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Abstract

Reinforcement learning (RL) algorithms that includeMonteCarlo Tree Search (MCTS)have found

tremendous success in computer games such asGo, Shiga andChess. Such learning algorithms have

demonstrated super-human capabilities in navigating through an exhaustive discrete action search

space.Motivated by their success in computer games, we demonstrate that RL can be applied to

inversematerials design problems.We deploy RL for a representative case of the optimal atomic scale

inverse design of extended defects via rearrangement of chalcogen (e.g. S) vacancies in 2D transition

metal dichalcogenides (e.g.MoS2). These defect rearrangements and their dynamics are important

from the perspective of tunable phase transition in 2Dmaterials i.e. 2H (semi-conducting) to 1T

(metallic) inMoS2.We demonstrate the ability ofMCTS interfacedwith a reactivemolecular

dynamics simulator to efficiently sample the defect phase space and perform inverse design—starting

from randomly distributed S vacancies, the optimal defect rearrangement of defects corresponds a line

defect of S vacancies.We compareMCTS performancewith evolutionary optimization i.e. genetic

algorithms and show thatMCTS converges to a better optimal solution (lower objective) and in fewer

evaluations compared toGA.We also comprehensively evaluate and discuss the effect ofMCTS

hyperparameters on the convergence to solution.Overall, our study demonstrates the effectives of

using RL approaches that operate in discrete action space for inverse defect design problems.

Introduction

Defect dynamics and optimization in 2D transitionmetal dichalcogenides (TMDs) significantly impact the

observed electronic, optical, mechanical and chemical properties [1–4]. Amyriad of structural defects can either

pre-exist or be introduced in these 2Dmaterials during sample preparation, processing and transfer processes

[5, 6]. One finds a significant variation in the nature of the observed defects in these TMDC’s—frompoint (e.g.,

chalcogen vacancies) to extended (e.g., dislocations and boundaries)defects, which in turn impact their

functionality. For example, electrical properties for thin sheets ofMoS2 almost universally reveal n-type field

effect transistor (FET) characteristics due to chalcogen vacancies, impurities, andmetal-like antisite defects

pinning the Fermi level of themetal at themetal/TMDcontact interfaces [7]. In some cases, the defects are

considered detrimental (e.g. electronics)whereas in others they are often beneficial (e.g. catalysis). Exercising

precise control over the density and distribution of defects is therefore highly desirable.

Themost abundant type of defect in TMDs, such asMoS2, are the chalcogen (sulphur)mono-vacancies.

During sample processing, transfer as well as during the operation of a device, these defects undergo significant

reorganization. It has been shown that the Smonovacancies can align together to form an extended line defect of
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vacancies, which canmediate the cross-over between 2H (semiconductor) and 1T (metallic) phases ofMoS2
[8, 9]. Structurally, 2Hphase possesses a trigonal prismatic arrangement ofmolybdenum (Mo) atom

sandwiched between two sulphur (S) atoms, while 1T phase exhibits an octahedral coordination. The transition

between 2H and 1T phases involve local rearrangement of S atomswith respect to their centralMo atom. From

the perspective of tunable 2H-1T transition, it is desirable to attain a fundamental understanding of the atomic-

scale structure and dynamics of defects in 2DTMDs, aswell as their role in driving such structural phase

transitions. Afirst step towards achieving this goal is to identify the optimal configurations of the defects in 2D

materials, which is the central aimof this paper.

Time scale of defect dynamics in TMDs varies from seconds to hours depending on experimental

conditions. Therefore, studying such a long-time process via standard atomisticmolecular dynamics simulation

is not tractable. Here, we attempt to employ data driven advanced optimizationmethods such as evolutionary

computing andAI to tackle such long timescale phenomena inmaterials system.Our objective is to develop

computational approaches that are suitable for capturing structural phase transitions that involve largescale

spatiotemporal rearrangement of atoms andmolecules. In particular, we employ and compare the performance

of anAI algorithm viz.,Monte Carlo Tree Search (MCTS) [10] and an evolutionary optimizer viz., genetic

algorithm (GA) [11] in searching themost energetically favorable distribution of atomic defects starting from

randomdefects in aMoS2monolayer.We use optimization of the S vacancies inMoS2 as a representative

example. In both the cases, the energy evaluation of the individual candidate structures (leaf nodes forMCTSor

genes for evolutionary algorithm) are done using a reactive forcefield.We discuss the performance and

limitations of the twomethods in the broader context of inversematerials design problems.

Methods

MonteCarlo tree search

TheMCTS is as a powerful global optimizationmethod that has foundwide-spread applications in computer

games such as AlphaGo, Bridge, Poker andmany other video games [12, 13]; and shows promises to tackle

materials science problems [14–18]. It is a probabilistic and heuristic search algorithm that integrates a tree

search algorithmwith reinforcement learning. It builds a shallow tree of nodes (called leaf nodes)where each

node represents a point in the search space and downstreampathways are generated by a rollout procedure.

Here, each node represents a distinct arrangement of defeats on the top layer of aMoS2film. TheMCTS

workflow for exploring the search space of 2DMOS2 is shown schematically infigure 1.Our objective is to

identify the optimal sulphur vacancy inMoS2 i.e. the vacancy distribution that corresponds to theminimum

energy configuration.We conductMCTS calculations for a constant defect density. TheMCTS begins with

randomly distributing the vacancies in the top S layer inMoS2. This candidate serves as the root node of the

search tree. The search tree is built in an incremental and iterative way as shown infigure 3 until a pre-defined

termination criterion is reached. Once the termination criteria is reached, the search is stopped and the best

performing candidate is returned. Our termination criteria is set to be theminimumenergy (remaining constant

for>5000MCTS evaluations).

In eachMCTS iteration, four steps—selection, expansion, simulations and back-propagation are carried

out. A child node is selected during the selection process based on the upper confidence bound (UCB) score [19].

TheUCBof a node is defined as
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Here, zi is the accumulatedmerit of the node (i.e., the sumof the immediatemerits of all the downstreamnodes),

and vi is the visit count of the node, vp is the visit count of the parent node andC is a constant for balancing
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Here, J is themeta parameter which is set to be one and it increases whenever the algorithm reach a ‘dead end’

node to allowmore exploration. At a dead-end node, the number of possible structures narrows to one. This

happenswhen the numbers of k−1 candidate structures reach the limit. Here, the J is updated as
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where T is the total number of candidates to be evaluated, and t is the number of candidates for which the surface

tension is already evaluated.Whenever a newnode is added, the variables are initialized as = = =v w f 0i i i and
= ¥u .i Next, we perform the expansion of the tree by adding child nodes to the selected node. In the simulation
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step, a playout is performed from each of the added children.We roll out 10 structures randomly during a

playout from a child node. These roll outs are performed via twomoves, a small vacancy shift and a large vacancy

shift. In the small shift empty sites are swappedwith neighboring filled sites to translate the empty site along the

lattice. In the last shift an associate/dissociate paradigm is usedwhere either an empty site ismoved next to

another empty site to created neighbored vacancies or two neighbored vacancies are separated by taking one of

the two and randomly placing it throughout the lattice. The energy of the 10 structures are evaluated based on a

reactive force field [20]. In this study, no neural networkswere used for policy evaluation. Instead of aNN

model, the objectives were evaluated based on an atomisticmodel. The objective in this case ismin (f(rij)), where

f(rij) is the total energy of theminimized system configuration.

The optimization is carried out via theMCTS algorithms coupled to an atomistic simulator such as

LAMMPS (acronym for Large-scale Atomic/MolecularMassively Parallel Simulator), which evaluates the

energetics using the atomisticmodel [20]. In principle, aNNmodel could also be used for evaluation of the

configurational energies. Finally, in the back-propagation step, the visit count of each ancestor node of i is

incremented by one and the cumulative value is also updated to keep consistency. Note that the backpropagation

here refers to the update of information in the nodes on the path from the child to root node.

Evolutionary algorithm

Evolutionary algorithm seeks tomimic the process of ‘survival of the fittest’ to design or optimize a system’s

variables to identify chosen target properties [21, 22]. This involves establishing a reversiblemapping of every

possible candidate (in this case, a distinct arrangement of atomic defects in aMoS2 layer) to a genomic

representation, selecting a random initial population of candidates, and determining the fitness -ameasure of

the degree towhich a candidate’s propertymatch to the target property. Here we employ such an evolutionary

algorithm, viz., genetic algorithm (GA) to identify energeticallymost favorable arrangements of vacancies in one

of the S planes of aMoS2 layer. InGA, candidatematerials structures aremapped to a genome uponwhich the

evolutionary operations are employed. To describe the vacancy distribution in a given candidate structure, we

define a 2Dbinary genome. This genome is a string containing the current state for each site in the 2D triangular

lattice; each site can be in one of the two states, namely: (a) ‘0’ representing the absence of a S atom (vacancy), and

(b) ‘1’ indicating that site is occupied by a S atom. For a prescribed vacancy density, the evolutionary search

begins with a randompopulation of 32 candidates, eachwith an arbitrarily chosen but distinct genome, (i.e.,

S-vacancy distribution). Thefitness of each candidate is calculated as the potential energy of theMoS2
monolayer containing a distribution of S-vacancies as defined by its 2D genome. In each generation, genetic

operations, namely, selection,mutation, and crossover are performed on the current population to generate 32

new candidates. Themutationwas performed by swapping a vacancy site with a neighboring filled site. The

Figure 1. Inverse design scheme usingMonte Carlo Tree Search. It comprise of four steps—selection, expansion simulation and
backpropagation that are sequentially conducted as shown by the errors in a given iteration. In the simulation step, structural
minimization of a set of candidate structures are conducted parallelly. The termination criteria is chosen to attainment of lowest
energy configuration for>5000 evaluations.
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crossover operations were performed using a typical cut and paste approach. Additional details of these genetic

operations can be found in [8] and [11]. The candidates are then ranked by their fitness, and the best (fittest) 32

candidates are passed to the next generation. This procedure is iterated until theGA run converges, i.e., the

potential energy of the fittest candidate does not change over a long period of time (∼100 generations).We note

that several case studies are conductedwith varying number of population size, and 32 is found to be sufficiently

large to ensure necessary structural diversity in the population (in the initial stages), as well as convergence to low

energy configurations with reasonable computational costs. Our evolutionary searches using population sizes

(>32) have resulted in identical lowest energy configurations, as that from runswith 32 candidates in the

gene pool.

Reactive force-field for objective evaluation

The atomic interactions in the defectiveMoS2 structures aremodeled using the reactive forcefield (ReaxFF) [20].

All energy calculations are performed using LAMMPS [23] package. Periodic boundary conditions are employed

in the plane of theMoS2 sheet. LAMMPS is interfacedwith an optimizer such asMCTS orGA—the energy

evaluations using ReaxFFmodel of the defectiveMoS2 sheets are used to determine the objective function.We

note that in a single layerMoS2, a plane ofMo atoms is sandwiched between two planes of S atoms; in each S

plane, the atoms are organized in a 2D triangular lattice. As the interlayer vacancymigration is associatedwith a

very high energy barrier (>5 eV), we restrict our search space to the top layer of S atoms. All the calculations are

performed for a defect density of 0.03, which is experimentally realizable.We note that the defect density is

defined as the ratio of vacant S sites to the total S cites in the top layer of aMoS2 film.

Results and discussion

A schematic of theMCTSworkflowused for defect optimization is shown infigure 1.Our objective is to

minimize the configurational energy of the system for any given distribution of the defects i.e. S vacancies. For a

givenN i.e. number of S vacancies, we initiate the search by randomly distributing theN vacancies amongst the

lattice position for the top S layer inMoS2. This candidate serves as the root node of the search tree. A search tree

is built in an incremental and iterative way as shown infigure 1. The objective evaluation is carried out by

performing a structureminimization using LAMMPS.

To assess the performance of theMCTS search algorithm, we track the evolution of the best candidate i.e.

onewith the lowest energy is the search as a function of the number of search evaluation.Wenote from figure 2

that there is a slow initial drop in the configurational energy for evaluations<1000, when the search plateaus out

and remains constant at∼5.042 eV/atomuntil∼2000 evaluations. This is followed by a slow drop until∼5000

evaluation, when a sudden and significant drop to the optimal solution is observed. The optimal solution

corresponds to the S vacancies arranged in the formof an extended line defect. The objective does not change for

the subsequent 5000 evaluations and hence the search is terminated.

Figure 2.Evolution of the best candidate as a function of theMCTS energy evaluations. An exploration constant of 80 and 15 playouts
were used.Detailed effects of the hyperparameters are discussed in the (available online at stacks.iop.org/JPCO/5/031001/mmedia)
supplementary information.
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Wenext attempt to understand theMCTS configurational search process and the evolution of the objective

shown infigure 2. The initial slower decay in the configurational energy for evaluations<3000 is attributed to

the search being primarily in the exploratory stage. During the early stages, the tree expansion is preferred and

the search algorithm tends to explore the various defect configurations, which correspond towidely different

configurational space. The initial search has high degree of stochasticity and is random—as a result the energetic

drops are rather small. Beyond 3000 evaluations, the search is focussed on exploitation of the configurational

regions identified by the tree—during this phase, drop is significant and convergence to solution ismuchmore

rapid.We note that the exploratory and exploitation stagesmay differ amongst the differentMCTS runs

depending on the choice of the hyperparameters. The influence of a few representativeMCTS hyperparameters

on the search is discussed later in themanuscript.

The snapshots shown in figure 3 tracks the best candidate identified during the search process. Snapshots in

figures 3(a)–(e) show the configurations obtained during the exploration stage.We can note that configurations

sampled primarily havemono-vacancies with a few S di- and S tri-vacancy. During the exploitation stage as

shownby snapshots infigures 3(f)–(l), we observe that the configurations sampled have clusters of S vacancies—

MCTS exploresmore in regionswhere vacancy clustering is preferred signifying that the energetics favor the

variousmono-vacancies to cluster together. Finally, we see that themost preferred orientation for the S

vacancies is to align themselves as a single line defect. This is consistent with previous experimental observation

byM. Terrones and co-workers. TheirHRTEM studies showed that structural defects in 2DMoS2 evolve from

randomly distributed sulphurmonovacancies to distributed line defects to extended coupled line defects

induced structural disorders. SuchHRTEMobservations validate theMCTSprediction and indicate a large

variation in the size of low energy extended defects formed in 2DMoS2.

An important aspect of theMCTSworkflowused for defect design is the explicit use ofminimization step.

We note that that during the playouts, we observe a significant energy/structural deviation of the final

minimized configuration compared to the initial (Fig. 4). The number ofminimization steps required to

Figure 3. Snapshots showing best (low energy) candidates sampled during the course of theMCTS optimization run for 15 playouts
and exploration constant of 80. (a)–(k) represent the various low energy configurations sampled and (l) represents the lowest energy
configuration attained during anMCTS run.
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converge varies depending on the nature of the defect—we observe∼400 to∼15000minimization steps are

required for convergence (Fig. 4). The energy values of the finalminimized configurations are used for

evaluating the objective function. Thus, even thoughMCTSmoves tomanipulate the S vacancies are performed

on theMoS2 lattice, significant structural variationsmight result upon relaxation even for subtle defect

variations. To ensure appropriatemapping between theMCTS configurationalmoves and the corresponding

energies, the objective function should be based onminimized energies to ensure convergence.

We next compare the performance ofMCTSwith that of an evolutionary approach.We performGA runs

with an initial population startingwith randomly distributed S-vacancies, at the desired vacancy density i.e.

N=10. The configurational energy of themost stable structure obtained at each generation is tracked and the

evolution of theminimumenergy configuration is shown as a function of the number ofGA evaluations

(population*generation) infigure 5.We observe that theGA-identified lowest energy configuration (after 600

generations or 18000 evaluations) for =N 10, consist of a combination of lines (of varying sizes) and isolated

vacancies, which results in a somewhat higher energy∼−5.047 eV/atom.Ordering all the vacancies in a single

line corresponding to typical line defects seen in experiments, for =N 10 yields an energy value of−5.054 eV/

atom. Thus, theGA run for =N 10 does not reach the global energyminimumeven after 18000 evaluations.

Defect optimization is often non-trivial and optimization algorithms have difficulties in surmounting

suboptimal solutions and tend to slow downnear the optimal points as observed in the case of theGAbased

search. Themajor advantage theMCTS algorithmhas is that it is able to generate a large number of dissimilar

structures and balance the relative exploitation and exploration of each of the unique structures. Information

from every structure that has been sampled is retained during the optimization and used to determine the next

trial. It is able to obtain an approximate idea howmuch of the phase space is still left to explore and determine if

it is worth exploring or if it should instead choose to exploit what it already knows. GA ismore localized in scope

in that it tends to generate structures that look similar to the ones already in the pool whichwill generally create

Figure 4.Evolution of energy and defect configuration duringMCTS playouts (a)Typical energy evolution during an energy
minimization run for any givenMCTS playout. During theminimization, we note structural rearrangement around the vacancies
(b)–(d). Theminimization step is important for defect design since themagnitude of energy and configurational change from the
starting snapshot can be significantly large as shown in (a).
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solutions that are perhaps one or twominimawell over in the phase space. Amajor advantage of theMCTS, as

evidenced in the case of defect optimization, is that if the search gets trapped in ametastable or suboptimal point,

it is expected to quickly find another pathway by growing other branches of the tree utilizing the trade-off

mechanismbetween exploration and exploitation.MCTS is therefore able to reach the optimal solution i.e. the

line defect with energy value of∼−5.054 eV/atom in<5000 evaluations.

We evaluate the effect ofMCTS hyperparameters on the search efficiency. First, we evaluated the effect of

MCTS exploration constant. The search is initiatedwith randomly generated vacancies on the top Smonolayer

of theMoS2 sheet.Mainly 4 kind ofmoves are used for generating a new structure (i.e. a child node) from

previously obtained structures. These are swap, associate, dissociate and shift. TheMCTS searches through the

action space and selects the best possible child based on the upper confidence bounds (UCB formula shown in

equation 1). UCBworks on balancing between amore explorative randomly sampled search (depends on the

exploration)with the quality of the node objective (more exploitation). In theMoS2 system, the energy of the

qualitatively good and the bad structures are very close in terms ofmagnitude and only differ by fewmeV/atom,

even though the total cohesive energy of the system is on the order of 5 eV/atom. In addition to this subtle

energetic difference between the various sampled configurations, it is possible to generate structures that are

identical in shape, butmay be slightly shifted or rotated fromanother or can havemultiple energetically similar

structure with different arrangement of vacancies. For the search toworkwell, it should initially explore the

search space enough and have enough samples tomake an optimal selection that can further be exploited. The

balance between exploration and exploitation is critical to ensure faster converge to the optimal structure—an

increase in tree width improves explorationwhereas the tree depth increases the exploitation tendencies of the

MCTS.

= ¼ +UCB node Min S S S S C f r
N

n
, ,

log
n explore i i

i

i
1 2 3 i

( ) ( ) · ( ) ·


If the exploration constant is too small, the tree will greedily pick the current best rewards until it hits a local

minima.On the other hand, selecting a constant too largewillmake it thatmakes the search to be effectively

randomand reduces the convergence probability significantly to all but nothing. So, a proper selection of

exploration constants canmake the search converge efficiently in a relatively fewnumber of expensive objective

function evaluations. For the sake of illustration, we start with two different explorations constant, eachwith a

fixed number of playouts∼5. For an exploration constant of 200, it took 300 evaluations before theMCTS

found energies that are comparatively higher than the onewith an exploration constant of 50. Themain reason

behind this is the search is still exploring even afterfinding potential structures that can be exploited tofind a low

energy structure. In contrast, the exploration constant of 50 has swiftlymoved towards a localminima. After 300

evaluations, the searchwith an exploration constant of 200 slowlymoves towards the exploitation stage (2nd

Figure 5.Comparison of theMCTS algorithmwith an evolutionary optimization (genetic algorithm—GA) procedure.MCTS attains
a lower energy configuration compared to theGAwith fewer overall energy evaluations.

7

J. Phys. Commun. 5 (2021) 031001



term in theUCB equation starts to decrease). This ismanifested infigure 6(a)—the configurational energy tends

to fall quickly as the exploited structures aremore likely to produce a good vacancy alignment upon

perturbation.

Next, we study the effect of playouts on theMCTS search.Here, we set the exploration constant to afixed

value of 50 and tried different number of playouts to observe its effect on the convergence rate. Since the playouts

are a randommeasure of the local configuration space around a given node, a larger number of random samples

in theory improve theMCTS algorithm’s understanding of what potential solutionsmay exist nearby a search

node. Insufficient playouts can lead to an inefficient branch selection because very little information is being

discovered per test. But there is a declining rate of return by doingmore playouts than is absolutely necessary as

this ultimately increases the search time significantly. In such a situation,much of the search is spent on

computing redundant or degenerate information. For defect design, a balanced playout is extremely crucial

since each structure takes an average of∼5000 energy steps forminimization, which slows down the search

significantly.We tried two representative playouts for the search as shown infigure 6(b). From the initial

progression of the search, it appears that 10 playouts ismore efficient than the 5 one and reduces the time to

solution. In thisMoS2 systemmost of the time the energy barrier between a parent and potentially very good

child that can be obtained from the parent upon perturbation is considerably high in the context of energy

ranges considered. Sometimes it becomes very crucial forMCTS to perform aminimumnumber of playouts at a

node to get a qualitative understanding of the node. But in the context of the given fact thatmore playout leads to

computational inefficiency themaximumplayoutwas kept to 10which seems to perform a better job in

comparison to the searchwith 5 playouts. For the playout 10 case figure 5(b) the search performs adequate

number of playouts at selected node and gets a better qualitative idea of the node based onUCB equation. The

chances of a selection of a potentially good parent becomes higher. Thus, the search tends to quicklymoves

towards a zonewhere it samples higher number of good offspring andmoves quickly towards convergence as

compared to the searchwith playout 5.

Finally, we note that the problemoutline above is particularly challenging owing to the subtle differences in

the defect energetics. The energetic differences are small because it is easy to generate one of the localminima of

the system through naïve random sampling.When the defects are not lined up, the next lowest energy state we

have found is to have the defects near each other, butwith onefilled chalcogen site in between. These are also

seen in the snapshots infigure 3. These spotted defects are the easiestminima to access as they can be created

evenwith only a few of the defects (S vacancy) being close to each other.

Benefits ofMCTSoptimization and relatedwork

Many of the optimization approaches, we looked at such asGA, Bayesian etc., would quickly form these spotted

defects and fail to try the line defect of S vacancies. Higher energy configurations do exist even in the case of

randomly distributed vacancies. For example, one can simply spread out all the defects away from each other,

but there’s a high statistical chance that onewill get these spotted defects even through naïve or random

sampling. As such, our initial design for both theGA andMCTS quickly created one of these configurations. The

hard task for sampling, however, is escaping these sub-optimalminima. Amajor problemwith any random

based approaches is that they are significantlymore likely to generate these localminima than the line defect.

Amajor advantage theMCTS algorithmhas is that it is able to generate a large number of dissimilar

structures and balance the relative exploitation and exploration of each of the unique structures [16, 24, 25].

Information from every structure that has been sampled is retained during the optimization and used to

determine the next trial. It is able to obtain an approximate idea howmuch of the phase space is still left to

Figure 6.Effect of some ofMCTShyperparameters on the convergence to solution. (a) shows the effect of exploration constant for a
constant playout of 5 (b) effect of playouts for a constant exploration constant of 50.
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explore and determine if it is worth exploring or if it should instead choose to exploit what it already knows. In

this respect, our strategy outlined seems to clearly performbetter compared to local and other global

evolutionary searchess

Conclusion

Defect design and optimization in 2Dmaterials is important for awide range of applications from catalysis to

nanoscale electronics. For example, the nature of atomic scale rearrangement of chalcogen vacancies in 2D

TMDCs influences the 2H←→1T phase transitions, which in turn has a profound effect on its electronic

properties.We perform reinforcement learning in a discrete action space by usingMonte Carlo Tree Search

interfacedwith a reactivemolecular dynamics simulator tofind optimal arrangement of S vacancies inMoS2.

Based on ourMCTS search of the exorbitant defect search space, wefind that the S vacancies tend to form an

extended line defect of vacancies—thesefindings are corroborated by previous experimental studies. Bymaking

suitable comparisonwith an evolutionary approach, we demonstrate the power of RL search—MCTS attains a

significantly lower objective in far fewer evaluations compared toGA.We also perform a detailed evaluation on

the effect of differentMCTShyperparameters on the defect inverse design.We believe our RL approach is quite

general and can be broadly applied to severalmaterials problems that involve search in discrete action space.
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