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Abstract
For solving linear ill-posed problems regularization methods are required
when the available data include some noise. In the present paper regularized
approximations are obtained by a general regularization scheme in Hilbert
scales which include well-known regularization methods such as the method
of Tikhonov regularization and its higher-order forms, spectral methods,
asymptotical regularization and iterative regularization methods. For both
the cases of high- and low-order regularization, we study a priori and
a posteriori rules for choosing the regularization parameter and provide
order optimal error bounds that characterize the accuracy of the regularized
approximations. These error bounds have been obtained under general
smoothing conditions. The results extend earlier results and cover the case
of finitely and infinitely smoothing operators. The theory is illustrated by a
special ill-posed deconvolution problem arising in geoscience.

1. Introduction

Ill-posed problems arise in several contexts and have important applications in science and
engineering (see, e.g., [3, 4, 8, 22]). In this paper we consider ill-posed problems

Ax = y (1.1)

where A : X → Y is a bounded linear operator between infinite dimensional real Hilbert spaces
X and Y with non-closed range R(A). We shall denote the inner product and the corresponding
norm on the Hilbert spaces by 〈·, ·〉 and ‖·‖ respectively. We assume throughout the paper
that the operator A is injective and that y belongs to R(A) so that (1.1) has a unique solution
x† ∈ X. Suppose that the available data are yδ ∈ Y in place of the exact data y such that

‖y − yδ‖ � δ (1.2)
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for some known noise level δ. Since R(A) is assumed to be non-closed, the solution x† does
not depend continuously on the data. Hence, the numerical treatment of problems (1.1) and
(1.2) requires the application of special regularization methods. In the method of Tikhonov
regularization in Hilbert scales a regularized approximation xδ

α is defined as the solution of the
minimization problem

min
x∈D(Bs)

Jα(x), Jα(x) = ‖Ax − yδ‖2 + α‖Bsx‖2 (1.3)

where α > 0 is the regularization parameter, B : D(B) ⊆ X → X is an unbounded densely
defined self-adjoint strictly positive definite operator and s is some nonnegative real number
to be chosen properly.

In many practical problems the operator B which influences the properties of the
regularized approximation is chosen to be a differential operator in some appropriate function
spaces, e.g., L2-spaces. In [16] Natterer has shown that under the assumptions

‖Bpx†‖ � E and m‖B−ax‖ � ‖Ax‖ � M‖B−ax‖ (1.4)

with some constants E,m and M, the Tikhonov regularized approximation xδ
α of problem (1.3)

provides order optimal error bounds∥∥xδ
α − x†∥∥ = O(δp/(a+p)) for s � (p − a)/2 (1.5)

in the case that α is chosen a priori by α = cδ2(a+s)/(a+p) with some constant c > 0.
In the meantime regularization in Hilbert scales became quite popular; see, e.g., [13, 17]

where method (1.3) has been studied with α chosen from Morozov’s discrepancy principle,
[14, 20] where method (1.3) has been generalized to a general regularization scheme, [9, 14]
where extensions to the case of infinitely smoothing operators A have been treated or [3, 7,
18, 21] in which extensions to the nonlinear case may be found. The main aim of this paper is
to derive results on order optimal convergence rates in cases of proper a priori and a posteriori
parameter choice strategies. Our analysis has been done

(i) for regularization methods that are more general than (1.3) and
(ii) in the case of smoothing conditions that are more general than (1.4).

The paper is organized as follows. In section 2 we introduce the smoothing conditions;
see assumptions A1 and A2 that characterize the smoothness of the unknown solution x† of
problem (1.1) and the smoothing properties of the operator A relative to the operator B−1

which can be quite independent of A. Under these conditions and (1.2), some estimate is
provided that characterizes the best possible worst case error for identifying x† from noisy
data yδ . In section 3 we introduce a general regularization scheme in Hilbert scales and
consider the case of known solution smoothness. We prove that by standard regularization
methods with proper stabilization in dependence of the known solution smoothness, order
optimal error bounds can be guaranteed provided the regularization parameter has been chosen
properly, either a priori or a posteriori using Morozov’s discrepancy principle. In sections 4
and 5 we study the case of unknown solution smoothness. In this case we divide our study
into two subcases. In the first subcase we consider high-order regularization in which
much smoothness is introduced into the regularization procedure, and the second subcase
is concerned with low-order regularization in which little smoothness is introduced. In both
subcases order optimal error bounds can be guaranteed provided the regularization parameter
has been chosen properly. From the viewpoint of complexity, the subcase of low-order
regularization seems to be especially important. In section 6 we discuss a possible application
of our results to the deconvolution problem arising in geoscience in the context of models with
a non-Wiener filter design. Final remarks are presented in section 7.
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2. Optimality and order optimality

Since problem (1.1) is ill-posed, for the stable reconstruction of the solution x† of problem
(1.1) with inexact data yδ satisfying (1.2) additional information is required. In this regard,
we assume in this paper that we have the following pieces of information:

(i) information concerning the smoothness of x† and
(ii) information concerning the smoothing property of the operator A.

We formulate our additional information in terms of some densely defined unbounded self-
adjoint strictly positive operator B with its domain and range in X. We introduce a Hilbert
scale (Xr)r∈R induced by the operator B which is the completion of D := ∩∞

k=0D(Bk) with
respect to the inner product 〈u, v〉r := 〈Bru, Brv〉, r ∈ R, u, v ∈ D. We may observe that,
for x ∈ D, the associated Hilbert space norm is given by

‖x‖r = ‖Brx‖, r ∈ R.

According to [10], we call a function φ : R+ → R+ an index function if it is continuous and
strictly increasing with φ(0+) = 0.

Assumption A1. For some p > 0 and E < ∞, the solution x† of problem (1.1) is an element
of the set

Mp,E = {x ∈ X | ‖x‖p � E}. (2.1)

Assumption A2. There exists some index function φ with properties

(i) there exists a constant m > 0 with

m‖[φ(B−2)]1/2x‖ � ‖Ax‖ for all x ∈ X, (2.2)

(ii) the function ψp : (0, c] → R+ defined by ψp(λ) := λφ(λ1/p) with c = ‖B−2p‖ and p as
in assumption A1 is convex.

Assumption A1 characterizes the smoothness of the unknown solution x† in the scale
(Xr)r∈R. The operator B which defines the Hilbert scale is generally some differential
operator such that B−1 is finitely smoothing. Hence, by using assumption A1 we can study
different smoothness situations for the unknown solution x† where in practice the parameter
p characterizing the smoothness of x† is generally unknown. Assumption A2 characterizes
the relation between the smoothing properties of the operators A and B−1 in a general way
allowing the study of finitely and infinitely smoothing operators A. In addition, the setting of
this paper also allows us to consider the case that both A and B−1 are infinitely smoothing
operators.

Note that inequality (2.2) implies the range inclusion R(G) ⊂ R(|A|) with G =
[φ(B−2)]1/2 and |A| = (A∗A)1/2. By using such range inclusions, convergence rate results
for method (1.3) with s = 0 have been obtained in [5]. Conversely, a range inclusion
R(G) ⊂ R(|A|) implies inequality (2.2) for some constant m > 0. Details and consequences
of this fact may be found in paper [2].

Now we discuss the concepts of optimality and order optimality of an approximation
method for problems (1.1) and (1.2). Any operator R : Y → X can be considered as a special
method for solving problems (1.1) and (1.2). Thus, corresponding to inexact data yδ satisfying
(1.2), Ryδ can be considered as an approximate solution to (1.1). Given a method R and the
error level δ > 0, the quantity

�(δ,R) = sup{‖Ryδ − x†‖ | x† ∈ Mp,E, yδ ∈ Y, ‖y − yδ‖ � δ}
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is the worst case error for identifying the solution x† of problem (1.1) from yδ ∈ Y under the
assumptions (1.2) and x† ∈ Mp,E . This worst case error characterizes the maximal error of
the method R if the solution x† of problem (1.1) varies in the set Mp,E . An optimal method
Ropt is characterized by �(δ,Ropt) = infR �(δ, R). It is well known (see, e.g, [23, p 8])
that infR �(δ, R) � ω(δ,Mp,E) where the modulus of continuity ω(δ,Mp,E) of the inverse
operator A−1 on the set Mp,E is given by

ω(δ,Mp,E) = sup{‖x‖ | x ∈ Mp,E, ‖Ax‖ � δ}. (2.3)

Moreover, we have infR �(δ, R) � 2ω(δ,Mp,E) as well (see, e.g., [11]). In view
of these relations, one may look for a regularization method Rδ

α , or for a regularized
approximation xδ

α = Rδ
αyδ together with a parameter choice strategy α := α(δ, yδ) such

that
∥∥xδ

α − x†∥∥ � ω(δ,Mp,E), or at least∥∥xδ
α − x†∥∥ � cω(δ,Mp,E) (2.4)

for some positive constant c � 1. For the case of s = p, order optimal estimates of the form
(2.4) are available in the literature—see [9] and [13] for the Tikhonov regularization with an a
priori and a posteriori choice of α, respectively, and [14] for a general regularization method.
However, it is always desirable to obtain some order optimal estimate for

∥∥xδ
α − x†∥∥ in terms

of δ so that the decay of the error can be inferred from the nature of the dependence of the
estimate on δ. Thus, one would like to have some sharp estimate for the quantity ω(δ,Mp,E).
Our next job is to do that under the additional assumption A2.

In our first proposition we provide some bound for elements x satisfying ‖x‖p � 1 and
assumption A2. The proof of this proposition is along the line of Mair’s paper [9]. For the
sake completeness of exposition we include the proof.

Proposition 2.1. Let ‖x‖p � 1 and let assumption A2 be satisfied. Then

‖x‖ �
√

ψ−1
p

(‖Ax‖2

m2

)
. (2.5)

Proof. Let ‖x‖p � 1 and let Eλ be the spectral family of B2p. Since ψp is convex, we may
employ Jensen’s inequality and obtain due to assumption A2 the estimate

ψp

(
‖x‖2

‖x‖2
p

)
�
∫

ψp

(
1
λ

)
λ d‖Eλx‖2

‖x‖2
p

= ‖[φ(B−2)]1/2x‖2

‖x‖2
p

� ‖Ax‖2

m2‖x‖2
p

.

From ‖x‖p � 1 we have ‖x‖ � ‖x‖/‖x‖p. Consequently, since φ is monotone,

φ(‖x‖2/p) � φ

(
‖x‖2/p

‖x‖2/p
p

)
= ‖x‖2

p

‖x‖2
· ψp

(
‖x‖2

‖x‖2
p

)
� ‖Ax‖2

m2‖x‖2
.

We multiply this inequality by ‖x‖2 and obtain ψp(‖x‖2) � ‖Ax‖2/m2. From this estimate
we obtain (2.5). �

For estimating the modulus of continuity ω(δ,Mp,E) of the inverse operator A−1 on the
set Mp,E , we make use of assumption A2 and proposition 2.1.

Theorem 2.2. Let Mp,E be given by (2.1) and let assumption A2 be satisfied. Then,

ω(δ,Mp,E) � E

√
ψ−1

p

(
δ2

m2E2

)
. (2.6)
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If there holds equality in (2.2) and if δ0 := δ/(mE) is an element of the spectrum σ(G) of the
operator G := [φ(B−2)]1/2B−p, then there holds equality in (2.6).

Proof. The estimate (2.6) follows from proposition 2.1 by taking x/E in place of x. Let us
prove the second part of the theorem. If there holds equality in (2.2), then (2.3) attains the
form

ω(δ,Mp,E) = sup{‖x‖ | ‖[φ(B−2)]1/2x‖ � δ/m ∧ ‖Bpx‖ � E}
= sup{‖B−pv‖ | ‖Gv‖ � δ/m ∧ ‖v‖ � E}. (2.7)

Assume that δ0 := δ/(mE) is an eigenvalue of the operator G = [φ(B−2)]1/2B−p and v0 the
corresponding eigenelement with ‖v0‖ = E; then we have

Gv0 = δ0v0. (2.8)

Consequently, ‖Gv0‖ = δ/m and ‖v0‖ = E. Hence, in view of (2.7) we conclude that

ω(δ,Mp,E) � ‖B−pv0‖. (2.9)

Exploiting the definition of ψp, from (2.8) we have ψp(B−2p)v0 = δ2
0v0, or equivalently,

B−pv0 =
√

ψ−1
p

(
δ2

0

)
v0. Hence, (2.9) provides ω(δ,Mp,E) � E

√
ψ−1

p

(
δ2

0

)
, and due to (2.6)

we have ω(δ,Mp,E) = E
√

ψ−1
p

(
δ2

0

)
. If δ0 ∈ σ(G) is not an eigenvalue, then δ0 belongs

to the continuous spectrum of G and the proof of the equality in (2.6) follows with small
modifications. �

Let us discuss two special cases. For simplicity, in these two special cases inequality
(2.2) of assumption A2 is satisfied as equality. Some more general examples in which the
the smoothing properties of the operator A relative to the operator B−1 are characterized not
by equality, but more generally, by some inequalities (2.2) and (4.1), will be discussed in
section 6.

Example 2.3 (finitely smoothing case). Let us assume that the operators A∗A and B are
related by

A∗A = B−2a (2.10)

where a is some positive constant. Such situations occur, e.g., for numerical differentiation
problems of certain order. In this special case, assumption A2 (i) holds true as equality with
m = 1 and φ(λ) = λa . We easily see that the function φ is an index function and that ψp

attains the form ψp(λ) = λ(a+p)/p and satisfies A2 (ii). Computing the right-hand side of (2.6)
we find that for example (2.10) the modulus of continuity ω(δ,Mp,E) of the inverse operator
A−1 on the set Mp,E is given by

ω(δ,Mp,E) = O
(
δ

p

p+a

)
.

Example 2.4 (infinitely smoothing case). Let us assume that the operators A∗A and B are
related by

A∗A = e−Ba

(2.11)

where a is some positive constant. Such situations occur, e.g., in inverse heat conduction
problems. Here, assumption A2 (i) holds true with m = 1, φ(λ) = e−λ−a/2

and equality in
(2.2). The function ψp takes the form ψp(λ) = λ e−λ−a/(2p)

, which is convex on the interval
(0, ‖B−2p‖] provided ‖B‖ � 1. Hence, if ‖B‖ � 1, then

ω(δ,Mp,E) = O([− ln δ]−p/a).

Theorem 2.2 motivates the following definition (see, e.g., [23, p 8]).
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Definition 2.5. Let assumptions A1, A2 be satisfied. Then, a method Rδ , or the corresponding
approximate solution xδ = Rδyδ , is called

(i) optimal on the set Mp,E if ‖xδ − x†‖ � E

√
ψ−1

p

(
δ2

m2E2

)
,

(ii) order optimal on the set Mp,E if ‖xδ − x†‖ � cE

√
ψ−1

p

(
δ2

m2E2

)
with c � 1.

3. Regularization

3.1. A general regularization scheme

Let us consider a general regularization scheme in Hilbert scales in which the regularized
approximations with exact and noisy data y and yδ , respectively, are defined by

xα = B−sgα(T ∗T )T ∗y, xδ
α = B−sgα(T ∗T )T ∗yδ with T = AB−s . (3.1)

Here, s � 0 is some nonnegative number that controls the smoothness to be introduced into
the regularization process and gα : (0, ‖T ‖2] → R is a piecewise continuous function with
the property that limα→0+ gα(λ) = 1/λ. Different regularization methods are characterized
by different functions gα in (3.1). For the study of the general regularization method (3.1),
besides assumptions A1 and A2 of section 2, the following additional assumption is required
which is analogous to a corresponding assumption in [23].

Assumption A3. There exist positive constants γ1 and β1 such that

(i) supλ>0 λ1/2|gα(λ)| � γ1/
√

α, supλ>0 λ|gα(λ)| � 1,
(ii) supλ>0 λ1/2|1 − λgα(λ)| � β1

√
α, supλ>0 |1 − λgα(λ)| � 1.

Let us discuss some special regularization methods that fit into the framework of the
general regularization scheme (3.1) and which satisfy assumption A3.

Example 3.1 (ordinary Tikhonov regularization in Hilbert scales). This method is
characterized by (3.1) with gα(λ) = 1/(λ + α). The regularized approximation xδ

α can be
obtained by solving the minimization problem

min
x∈D(Bs)

Jα(x), Jα(x) = ‖Ax − yδ‖2 + α‖Bsx‖2,

or as the solution of the associated operator equation (A∗A + αB2s)xδ
α = A∗yδ . In this

example, assumption A3 is satisfied with constants γ1 = 1/2 and β1 = 1/2.

Example 3.2 (Tikhonov regularization of order m in Hilbert scales). These methods are
characterized by (3.1) with gα(λ) = (1 − ( α

λ+α

)m)/
λ. The regularized approximations

xδ
α := xδ

α,m can be obtained by solving the m linear operator equations

(A∗A + αB2s)xδ
α,k = A∗yδ + αB2sxδ

α,k−1, k = 1, . . . , m, xδ
0 = 0.

For m = 1, this method coincides with the method of example 3.1. For m � 2, assumption
A3 is satisfied with constants γ1 = √

m and β1 = 1 (see [23]).

Example 3.3 (spectral method in Hilbert scales). Consider method (3.1) with

gα(λ) =
{

1/λ for λ � α

1/α for λ � α.
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For problems with the compact operators A and B−1, the numerical computation of xδ
α can

effectively be done by

xδ
α =

∑
si�

√
α

〈yδ, vi〉
si

ui +
1

α

B−2sA∗yδ −
∑

si�
√

α

si〈yδ, vi〉ui

 ,

which requires the computation of only finite sums. Here {si, ui, vi}i∈N denotes the generalized
singular system of A satisfying A∗Aui = λiB

2sui, si = √
λi and vi = 1

si
Aui . In fact,

{si, ui, vi}i∈N is a singular system for the compact operator T = AB−s . For this method,
assumption A3 holds true with γ1 = 1 and β1 = 2/

√
27 (see [23]).

Example 3.4 (asymptotical regularization in Hilbert scales). This method is characterized
by (3.1) with gα(λ) = (1 − e−λ/α)/λ. In this method one solves the Cauchy problem

B2s u̇(t) + A∗Au(t) = A∗yδ, 0 < t � τ, u(0) = 0

and the regularized approximation is defined by xδ
α = u(τ). Here τ and α are related by

τ = 1/α. For this regularization method assumption A3 is satisfied with constants γ1 = 1 and
β1 = 1/

√
2e (see [23]).

Example 3.5 (iterative regularization in Hilbert scales). As a special case of more general
iterative regularization methods, let us consider the Landweber iteration. This method is
characterized by (3.1) with gα(λ) = (1 − (1 − λ)1/α)/λ. The regularized approximation
xδ

α := uδ
n can be obtained by performing n iterations according to

uδ
k = uδ

k−1 − B−2sA∗(Auδ
k−1 − yδ

)
, k = 1, . . . , n,

with u0 = 0. Here, n and α are related by α = 1/n. For this regularization method
assumption A3 is satisfied with constants γ1 = 1 and β1 = 1/

√
2e (see [23]).

3.2. A priori parameter choice

In this subsection we will prove that under assumption A2 the regularized approximation xδ
α

from (3.1) with s = p is order optimal on the set Mp,E provided α is chosen a priori. From
this result we deduce, as a special case, Mair’s convergence rate result for the method of
Tikhonov regularization (see [9]).

Theorem 3.6. Let xδ
α be the regularized approximation (3.1) with s chosen by s = p and let

assumptions A1 and A3 be satisfied. Then, for α = δ2/E2,∥∥xδ
α − x†∥∥ � (γ1 + 1)ω(cδ,Mp,E) with c = β1 + 1

γ1 + 1
. (3.2)

If, in addition, assumption A2 is satisfied, then∥∥xδ
α − x†∥∥ � (γ1 + 1)E

√
ψ−1

p

(
c2δ2

m2E2

)
. (3.3)

Proof. Due to (3.1) there hold the representations

A
(
xδ

α − xα

) = T gα(T ∗T )T ∗(yδ − y)

A(x† − xα) = T [I − gα(T ∗T )T ∗T ]Bsx†

Bs
(
xδ

α − xα

) = gα(T ∗T )T ∗(yδ − y)

Bs(x† − xα) = [I − gα(T ∗T )T ∗T ]Bsx†

(3.4)
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with T = AB−s . From (3.4) with s = p, assumptions A1 and A3, the triangle inequality and
the parameter choice α = δ2/E2, we obtain the two estimates∥∥Axδ

α − Ax†∥∥ � δ + β1
√

αE = (β1 + 1)δ,
∥∥xδ

α − x†∥∥
p

� γ1δ/
√

α + E = (γ1 + 1)E.

Hence, (3.2) follows. Now (3.3) is a consequence of theorem 2.2. �

Remark 3.7. Note that by taking k = max{β1, γ1}, the last two estimates in the proof of the
above theorem imply

∥∥Axδ
α − Ax†∥∥ � (k + 1)δ and

∥∥xδ
α − x†∥∥

p
� (k + 1)E. Hence, instead

of (3.2) and (3.3) we have the two estimates∥∥xδ
α − x†∥∥ � (k + 1)ω(δ,Mp,E),

∥∥xδ
α − x†∥∥ � (k + 1)E

√
ψ−1

p

(
δ2

m2E2

)
, (3.5)

respectively. In fact, the second error bound of (3.5) shows the order optimality of the
regularized approximation xδ

α in the sense of definition 2.5. The second error bound of (3.5)
can also be derived from (3.3) by making use of the relation

ψ−1
p (cλ) � c1ψ

−1
p (λ) with c1 = max{1, c} (3.6)

that can be realized as follows. Due to the monotonicity of φ we have for arbitrary
p > 0 the estimate ctφ(t1/p) � c1tφ((c1t)

1/p), or equivalently, cψp(t) � ψp(c1t), since
ψp(λ) = λφ(λ1/p). Since φ is an index function it follows that ψp and hence ψ−1

p is strictly
monotonically increasing. Consequently, ψ−1

p (cψp(t)) � c1t . Now, choosing t = ψ−1
p (λ)

we obtain (3.6).

3.3. Discrepancy principle

In this subsection we study the case of choosing the regularization parameter α a posteriori
by Morozov’s discrepancy principle.

Morozov’s discrepancy principle. For a given constant C � 1, choose α as the solution of
the nonlinear scalar equation

d(α) := ∥∥Axδ
α − yδ

∥∥ = Cδ. (3.7)

For guaranteeing that equation (3.7) possesses a unique solution one has to assume that
the function gα : (0, a] → (0,∞) with a � ‖T ‖2 and α > 0 satisfies the following:

(i) sup0�λ�a |1 − λgα(λ)| � 1 and sup0�λ�a |gα(λ)| � γ /α for a constant γ > 0,
(ii) 1 − λgα(λ) → 0 for α → 0 and all λ ∈ [0, a],

(iii)
∣∣1 − λgα1(λ)

∣∣ � ∣∣1 − λgα2(λ)
∣∣ for α1 � α2,

(iv) gαn
(λ) → gα(λ) for αn → α > 0 and all λ ∈ [0, a].

Since A is injective, from [23, p 64, lemma 3.1] we have that under the above conditions (i)
and (ii) there hold the limit relations

lim
α→0

d(α) = 0 and lim
α→∞ d(α) = ‖yδ‖.

In addition, we have from [23, p 64, lemma 3.1] that under the conditions (iii) and (iv) the
function d is monotonically increasing and continuous. Hence, under the above conditions
(i)–(iv) the nonlinear scalar equation (3.7) possesses a unique solution provided Cδ < ‖yδ‖.
We note that the above conditions (i)–(iv) are satisfied for the regularization methods discussed
in examples 3.1–3.5. Hence, in working with the discrepancy principle (3.7) we will always
assume that the above conditions (i)–(iv) are satisfied without mentioning it explicitly.

For deriving order optimal error bounds for
∥∥xδ

α − x†∥∥ with α chosen according to the
discrepancy principle (3.7), we exploit the following assumption from [23, p 75]:
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Assumption A4. The function gα : (0, a] → (0,∞) with a = ‖T ‖2 and α > 0 satisfies

αgα(λ) � 1 and 0 � 1 − λgα(λ) � αgα(λ).

Note that for the methods discussed in examples 3.1–3.5 assumption A4 is satisfied. For
providing order optimal error bounds for

∥∥xδ
α − x†∥∥ the following proposition is useful which

holds true under assumption A4 and can be proved along the line of the proof of [23, p 77,
lemma 4.1], where the special case s = 0 has been treated.

Proposition 3.8. Let xδ
α be the regularized approximation (3.1) with s � 0 and let assumption

A4 be satisfied. Then,∥∥Axδ
α − yδ

∥∥2
+ α
∥∥xδ

α − x†∥∥2
s

� ‖y − yδ‖2 + α
∥∥[I − T ∗T gα(T ∗T )]

1
2 Bsx†∥∥2

. (3.8)

Proposition 3.8 is the basic ingredient for deriving order optimal error bounds for
∥∥xδ

α−x†∥∥
in case α is chosen by the discrepancy principle, not only in the special case s = p, but also
for the practically more important low-order case s < p in section 5.

Theorem 3.9. Let xδ
α be the regularized approximation from (3.1) with s chosen by s = p, let

assumptions A1 and A4 be satisfied and let α be chosen according to the discrepancy principle
(3.7). Then ∥∥xδ

α − x†∥∥ � ω(cδ,Mp,E) with c = C + 1. (3.9)

If in addition assumption A2 is satisfied, then

∥∥xδ
α − x†∥∥ � E

√
ψ−1

p

(
c2δ2

m2E2

)
. (3.10)

Proof. For α chosen by the discrepancy principle (3.7) the estimate (3.8) with s = p attains
the form C2δ2 + α

∥∥xδ
α − x†∥∥2

p
� δ2 + α

∥∥R1/2
α Bpx†∥∥2

with Rα = I − T ∗T gα(T ∗T ). Since

C � 1 we have
∥∥xδ

α − x†∥∥
p

�
∥∥R1/2

α Bpx†∥∥ �
∥∥R1/2

α

∥∥ · ‖Bpx†‖. Due to assumption A4 we

have
∥∥R1/2

α

∥∥ � 1. We exploit in addition assumption A1 and obtain
∥∥xδ

α − x†∥∥
p

� E. In
addition, the discrepancy principle (3.7) and the triangle inequality provide∥∥Axδ

α − Ax†∥∥ �
∥∥Axδ

α − yδ
∥∥ + ‖y − yδ‖ � (C + 1)δ.

From this estimate and
∥∥xδ

α − x†∥∥
p

� E we obtain (3.9). Now (3.10) is a consequence of
theorem 2.2. �

4. High-order regularization

In this section, we study the case of high-order regularization in which the parameter s in
methods (3.1) is larger than the number p in assumption A1 characterizing the smoothness of
the unknown solution x†. We will prove that in the case s � p the same order optimal error
bounds

∥∥xδ
α − x†∥∥ = O

(√
ψ−1

p (δ2)
)

can be guaranteed as in the case s = p. This means, in
particular, that there is no loss of accuracy if s is chosen larger than p.
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4.1. A priori parameter choice

In our first subsection we study the case of a priori parameter choice. As in the foregoing
section 3 we exploit assumption A1 and replace assumption A2 by a stronger assumption in
which assumption A2 (i) is replaced by a two-sided estimate and assumption A2 (ii) holds
true with p replaced by s.

Assumption A5. There exists some index function φ with properties

(i) there exist positive constants m and M with

m
∥∥[φ(B−2)]1/2x

∥∥ � ‖Ax‖ � M
∥∥[φ(B−2)]1/2x

∥∥ for all x ∈ X, (4.1)

(ii) for s > 0, the function ψs : (0, c] → R+ defined by ψs(λ) := λφ(λ1/s) with c = ‖B−2s‖
and s as in (3.1) is convex.

The way of deriving order optimal error bounds is borrowed from [9] where the special
case of example 3.1 has been treated and consists in constructing some sufficiently smooth
approximation x0 ∈ Xs for x† ∈ Xp such that both the error parts

∥∥xδ
α − x0

∥∥ and ‖x0 − x†‖
are of the same order O

(√
ψ−1

p (δ2)
)
. We construct x0 according to

x0 =
∫ τ

b

dEλx
† (4.2)

where Eλ is the spectral measure of B, b = 1/‖B−1‖ and τ < ∞ has to be chosen properly.
From [9] we have the following.

Proposition 4.1. Let ‖x†‖p � E and let x0 ∈ Xs be given by (4.2). Then, for s � p,

‖x† − x0‖ � τ−pE and ‖x0‖s � τ s−pE. (4.3)

Let, in addition, assumption A5 be satisfied. Then

‖Ax† − Ax0‖ � ME

√
ψp(τ−2p). (4.4)

In our further studies, we shall make use of the the following result.

Proposition 4.2. Let ψs be defined as in assumption A5. Then, for arbitrary positive
constants s, p, c,

ψ−1
s

(
cδ2
[
ψ−1

p (δ2)
](s−p)/p) � c1

[
ψ−1

p (δ2)
]s/p

(4.5)

with c1 = max{1, c}. If c = 1, then there holds equality in (4.5).

From ψp(λ) = λφ(λ1/p) and ψs(λ
s/p) = λs/pφ(λ1/p) we obtain the identity

ψp(λ) · λ(s−p)/p = ψs(λ
s/p). We substitute λ = ψ−1

p (δ2), multiply by c, apply on both sides
ψ−1

s and obtain

ψ−1
s

(
cδ2
[
ψ−1

p (δ2)
](s−p)/p) = ψ−1

s

(
cψs

([
ψ−1

p (δ2)
]s/p))

.

Hence, for c = 1 we have equality in (4.5). Now, in view of the relation (3.6), we have
ψ−1

s (cλ) � c1ψ
−1
s (λ) with λ = ψs

([
ψ−1

p (δ2)
]s/p)

, so that we obtain (4.5).
Now we are ready to provide order optimal error bounds for regularized approximations

(3.1) under certain a priori choice of the regularization parameter.

Theorem 4.3. Let xδ
α be the regularized approximation as in (3.1) and let assumptions A1,

A3 and A5 be satisfied. If α is chosen a priori by

α = δ2
[
ψ−1

p (δ2)
](s−p)/p

, (4.6)



Regularization in Hilbert scales 1861

then, for s � p,∥∥xδ
α − x†∥∥ = O

(√
ψ−1

p (δ2)
)
. (4.7)

Proof. Let x0 be defined by (4.2) and define xα,0 by xα,0 = B−sgα(T ∗T )T ∗Ax0 with
T = AB−s . Then, in analogy to (3.4), we have

A
(
xδ

α − xα,0
) = T gα(T ∗T )T ∗(yδ − Ax0),

A(x0 − xα,0) = T [I − gα(T ∗T )T ∗T ]Bsx0,

Bs
(
xδ

α − xα,0
) = gα(T ∗T )T ∗(yδ − Ax0),

Bs(x0 − xα,0) = [I − gα(T ∗T )T ∗T ]Bsx0.

(4.8)

From (4.8), assumption A3, proposition 4.1 and the triangle inequality, we obtain∥∥Axδ
α − Ax0

∥∥ �
∥∥A(xδ

α − xα,0
)∥∥ + ‖A(x0 − xα,0)‖

� δ + ME

√
ψp(τ−2p) + β1

√
ατ s−pE (4.9)

and ∥∥xδ
α − x0

∥∥
s
� γ1√

α

(
δ + ME

√
ψp(τ−2p)

)
+ τ s−pE. (4.10)

Now we choose τ such that δ = √ψp(τ−2p) holds, which gives

τ = [ψ−1
p (δ2)

]−1/2p
. (4.11)

The parameter choice (4.6) is equivalent to τ s−p = δ/
√

α. Hence, from (4.9) and (4.10) we
have∥∥Axδ

α − Ax0

∥∥ � c1δ and
∥∥xδ

α − x0

∥∥
s
� c2
[
ψ−1

p (δ2)
](p−s)/(2p)

(4.12)

with the two constants c1 := 1 + ME + β1E and c2 := γ1(1 + ME) + E. Thus, we have∥∥xδ
α − x0

∥∥ � ω(c1δ,Ms,E1) with E1 = c2
[
ψ−1

p (δ2)
](p−s)/(2p)

, so that by theorem 2.2 and
proposition 4.2 we obtain

∥∥xδ
α − x0

∥∥ � E1

√
ψ−1

s

(
c2

1δ
2

m2E2
1

)

= c2
[
ψ−1

p (δ2)
](p−s)/(2p)

√
ψ−1

s

(
c2

1δ
2

m2c2
2

[
ψ−1

p (δ2)
](s−p)/p

)
� c3

√
ψ−1

p (δ2) (4.13)

with c3 = max{c2, c1/m}. Now (4.7) follows from (4.13), the first estimate of (4.3) with τ

chosen by (4.11) and the triangle inequality. �

4.2. Discrepancy principle

In this subsection we provide order optimal error bounds for methods (3.1) in case the
regularization parameter α is chosen a posteriori by Morozov’s discrepancy principle (3.7).
We start by providing a lower bound for the regularization parameter α obtained by (3.7) in
terms of the data error δ.
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Proposition 4.4. Let assumptions A1, A3 (i) and A5 be satisfied and let xδ
α be defined by (3.1)

with s � p. If α is chosen by (3.7) with C > 1, then

α � δ2
1

[
ψ−1

p

(
δ2

1

)](s−p)/p
with δ1 = (C − 1)δ

2E max{M,β1} . (4.14)

Proof. Let Rα = I − gα(T T ∗)T T ∗, let x0 be given by (4.2) and let α be chosen by (3.7)
with C > 1. We use the representation yδ − Axδ

α = Rαyδ and obtain from assumptions A3
(i), A5 and proposition 4.1

Cδ = ∥∥Axδ
α − yδ

∥∥
� ‖Rα(yδ − y)‖ + ‖Rα(y − Ax0)‖ + ‖RαAx0‖
� δ + ‖y − Ax0‖ + ‖RαT ‖ · ‖Bsx0‖
� δ + ME

√
ψp(τ−2p) + β1E

√
ατ s−p

� δ + E max{M,β1}
[√

ψp(τ−2p) +
√

ατ s−p
]
. (4.15)

We choose τ as the solution of the equation
√

ψp(τ−2p) = √
ατ s−p, that is, as the solution of

τ 2p−2sψp(τ−2p) = α, or equivalently, ψs(τ
−2s) = α, which gives τ = [ψ−1

s (α)
]−1/(2s)

. For
this choice of τ the estimate (4.15) may be rewritten as δ1 �

√
ψp(τ−2p), or equivalently, as

ψp

(
δ2

1

)
� τ−2p, which gives ψp

(
δ2

1

)
�
[
ψ−1

s (α)
]p/s

, or equivalently,

α � ψs

([
ψ−1

p

(
δ2

1)
]s/p)

. (4.16)

From proposition 4.2 we know that ψs

([
ψ−1

p

(
δ2

1

)]s/p) = δ2
1

[
ψ−1

p

(
δ2

1

)](s−p)/p
. Hence, (4.14)

follows from (4.16). �

Theorem 4.5. Let assumptions A1, A3 and A5 be satisfied and let xδ
α be defined by (3.1) with

s � p. If α is chosen by the discrepancy principle (3.7) with C > 1, then∥∥xδ
α − x†∥∥ = O

(√
ψ−1

p (δ2)
)
. (4.17)

Proof. Let us define x0 according to (4.2) with τ chosen by (4.11). By using (3.7), (4.4) and
the fact that ψp(τ−2p) = ψp

(
ψ−1

p (δ2)
) = δ2, we obtain∥∥Axδ

α − Ax0

∥∥ �
∥∥Axδ

α − yδ
∥∥ + ‖y − yδ‖ + ‖y − Ax0‖

� (C + 1)δ + ME

√
ψp(τ−2p)

� k1δ (4.18)

with k1 = C + 1 + ME. From (4.10), the identity ψp(τ−2p) = δ2, (4.11), (4.14) and (3.6) we
obtain for α chosen by (3.7)∥∥xδ

α − x0

∥∥
s
� γ1(1 + ME)δ√

α
+ E
[
ψ−1

p (δ2)
](p−s)/(2p)

� γ1(1 + ME)
δ

δ1

[
ψ−1

p

(
δ2

1

)](p−s)/(2p)
+ E
[
ψ−1

p (δ2)
](p−s)/(2p)

� k2
[
ψ−1

p (δ2)
](p−s)/(2p)

(4.19)

with some constant k2. We proceed as in (4.13) and obtain from (4.18) and (4.19) that∥∥xδ
α − x0

∥∥ � k3

√
ψ−1

p (δ2) (4.20)

with k3 = max{k2, k1/m}. Finally, (4.17) follows from (4.20), the first estimate of (4.3) with
τ chosen by (4.11) and the triangle inequality. �
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5. Low-order regularization

In this section we study the case of low-order regularization in which the parameter s in
methods (3.1) is smaller than the number p in assumption A1 characterizing the smoothness
of the unknown solution x†. We will prove that in this case the same order optimal error bound∥∥xδ

α − x†∥∥ = O
(√

ψ−1
p (δ2)

)
can be guaranteed as in the case s = p. This means in particular

that there is no loss of accuracy if the parameter s in method (1.3) is chosen smaller than p. To
our knowledge, until now this result is only known for the finitely smoothing case discussed
in section 1 as an example 2.3 (cf [20]). Our studies in case of low-order regularization do
not require the two-sided estimate in assumption A5 (i). Instead we exploit the following
additional assumption:

Assumption A6. The function f : (0, c] → R+ defined by

f (λ) := λs/(p−s)φ(λ1/(p−s))

is convex, where c := ‖B−2p‖ and φ is the index function from assumption A2.

For example 2.3 discussed in section 1 the function f in assumption A6 attains the form
f (λ) = λ(a+s)/(p−s); hence, assumption A6 holds true in the low-order case s < p provided
s � (p − a)/2. This is Natterer’s side condition for proving (1.5).

5.1. A priori parameter choice

In our first proposition we estimate the regularization error in case of exact data.

Proposition 5.1. Let xα be the regularized approximation from (3.1) and let assumptions A1,
A2, A5 (ii) and A6 hold. Assume further that

sup
λ�0

|1 − λgα(λ)| � 1 and sup
λ�0

λ|1 − λgα(λ)| � β2α (5.1)

with some constant β2 > 0. Then, for 0 � s < p,

‖xα − x†‖ �


E

[
φ−1

(
β2α

m2

)]p/2

for s = 0

E

[
ψ−1

s

(
β2α

m2

)]p/(2s)

for 0 < s < p.

(5.2)

Proof. Let us introduce the abbreviations zα = x† − xα and Rα = I − gα(T ∗T )T ∗T . From
(3.4) we have the identity Bszα = RαBsx†, and due to the first inequality of (5.1) we have∥∥R1/2

α

∥∥ � 1. We use these properties and obtain due to the Cauchy Schwarz inequality and
assumption A1 that

‖zα‖2
s = ‖RαBsx†‖2 �

∥∥R1/2
α Bsx†∥∥2 = 〈B2s−pzα, Bpx†〉 � E‖zα‖2s−p. (5.3)

From (3.4) we have Azα = T RαBsx†, and due to (5.1) we have
∥∥(T ∗T )1/2R

1/2
α

∥∥2 � β2α. We
use these properties and obtain by using (5.3)

‖Azα‖2 = ‖(T ∗T )1/2RαBsx†‖2 � β2α
∥∥R1/2

α Bsx†∥∥2 � β2αE‖zα‖2s−p. (5.4)

Our next aim consists in deriving a third estimate that relates the three quantities ‖zα‖s , ‖Azα‖
and ‖zα‖2s−p. Since f is convex, we may employ Jensen’s inequality and have

f

(‖zα‖2
2s−p

‖zα‖2
s

)
= f

(∫
λs−p · λs d‖Eλzα‖2∫

λs d‖Eλzα‖2

)
�
∫

f (λs−p) · λs d‖Eλzα‖2∫
λs d‖Eλzα‖2

,
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where Eλ is the spectral family of B2. Since f (λs−p)λs = φ(λ−1) we obtain by using
assumption A2 that

f

(‖zα‖2
2s−p

‖zα‖2
s

)
�
∫

φ(λ−1) d‖Eλzα‖2

‖zα‖2
s

= ‖[φ(B−2)]1/2zα‖2

‖zα‖2
s

� ‖Azα‖2

m2‖zα‖2
s

. (5.5)

For proper combining of the three estimates (5.3), (5.4) and (5.5) we introduce a new
function g by g(λ) := f (λ2)/λ2. Since f is convex, we conclude that g is monotonically
increasing. Hence, by (5.3), which may be rewritten as ‖zα‖1/2

2s−p

/
E1/2 � ‖zα‖2s−p/‖zα‖s ,

the monotonicity of g and (5.5),

g

(‖zα‖1/2
2s−p

E1/2

)
� g

(‖zα‖2s−p

‖zα‖s

)
= ‖zα‖2

s

‖zα‖2
2s−p

f

(‖zα‖2
2s−p

‖zα‖2
s

)
� ‖Azα‖2

m2‖zα‖2
2s−p

.

Multiplying by ‖zα‖2s−p/E and exploiting (5.4) yields

f

(‖zα‖2s−p

E

)
� ‖Azα‖2

m2E‖zα‖2s−p

� β2α

m2
≡ α0. (5.6)

Now we distinguish two cases s = 0 and 0 < s < p. In the first case s = 0 the function
f of assumption A6 attains the form f (λ) = φ(λ1/p). Consequently, f −1(λ) = [φ−1(λ)]p.
By using this representation, the first estimate of (5.2) follows from (5.3) and (5.6). In the
second case 0 < s < p we use the identity f (λ(p−s)/s) = λφ(λ1/s) = ψs(λ) and obtain
that the inverse f −1 possesses the representation f −1(λ) = [ψ−1

s (λ)
](p−s)/s

. We use this
representation, combine (5.3), (5.6) and (5.4), (5.6), respectively, and obtain the two estimates

‖zα‖s � E
[
ψ−1

s (α0)
](p−s)/(2s)

and ‖Azα‖ �
√

β2αE
[
ψ−1

s (α0)
](p−s)/(2s)

.

Now we proceed as in the proof of proposition 2.1 with p := s and obtain

‖zα‖ � E
[
ψ−1

s (α0)
](p−s)/(2s)

sup{‖x‖ | ‖Ax‖ �
√

β2α ∧ ‖x‖s � 1}
� E
[
ψ−1

s (α0)
](p−s)/(2s)

√
ψ−1

s (α0)

which provides the second estimate of (5.2). �

Note that assumption (5.1) is satisfied for the special regularization methods discussed in
examples 3.1–3.5. In fact, β2 = 1 for example 3.1, β2 = (m − 1)m−1/mm for example 3.2,
β2 = 1/4 for example 3.3, β2 = 1/e for example 3.4 and β2 = 1/e for example 3.5 (see [23]).

Now we are ready to provide order optimal error bounds for the total error
∥∥xδ

α − x†∥∥ in
case of proper a priori parameter choice.

Theorem 5.2. Let xδ
α be the regularized approximation (3.1) and let the assumptions of

proposition 5.1 and A3 (i) be satisfied. If the regularization parameter α is chosen by

α = δ2

E2

[
ψ−1

p

(
β2δ

2

m2E2

)](s−p)/p

, (5.7)

then, with the constant k = max{γ1, 1/
√

β2}, we have for 0 � s < p the estimate∥∥xδ
α − x†∥∥ � (k + 1)E

√
ψ−1

p

(
β2δ2

m2E2

)
. (5.8)

Proof. Let us consider the noise amplification error ‖xδ
α − xα‖ where xα and xδ

α are as in
(3.1). We use (3.4) and obtain due to A3 (i) the estimates∥∥Axδ

α − Axα

∥∥ � δ and
∥∥xδ

α − xα

∥∥
s
� γ1δ/

√
α. (5.9)
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In case s > 0 we follow the proof of proposition 2.1 with p := s and obtain from (5.9)∥∥xδ
α − xα

∥∥ � sup{‖x‖ | ‖Ax‖ � δ ∧ ‖x‖s � γ1δ/
√

α}
� kδ√

α
sup{‖x‖ | ‖Ax‖ �

√
β2α ∧ ‖x‖s � 1}

� kδ√
α

√
ψ−1

s

(
β2α

m2

)
. (5.10)

Hence, by triangle inequality, the second estimate of (5.9) in case s = 0, (5.10) in case
0 < s < p and (5.2) we obtain

∥∥xδ
α − x†∥∥ �


kδ√
α

+ E

[
φ−1

(
β2α

m2

)]p/2

for s = 0

kδ√
α

√
ψ−1

s

(
β2α

m2

)
+ E

[
ψ−1

s

(
β2α

m2

)]p/(2s)

for 0 < s < p.

(5.11)

In the two cases s = 0 and 0 < s < p, the parameter choice (5.7) can be rewritten as

δ√
α

= E

[
φ−1

(
β2α

m2

)]p/2

and
δ√
α

√
ψ−1

s

(
β2α

m2

)
= E

[
ψ−1

s

(
β2α

m2

)]p/(2s)

,

(5.12)

respectively. In the case s = 0 we use the first form of (5.12) and obtain from the first part
of (5.11) the estimate

∥∥xδ
α − x†∥∥ � (k + 1)δ/

√
α. Then, substituting the parameter α of (5.7)

with s = 0 provides the order optimal error bound (5.8). In the case 0 < s < p we use
proposition 4.2 and the second form of (5.12), proceed in an analogous way as in case s = 0
and obtain again the estimate (5.8). �

5.2. Discrepancy principle

In this subsection we provide order optimal error bounds for methods (3.1) in the low-order
case with α chosen a posteriori by Morozov’s discrepancy principle (3.7). We start by
providing some error bound for the total error with respect to the ‖·‖s-norm.

Proposition 5.3. Let xδ
α be the regularized approximation (3.1) with s chosen such that

0 � s < p and let assumptions A1, A2, A4 and A6 be satisfied. If the regularization
parameter α is chosen according to the discrepancy principle (3.7) with C � 1, then∥∥xδ

α − x†∥∥
s
� E

[
ψ−1

p

(
(C + 1)2δ2

m2E2

)](p−s)/(2p)

. (5.13)

Proof. For α chosen by the discrepancy principle (3.7) the estimate (3.8) attains the form
C2δ2 +α

∥∥xδ
α −x†∥∥2

s
� δ2 +α

∥∥R1/2
α Bsx†∥∥2

with Rα = I −T ∗T gα(T ∗T ). Since C � 1 we have∥∥xδ
α −x†∥∥2

s
�
∥∥R1/2

α Bsx†∥∥2
. We exploit in addition the representation Bs(x†−xα) = RαBsx†,

see (3.4), and obtain with assumption A1 the estimate∥∥xδ
α − x†∥∥2

s
�
∥∥R1/2

α Bsx†∥∥2 = 〈B2s−p(x† − xα), Bpx†〉 � E‖xα − x†‖2s−p. (5.14)

Now let us estimate ‖xα −x†‖2s−p in terms of ‖Axα −Ax†‖. We multiply (5.6) by ‖zα‖2s−p/E

and see that (5.6) may be written in the equivalent form

h

(‖xα − x†‖2s−p

E

)
� ‖Axα − Ax†‖2

m2E2
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with h(λ) = λf (λ) = λp/(p−s)φ(λ1/(p−s)) = ψp(λp/(p−s)). The inverse h−1 has the

representation h−1(λ) = [ψ−1
p (λ)

](p−s)/p
; consequently,

‖xα − x†‖2s−p � E

[
ψ−1

p

(‖Axα − Ax†‖2

m2E2

)](p−s)/p

. (5.15)

Let R̂α = I −gα(T T ∗)T T ∗. Then we obtain by exploiting (3.1), (3.4), the triangle inequality,
the identity R̂αyδ = yδ − Axδ

α and |1 − λgα(λ)| � 1 that follows from A4 that

‖Axα − Ax†‖ = ‖R̂αy‖ � ‖R̂αyδ‖ + ‖R̂α(y − yδ)‖ � (C + 1)δ. (5.16)

Now (5.13) follows from (5.14), (5.15), (5.16) and the monotonicity of ψ−1
p . �

Proposition 5.3 is helpful to derive order optimal error bounds for
∥∥xδ

α − x†∥∥ in the low-
order case provided the regularization parameter has been chosen a posteriori by Morozov’s
discrepancy principle.

Theorem 5.4. Let xδ
α be the regularized approximation from (3.1), let 0 � s < p and

let assumptions A1, A2, A4 and A6 be satisfied. If the regularization parameter α is chosen
according to the discrepancy principle (3.7) with C � 1, then∥∥xδ

α − x†∥∥ � E

√
ψ−1

p

(
(C + 1)2δ2

m2E2

)
. (5.17)

Proof. For s = 0 the result of theorem 5.4 follows from proposition 5.2. Let 0 < s < p, let
α be chosen according to (3.7) and let δ1 := (C + 1)δ/(mE). Then, exploiting (5.13) and the
estimate

∥∥Axδ
α − Ax†∥∥ �

∥∥Axδ
α − yδ

∥∥ + ‖y − yδ‖ � (C + 1)δ we have due to proposition 2.1
with p := s that∥∥xδ

α − x†∥∥ � sup
{‖x‖ | ‖Ax‖ � (C + 1)δ ∧ ‖x‖s � E

[
ψ−1

p

(
δ2

1

)](p−s)/(2p)}
� E
[
ψ−1

p

(
δ2

1

)](p−s)/(2p)
√

ψ−1
s

(
δ2

1 · [ψ−1
p

(
δ2

1

)](s−p)/p)
.

From this estimate and proposition 4.2 we obtain (5.17). �

6. Deconvolution

In this section we discuss a possible application of our results to the deconvolution problem
arising in geoscience in the context of models with a non-Wiener filter design (see, e.g. [6, 19]).
For example, a standard Gauss–Markov model of satellite observations in the formulation of
Bayesian statistics may be written as

Az† = yδ + ξ, (6.1)

where z† is the unknown gravity potential which should be recovered from observations yδ ,
ξ is a random noise with zero expectation Eξ = 0 and covariance operator cov ξ = δ2P .
Due to the huge number of observations and unknowns it is reasonable to consider (6.1) as
an operator equation in Hilbert spaces with the design operator A acting compactly from the
solution space X into the observation space Y. In this context the covariance P can be seen as
a bounded self-adjoint nonnegative operator from Y to Y such that for any g1, g2 ∈ Y there
holds E〈g1, ξ 〉〈g2, ξ 〉 = δ2〈Pg1, g2〉. If

A =
∞∑
i=1

aivi〈ui, ·〉
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is the singular-value decomposition of the design operator, then it is natural to assume that
for random noise ξ the Fourier coefficients 〈vi, ξ 〉 are independent random variables. This
assumption allows us to treat the covariance P as a diagonal operator with respect to the system
{vi}, since for i �= j, 〈Pvi, vj 〉 = δ−2E〈vi, ξ 〉〈vj , ξ 〉 = δ−2E〈vi, ξ 〉E〈vj , ξ 〉 = 0. Thus,

P =
∞∑
i=1

pivi〈vi, ·〉,

where pi = δ−2E|〈vi, ξ 〉|2. In agreement with the Bayesian approach not only the covariance
P is introduced as prior information, but also the expectation z0 = Ez†, which gives one more
observation equation

z† = z0 + ε, Eε = 0, cov ε = σ 2Q, Q ∈ L(X,X), Q = Q∗ � 0.

Keeping in mind that z† ∈ R(A∗) it is natural to assume that ε =∑∞
i=1 εiui with independent

random Fourier coefficients εi = 〈ui, ε〉. Therefore, as in the case of cov ξ ,

Q =
∞∑
i=1

qiui〈ui, ·〉, qi = σ−2E|〈ui, ε〉|2. (6.2)

Within the framework of Bayesian approach, the estimate ẑ of the unknown element z†

follows from the normal equation

(δ−2A∗P −1A + σ−2Q−1)̂z = δ−2A∗P −1yδ + σ−2Q−1z0. (6.3)

By introducing α = δ2/σ 2, xδ
α = ẑ − z0, P∗ = ∑∞

i=1 piui〈ui, ·〉 and B2s = Q−1P∗, we can
reduce equation (6.3) to

αB2sxδ
α + A∗Axδ

α = A∗(yδ − Az0), (6.4)

which is nothing but the Tikhonov regularization, see example 3.1, applied to the equation
Ax† = yδ − Az0 + ξ . It allows us to interpret the regularization parameter α as the ratio of
the observation noise level δ2 to the unknown variance σ 2 ([1]). Moreover, in view of the
relation Q = P∗B−2s the choice of the prior covariance Q means the choice of the regularizing
operator B2s , that is, the choice of the penalty norm in the Tikhonov functional (1.3). For
example, self-adaptive regularization (SAR) suggested in [19] is nothing but the Tikhonov
regularization corresponding to the choice of prior covariance Q = A∗P −1A.

Let the prior covariance Q in (6.2) be chosen in such a way that for s > 0 and some
continuous strictly monotonically increasing function φ : R+ → R+

m
√

φ((qk/pk)1/s) � ak � M
√

φ((qk/pk)1/s), k = 1, 2, . . . . (6.5)

Then the operator

B = (Q−1P∗)1/2s =
∞∑
i=1

(pi/qi)
1/2sui〈ui, ·〉

automatically meets (4.1). Assume that the covariance P has a finite trace, i.e.

E‖ξ‖2 = δ2
∞∑
i=1

pi = O(δ2).

Then it is natural to assume that the norm of actual realization of the random variable
ξ = Az† − yδ = Ax† + Az0 − yδ can be estimated as

‖ξ‖ = ‖Az† − yδ‖ = ‖Ax† + Az0 − yδ‖ � cδ,

where c is some fixed constant. In this case from theorems 4.5 and 5.4 we have
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Theorem 6.1. Assume that z† − z0 ∈ R((Q−1P∗)−p/2s) for some p > 0. If the function φ

from (6.5) meets assumption A5 (ii) for s � p, or assumption A6 for s < p, then for
ẑ = z0 + xδ

α and α chosen by rule (3.7) with yδ − Az0 instead of yδ we have

‖z† − ẑ‖ = O
(√

ψ−1
p (δ2)

)
.

Comments. First of all, we would like to note that the reduction of (6.3) to (6.4) was made
only for the purposes of analysis. For any σ the estimate ẑ = ẑσ = z0 + xδ

δ2/σ 2 can be found
directly from (6.3), and knowledge of the singular-value decompositions of the operators
A,P,Q is not necessary for it. The discrepancy principle for ẑσ consists in choosing the
smallest σ such that

‖Âzσ − yδ‖ � Cδ.

We would like to stress that this principle does not require any knowledge of p and φ.
Nevertheless, under the assumptions of theorem 6.1 it automatically provides the best possible
order of accuracy. This circumstance seems to be important, because in practice two
covariances P and Q reflect our a priori knowledge and can be chosen in such a way that the
function φ from (6.5) related them with design operator A will be rather complicated, but it
has not an effect on the computational cost of regularization.

7. Concluding remarks

Regularization of ill-posed operator equations in Hilbert scales is usually studied under the
assumption that the operator A involved in the equation and the operator B generating the
Hilbert scale are related by some operator-valued index function φ. In the classical paper
[16] of Natterer, such a relation that characterizes the smoothing properties of A relative to
the operator B−1 has been expressed in terms of power functions (see (1.4)). Extensions to
general index functions have been considered in Mair’s paper [9] for the case of high-order
regularization in Tikhonov’s method. In our paper we have extended Mair’s results to a general
regularization scheme and to the case of low-order regularization.

Another accomplishment of this paper is the justification of Morozov’s discrepancy
principle in the light of general index functions φ. It is important to note that the discrepancy
principle requires neither any knowledge of the index function φ nor any knowledge of
the solution smoothness measured against the Hilbert scale. Nevertheless, it automatically
provides an order optimal choice of the regularization parameter.
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