Hence, in the case of planar geometry, only compression

waves snegative sloped can steepen into a shock in thermo-

dynamically normal fluid, while rarefaction waves spositive

sloped can steepen into a shock only in a thermodynamically

anomalous medium. Also, for the shock to be stable, the

mechanical stability criterion obtained by Bugaev and

Gorenstein
13

must be satisfied. Bugaev and Gorenstein
13

showed that compression shocks are stable in thermodynami-

cally normal medium and rarefaction shocks are stable in

thermodynamically anomalous medium. In this paper, the

compressibility parameter is assumed to be positive.

B. Shock formation

In this section, expressions for time and location of

shock formation are obtained for both inward and outward

traveling disturbances.

1. Inward traveling disturbance

In the case of an inward traveling disturbance, uu1sydu
→` at the center. Hence, an inward traveling disturbance

forms a shock either before reaching the center or at the

center. Further, if it forms a shock before reaching the center,

the location of shock formation is given by

1

u1sr0d
IFsr0d = E

r0

ys §syd

2a0syd
IFsyddy , s29d

where ys is the shock formation location. The time of shock

formation can be obtained from

ts = − E
r0

ys dy

a0syd
. s30d

From Eq. s29d the following assertions can be made.

sid Under the compressibility assumption §.0, only

compression waves can steepen into shocks.

siid Only those compression waves with slopes greater

than a minimum value can steepen into shocks before

reaching the center. The condition for this is given by

uu1sr0du

IFsr0d
.

1

maxUE
r0

ys §syd

2a0syd
IFsyddyU

=
1

E
0

r0 §syd

2a0syd
IFsyddy

. s31d

If the improper integral in this equation diverges, then all

compression waves will steepen into shocks. It is clear from

Eq. s27d that the compression waves, which do not blow up

before reaching the center, along with all expansion waves

develop into infinitesimal shocks at the center. However,

these infinitesimal shocks may not occur in reality due to the

action of diffusion close to the center. The effect of diffusion

cannot be neglected when the wave front is close to the ori-

gin. This has been explained by Lin and Szeri
8

for the non-

relativistic case.

2. Outward traveling disturbance

It is clear from Eq. s27d that an outward traveling distur-

bance will steepen into a shock only if it is compressive. It is

also clear that for a compression wave to steepen into a

shock,

uu1sr0du

IFsr0d
.

1

maxUE
r0

ys §syd

2a0syd
IFsyddyU

=
1

E
r0

` §syd

2a0syd
IFsyddy

. s32d

If ys is the location of shock formation, then the time of

shock formation is given by

ts = E
r0

ys dy

a0syd
. s33d

The results derived in this section can be better understood

through the following examples.

IV. HOMENTROPIC ENVIRONMENT

In a homentropic environment, the entropy is a constant.

Hence, in the undisturbed medium the equation of state can

be written as e0=e0sp0d. Since p0 is a constant when there is

no base flow fEq. s18dg, a0 and § do not vary with y. The

slope at the wave front is obtained from Eq. s27d as

1

u1syd
= yF 1

r0u1sr0d
±

§sr0d

2a0sr0d
lnS y

r0

DG . s34d

Since the velocity of the wave front is independent of y, it is

possible to write the wave front position y as

y = r0 ± a0t .

Equation s34d can be nondimensionalized as follows:
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t̃ =
a0t

r0

, ũ1st̃d = r0u1std .

Hence, Eq. s34d can be written as

1

ũ1st̃d
= s1 ± t̃dF 1

ũ1s0d
±

§s0d

2a0

lns1 ± t̃dG . s35d

Therefore, in a homentropic flow field, every compres-

sion wave will steepen into a shock. The time of shock for-

mation ts is given by

t̃s = expS − 2a0s0d

ũ1s0d§s0d
D − 1, s36d

for an outward traveling compressive disturbance,

t̃s = 1 − expS 2a0s0d

ũ1s0d§s0d
D, s37d

for an inward traveling compressive disturbance. Time of

shock formation is hence found to be lesser in a fluid with

greater compressibility parameter.

The distortion of a wave front depends both on its initial

slope and the radial distance. Every inward traveling com-

pression wave front steepens throughout its evolution period

before it turns into a shock fsee Fig. 1sadg. However, for

waves with very small initial slope, the location of shock

formation is closer to the center where diffusive effects be-

come important.

Figure 1sbd shows that an outward traveling compression

wave front with a very small initial slope tends to relax ini-

tially. This is due to the effect of spherical geometry. How-

ever after a large distance, the geometrical relaxation effect

becomes negligible and at this point, the wave behaves like a

planar wave. It is known that every planar wave scompres-

sived will steepen into a shock. Hence, a compression wave

with very small initial slope tends to relax until it reaches a

minimum value and then it steepens to form a shock. How-

ever, the shock formation distance is extremely large. In re-

ality, for such extremely large shock formation distances, the

wave will get damped before it steepens into a shock, due to

dissipative effects. Compression waves with large initial

slope steepen throughout their evolution period.

Figure 2 shows that even inward traveling expansion

wave fronts steepen to form infinitesimal shocks at the cen-

ter. This phenomenon is not observed in the Cartesian geom-

etry. However, these infinitesimal rarefaction shocks are not

stable. As it was mentioned earlier, the effects of diffusion

become important near the origin and hence, such a shock

may not occur in reality.
8

Also, rarefaction shock waves can

become unstable in thermodynamically normal medium.

A planar right running wave can be considered as the

limiting case of an outward traveling spherical disturbance

with r0→`. Hence, from Eq. s34d, the time of shock forma-

tion for a planar wave is obtained as

ts =
− 2

§s0du1s0d
. s38d

On comparing Eqs. s36d and s38d it can be deduced that the

time of breaking of an outward traveling spherical compres-

sion wave is more than that of a planar compression wave.

The behavior of a left running planar wave is similar to that

of a right running wave.

The time of breaking of a simple splanard wave for a

barotropic fluid with equation of state p= sh−1de is

given by
2,4

tB = minS−
s1 + fsjdad2

s1 − a2df8sjd
D , s39d

where j=x−C+t, fsjd is the initial profile of the wave, and

a=Îh−1. Since it is assumed that there is no base flow,

fs0d=0. As was mentioned earlier, it is assumed that the

shock forms at the leading edge of the wave front. Hence, if

it is assumed that the shock forms at the leading edge of the

wave in the above analysis, the minimum value of tB will

FIG. 1. sad shows the evolution of inward traveling compression waves with

different initial slopes as a function of wave front position. The compress-

ibility parameter is taken as 4/3. sbd shows the evolution of outward trav-

eling compression waves with different slopes as a function of wave front

position. The compressibility parameter is taken as 4/3.
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occur at j=0. Under these assumptions, Eq. s39d will

reduce to

tB =
1

s1 − a2duf8s0du
. s40d

Hence Eq. s38d agrees with the result obtained using simple

waves fEq. s40dg. When the initial profile is sinusoidal, the

shock forms in the middle of the wave. However, the time

scales obtained using wave front expansion technique and

simple waves are similar.
12

This example highlights the effect of spherical geometry

on the steepening of the compression waves. This method

can also be used to understand the effects of variation in the

compressibility parameter due to density gradients.

V. NONHOMENTROPIC ENVIRONMENT

In this section, steepening of acoustic waves in a poly-

tropic gas and Synge
14

gas are analyzed. Both these type of

gases have positive compressibility parameter.

A. Polytropic gas

In this example, the effect of density gradients on the

nonlinear steepening of the wave front is analyzed. For this

purpose, let us consider the class of fluids that obey the poly-

tropic equation of state with index h,

p = Kssdnh, 1 ø h ø 2.

This state equation is a reasonable approximation to the av-

erage thermodynamic properties of stellar material and its

simple expression makes it useful for analytical calculations.

For a polytropic gas,

e = mn +
p

h − 1
s41d

and

a2 =
hsh − 1dp

sh − 1dmn + hp
=

hp

w
, s42d

where m is the rest mass. The variables in the quiescent

medium a0 , p0 ,e0, and w0 also satisfy the above relation. The

compressibility parameter of the undisturbed medium can be

obtained using Eq. s23d as

§ = sh + 1d − 3a0
2. s43d

Thus, the slope at the wave front can be obtained by substi-

tuting the above relations in Eq. s27d,

1

u1syd
=

1

u1sr0d

IFsr0d

IFsyd
±

1

IFsyd
E

r0

y Sh + 1

2a0

−
3a0

2
DIFsyddy .

s44d

The above equation can be nondimensionalized as follows:

ỹ =
y

r0

, ũ1sỹd = r0u1syd, IF̃sỹd =
IFsyd

IFsr0d
,

ñsỹd =
n0syd

n0sr0d
.

Using the fact that p08=0 ssee the Appendixd, Eq. s44d can be

written as

1

ũ1sỹd
=

ỹÎa0sỹd

ũ1s1dÎa0s1d
± ỹPsỹdÎa0sỹd , s45d

where

Psỹd = E
1

ỹ S h + 1

2Îa0
3sỹd

−
3Îa0sỹd

2
Ddỹ

ỹ
.

If nmin is the minimum value of ñsỹd, then

Psỹd . S sh + 1dsanmin + bd3/4

2
−

3

2sanmin + bd1/4DE
1

ỹ dỹ

ỹ
,

s46d

where b=1/ sh−1d and a=1/a0
2s1d−b. Hence, Psỹd diverges

sthe magnitude becomes infinited both when ỹ→` and ỹ

→0. Hence, every outward traveling compression wave will

steepen into a shock and every inward traveling compression

wave will steepen into a shock before reaching the center. In

the nonrelativistic limit sb /a→0d, Psỹd may not diverge, if

nmin is zero. The difference in the behavior of relativistic

acoustic waves and nonrelativistic acoustic waves can be un-

derstood through the following example.

To analyze the effect of density gradients for which nmin

is zero, it is assumed that the density of the quiescent field

varies as a power of the radius, i.e., ñsr̃d= r̃N. N.0 repre-

sents an increasing density field, while N,0 represents a

decreasing density field. In this kind of density variation,

nmin is zero. The wave velocity a0 is given by fEq. sA6dg

FIG. 2. The evolution of inward traveling rarefaction waves with different

initial slopes as a function of wave front position. Rarefaction waves also

steepen due to the effect of spherical geometry leading to the formation of

infinitesimal shocks at the center. The compressibility parameter is taken

as 4/3.
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a0sỹd =
1

Îañsỹd + b
=

1

ÎaỹN + b
. s47d

A decreasing density field approximately represents a

gaseous object, such as a nebula, with a highly dense core. In

such a field, the density tends to zero at extremely large

distances. The presence of an increasing density field is not

common in astrophysical situations; however, there can be

other physical situations where the density field is an increas-

ing function of the distance. Also, the contrasts in the behav-

ior of inward traveling relativistic waves and nonrelativistic

waves can be understood through this example, since the

density near the origin is zero.

In the assumed density field, Psỹd is given by

Psỹd = P̄sỹd − P̄s1d ,

where

P̄sỹd =
2sh + 1d

3NÎa0
3sỹd

+
s2 − hdb3/4

N
lnS1 − b1/4Îa0sỹd

1 + b1/4Îa0sỹd
D

+
2s2 − hdb3/4

N
tan−1SÎa0sỹd

b1/4 D . s48d

The slope at the wave front can be determined from Eq. s45d.
In the nonrelativistic limit, Psỹd reduces to

Psỹd =
2sh + 1d

3N
a3/4sỹ3N/4 − 1d . s49d

1. Decreasing density field „N<0…

It is clear from Eq. s48d that Psỹd diverges both when

ỹ→` and ỹ→0 in a density field decreasing in the radial

direction sN,0d. Hence, all inward traveling compression

waves steepen into shocks before reaching the center. Figure

3sad shows the evolution of an inward traveling compression

wave front. The variation of location of shock formation with

initial slope is shown in Fig. 3sbd.
It is also seen from Eq. s48d that all outward traveling

compression waves steepen into shocks. However, in the

nonrelativistic limit, Psỹd is finite as ỹ→` fEq. s49dg.
Therefore, only those outward traveling compression waves

which have slope greater than a nonzero minimum slope can

steepen into shocks. This can be explained as follows: In a

steep decreasing density gradient, a relativistic compression

wave with small initial slope tends to relax initially fsee Fig.

4sadg. However, the same compression wave in a region with

a mild density gradient steepens throughout its evolution.

This shows that the rate of steepening of a compression wave

depends strongly on the environment sdensity gradientsd. At

large distances, the effect of spherical geometry and the den-

sity becomes negligible. When density is negligible, the fluid

will behave like a barotropic fluid with equation of state p

= sh−1de and hence the speed of sound tends to a finite

value. Hence, at large distances, the compression wave be-

haves like a simple wave and thus it steepens into a shock. In

the nonrelativistic limit, the speed of sound tends to infinity

at large distances in a decreasing density field, unlike the

relativistic case. Hence, the fluid behaves like an incompress-

ible fluid and the wave cannot get distorted any further.

Though every relativistic compression wave steepens into a

shock fEq. s46dg, it is not physically meaningful since the

time of shock formation for a compression with small initial

slope is extremely large. Figure 4sad shows the effect of de-

creasing density gradients on the slope of the outward trav-

eling compression waves for different initial slopes. Figure

4sbd shows the variation of location of shock formation with

initial slope in the presence of decreasing density gradients.

However, when the initial slope of the compression wave

front is large, it is not affected much by the density gradients.

FIG. 3. sad shows the variation of the slopes of inward traveling compres-

sion wave fronts with different initial slopes in decreasing density gradients.

The density is assumed to decrease as rN, where r is the radial distance. The

initial speed of sound is 0.1. The polytropic index h=4/3. sbd shows the

variation of the shock formation distance of inward traveling compression

waves with the inverse of initial slope in the presence of the same decreas-

ing density fields as in sad. The initial conditions and the polytropic index

are also the same as in sad. Compression waves with large initial slopes

steepen immediately.
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It is clear from Fig. 4sbd that the shock formation occurs at a

large distance for a compression wave with small initial

slope.

2. Increasing density field „N>0…

In the presence of a density field increasing in the radial

direction, the inward traveling waves move into a region of

decreasing density gradients. Since Psỹd diverges as ỹ→0,

in an increasing density field, every inward traveling com-

pression wave will steepen into a shock before reaching the

center. Figure 5sad shows the distortion of an inward travel-

ing compression wave front. Though compression waves

with small initial slope develop into shocks when they are

close to the center, the shock formation occurs before they

reach the center fsee Fig. 5sbdg. However, in the nonrelativ-

istic limit, since Psỹd reaches a finite value as ỹ→0, only

those compression waves which are sufficiently steep can

form a shock before reaching the center. The others form

infinitesimal shocks at the center along with the expansion

waves. This is because the density tends to zero as the wave

moves closer to the center. The fluid in this region behaves

like an incompressible fluid sfor nonrelativistic fluidsd.
Hence, the wave cannot get distorted further by the density

gradients. However, they form infinitesimal shocks at the

center due to the effect of geometry.

FIG. 4. sad shows the variation of the slopes of outward traveling compres-

sion wave fronts with different initial slopes in the same decreasing density

fields as in Fig. 3sad. The initial conditions and the polytropic index are also

the same as in Fig. 3sad. In the density field with a larger gradient, compres-

sion waves with small initial slopes tend to relax initially and they start

steepening after some distance. The region where these compression waves

steepen is not shown in the figure. sbd shows the variation of the shock

formation distance of outward traveling compression waves with the inverse

of initial slope in the presence of the same decreasing density fields as in

Fig. 3sad. The initial conditions and the polytropic index are the same as in

Fig. 3sad. The shock formation distance increases steeply for compression

waves with small initial slopes.

FIG. 5. sad shows the variation of the slopes of inward traveling compres-

sion wave fronts with different initial slopes in an increasing density gradi-

ent. The density is assumed to increase as rN, where r is the radial distance.

The initial speed of sound is 0.1. The polytropic index h=4/3. sbd shows the

variation of the shock formation distance of inward traveling compression

waves with the inverse of initial slope in the presence of the same increasing

density fields as in sad. The initial conditions and the polytropic index are the

same as in sad. The shock forms very close to the center for compression

waves with small initial slopes.
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Figure 6sad shows the evolution of outward traveling

compressive disturbances. All outward traveling compres-

sion waves steepen into a shock. In a region with mild den-

sity gradient a compression wave front with small initial

slope tends to relax initially. This is because the geometrical

relaxation effect dominates initially and after some distance

the effect of increasing density gradient dominates. Figure

6sbd illustrates the dependence of the location of shock for-

mation on the initial slope for outward traveling compression

waves.

B. Synge gas

For a monatomic perfect gas, Synge
14

derived the fol-

lowing relations for the thermodynamic quantities:

p = nkT , s50d

w = mnGszd = pzGszd , s51d

where z=m /kT, T is the absolute temperature, k is the Boltz-

mann constant, and Gszd=K3szd /K2szd, Knszd are the modi-

fied Bessel’s functions. For such a gas the speed of sound is

given by

a2 =
G8szd/Gszd

zsG8szd + 1/z2d
. s52d

The variables in the quiescent medium, a0 , p0 ,e0, and w0

also satisfy the above relations. The compressibility param-

eter of the undisturbed medium can be obtained using Eq.

s23d as

§sz0d = F2s1 − a0
2d + 2a0Sda0

dz0

D Gsz0d

G8sz0d
G . s53d

Substituting for a0 and w0, the integrating factor fEq. s28dg is

obtained as

IFsyd =
1

yfp0z0G0sz0da0
3g1/2

. s54d

Substituting for § and IFsyd in Eq. s27d from the above rela-

tions and using the fact that p08=0 we get

1

u1syd
=

1

u1sr0d

yÎz0sydGfz0sydga0
3fz0sydg

r0
Îz0sr0dGfz0sr0dga0

3fz0sr0dg

± yÎz0sydGfz0sydga0
3fz0sydg

3E
r0

y

ffz0sydg
dy

y
, s55d

where

fsz0d = §sz0dyIFsyd = FS 1

a0

− a0D + Sda0

dz0

D Gsz0d

G8sz0d
G

3fz0Gsz0da0
3g−1/2. s56d

The behavior of the quantity fszd dictates the effect of den-

sity gradients alone on shock formation. Since fsz0d is posi-

tive for all z, the integral in Eq. s55d satisfies the following

inequality:

E
r0

y

ffz0sydg
dy

y
. minhffz0sydgjE

r0

y
dy

y
. s57d

It is clear from Eq. s56d that the integral in Eq. s57d diverges

both when y→0 and y→`, if the minimum value of fsz0d is

not zero. Figure 7 shows that fsz0d is an increasing function

of z0. Since fsz0d is nonzero as z0→0, the integral in Eq.

s55d will diverge as y→0 and as y→`. Therefore, sid every

inward traveling compression will steepen into a shock be-

fore reaching the center. siid Every outward traveling wave

steepens to form a shock.

To trace the complete evolution of the wave front, the

integral in Eq. s55d has to be evaluated.

FIG. 6. sad shows the variation of the slopes of outward traveling compres-

sion wave fronts with different initial slopes in the same increasing density

fields as in Fig. 5sad. sbd shows the variation of the shock formation distance

of outward traveling compression waves with the inverse of initial slope in

the presence of the same increasing density fields as in Fig. 5sad.
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VI. CONCLUSIONS

The steepening of relativistic compression and rarefac-

tion waves is studied using the wave front expansion tech-

nique. A closed form solution for the steepening of the lead-

ing edge of the wave front propagating into a gas governed

by a general equation of state is obtained. Also expressions

for time and location for shock formation are obtained. The

effects of variation in the relativistic compressibility param-

eter sdue to entropy gradientsd and spherical geometry are

also analyzed. The following inferences are made from the

above analysis.

sad Every outward propagating compression wave in a ho-

mentropic environment will steepen into a shock. How-

ever, for waves with very small initial slope, the shock

formation distance is extremely large and it is not

physically meaningful.

sbd All inward traveling compressive disturbances form

shocks before reaching the center. The inward traveling

expansion waves form infinitesimal shocks at the cen-

ter. This is not observed in Cartesian geometry. How-

ever, these infinitesimal shocks are unstable and diffuse

out quickly.

scd In the case of polytropic gases, all inward and outward

traveling compression waves steepen into shocks.

However, according to nonrelativistic fluid mechanics,

some compression waves do not steepen into shocks.

The above result was analyzed for both increasing and

decreasing density gradients.

sdd All compression waves steepen into a shock even in the

case of a Synge gas.

The results that were obtained from the above analysis agree

with the classical results obtained using relativistic simple

waves. Also, the results obtained from this analysis can be

used to check the accuracy of numerical codes for relativistic

fluid dynamics.
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APPENDIX

Using Eqs. s42d–s44d, the integrating factor can be ob-

tained from Eq. s28d as

IFsyd =
1

yshp0a0d1/2
. sA1d

Since p08=0 fEq. s18dg,

p0syd = p0sr0d . sA2d

Substituting the above relations into Eq. s44d, the expression

for the slope at the wave front simplifies to

1

u1syd
=

1

u1sr0d
S yfa0sydg1/2

r0fa0sr0dg1/2D
± yfa0sydg1/2E Sh + 1

2a0
3/2

−
3a0

1/2

2
Ddy

y
. sA3d

Using the nondimensional quantities defined after Eq. s44d,
the above expression can be rewritten as

1

ũ1sỹd
=

ỹÎa0sỹd

ũ1s1dÎa0s1d
± ỹPsỹdÎa0sỹd , sA4d

where

Psỹd = E
1

ỹ S h + 1

2Îa0
3sỹd

−
3Îa0sỹd

2
Ddỹ

ỹ
. sA5d

The wave front speed a0 can be written in terms of the non-

dimensional quantity n0 as

a0sỹd =
1

Îañsỹd + b
, sA6d

where b=1/ sh−1d and a=1/a0
2s1d−b.
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