
Recurrence networks to study dynamical transitions in a turbulent combustor

V. Godavarthi, V. R. Unni, E. A. Gopalakrishnan, and R. I. Sujith

Citation: Chaos 27, 063113 (2017); doi: 10.1063/1.4985275

View online: http://dx.doi.org/10.1063/1.4985275

View Table of Contents: http://aip.scitation.org/toc/cha/27/6

Published by the American Institute of Physics

Articles you may be interested in

 Complex behavior in chains of nonlinear oscillators
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 063104 (2017); 10.1063/1.4984800

 Network structure of turbulent premixed flames
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 043107 (2017); 10.1063/1.4980135

 Behavioral synchronization induced by epidemic spread in complex networks
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 063101 (2017); 10.1063/1.4984217

 Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 061101 (2017); 10.1063/1.4984927

 Nonlinear resonances and multi-stability in simple neural circuits
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 013118 (2017); 10.1063/1.4974028

 On the limits of probabilistic forecasting in nonlinear time series analysis II: Differential entropy
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 083125 (2017); 10.1063/1.4986394



Recurrence networks to study dynamical transitions in a turbulent
combustor

V. Godavarthi,1 V. R. Unni,1 E. A. Gopalakrishnan,2,a) and R. I. Sujith1
1Department of Aerospace Engineering, IIT Madras, Chennai 600036, India
2Center for Computational Engineering and Networking, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham (Amrita University), Coimbatore 641112, India

(Received 16 January 2017; accepted 22 May 2017; published online 19 June 2017)

Thermoacoustic instability and lean blowout are the major challenges faced when a gas turbine

combustor is operated under fuel lean conditions. The dynamics of thermoacoustic system is the

result of complex nonlinear interactions between the subsystems—turbulent reactive flow and the

acoustic field of the combustor. In order to study the transitions between the dynamical regimes in

such a complex system, the time series corresponding to one of the dynamic variables is transformed

to an e-recurrence network. The topology of the recurrence network resembles the structure of the

attractor representing the dynamics of the system. The transitions in the thermoacoustic system are

then captured as the variation in the topological characteristics of the network. We show the presence

of power law degree distribution in the recurrence networks constructed from time series acquired

during the occurrence of combustion noise and during the low amplitude aperiodic oscillations prior

to lean blowout. We also show the absence of power law degree distribution in the recurrence

networks constructed from time series acquired during the occurrence of thermoacoustic instability

and during the occurrence of intermittency. We demonstrate that the measures derived from

recurrence network can be used as tools to capture the transitions in the turbulent combustor and also

as early warning measures for predicting impending thermoacoustic instability and blowout.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4985275]

Combustors operating under fuel lean conditions are
highly susceptible to thermoacoustic instability and lean
blowout. When there is a positive feedback between the
unsteady heat release rate and the acoustic field in a com-
bustor, high amplitude acoustic oscillations occur. This
condition is referred to as thermoacoustic instability.
These high amplitude acoustic oscillations result in the
enhancement of heat transfer to the walls and structural
damage to the engine. As the equivalence ratio of com-
bustion is reduced below a critical value, the flame inside
the combustor ceases to exist, resulting in the situation
referred to as flame blowout. In the past few decades,
studies have been conducted to predict thermoacoustic
instability and blowout in a turbulent combustor as well
as to determine the dynamics underlying the transitions
between the dynamical regimes in a combustor. The pres-
ence of the nonlinear interactions between the subsystems
warrants that the thermoacoustic system is a complex
system. These interactions between the subsystems also
result in the presence of multiple time scales in a ther-
moacoustic system during the occurrence of aperiodic
oscillations known as combustion noise. In this paper, we
transform the time series data of acoustic pressure from
a turbulent combustor to an e-recurrence network.
Recurrence network (RN) preserves the geometry of the
attractor. The geometry of the attractor is changed when
there is a transition between the dynamical regimes. In
our present work, we study the variation of the degree

distribution with recurrence threshold. We also investi-
gate the variation of network properties with the equiva-
lence ratio in a turbulent combustor. Summing up the
results, we show that RN can be used as a tool to capture
the transitions between the dynamical regimes in a
combustor.

I. INTRODUCTION

Thermoacoustic instability arises when there is positive

feedback between the unsteady heat release rate and the

acoustic field in a combustor.1 Thermoacoustic instability

results in large amplitude acoustic oscillations, which lead to

the enhancement in the heat transfer to the walls and also

lead to the structural damage to the engine. The other chal-

lenge faced is flame blowout. Blowout occurs when the

flame cannot be stabilized and ceases to exist in the combus-

tion chamber, as the equivalence ratio (the ratio of the actual

fuel/air ratio to the stoichiometric fuel/air ratio) is reduced

below a critical value. In aircrafts, blowout results in the loss

of the thrust generated and the flame has to be re-ignited.

Blowout might also lead to a sudden drop in the altitude of

the aircraft. Various studies have been conducted to predict

impending thermoacoustic instability and blowout. Recent

studies show that the transitions in a turbulent combustor

exhibit rich dynamical behavior.2 Hence, there is an exi-

gency to investigate and characterize the dynamics underly-

ing the transitions to thermoacoustic instability and blowout

in a turbulent combustor.

a)Author to whom correspondence should be addressed: ea_gopalakrishnan@

cb.amrita.edu
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In many turbulent combustors, the transitions happen

from combustion noise to thermoacoustic instability and

from thermoacoustic instability to lean blowout when the

equivalence ratio is varied from fuel rich to fuel lean condi-

tions. Combustion noise is composed of low amplitude aperi-

odic pressure oscillations that occur during the stable

operation of a combustor. Tony et al.3 showed that combus-

tion noise has the features of a high dimensional chaotic sig-

nal contaminated with white and colored noise, using a

plethora of tools to ascertain the determinism. Nair et al.4

suggested that the transition from combustion noise to ther-

moacoustic instability can be considered as a transition from

a chaotic state to an ordered state. In their subsequent work,

Nair and Sujith5 reported that combustion noise has a com-

plex scaling behavior and used multifractal spectrum to char-

acterize this. Further, they reported the loss of multifractality

in the signal at the onset of thermoacoustic instability. Nair

and Sujith5 demonstrated that Hurst exponent, a measure of

the fractal dimension of a time series, can be used as a pre-

cursor to predict thermoacoustic instability. Nair et al.6 also

illustrated that the transition from combustion noise to ther-

moacoustic instability happens via intermittency, a state

composed of bursts of large amplitude periodic oscillations

amidst low amplitude aperiodic oscillations.

After the transition from combustion noise to thermoa-

coustic instability, on further reduction in the equivalence

ratio, the transition happens from thermoacoustic instability

to lean blowout. This transition from thermoacoustic insta-

bility to lean blowout exhibits a rich dynamical behavior.

Kabiraj et al.7,8 detected intermittency prior to blowout in

laminar premixed combustion. Gotoda et al.9 studied the

transitions from combustion instability to blowout and

detected the presence of multifractal characteristics in the

reconstructed phase space prior to lean blowout. In a subse-

quent work, Gotoda et al.10 demonstrated that the various

nonlinear quantities such as translational error and permuta-

tion entropy can be used as early warning signals to predict

blowout. Extending the work of Nair and Sujith,5 Unni and

Sujith11 provided a multifractal description to the oscillations

prior to lean blowout, thus providing a unified framework to

study the transition from combustion noise to thermoacoustic

instability and then to blowout. They suggested that Hurst

exponent can be a precursor to blowout.

The nonlinear interactions between the acoustic field,

the hydrodynamic field, and the unsteady combustion result-

ing in different dynamical regimes varying from combustion

noise (chaos) to thermoacoustic instability (order) in a com-

bustor suggest that a thermoacoustic system can be treated as

a complex system. In a complex system, the interaction

between components is nonlinear such that the collective

behavior of the system is different from the sum of their indi-

vidual behaviors. These components can self-organize and

exhibit a coherent behavior.12 This refers to a phenomenon

called emergence in complex systems.13 We presume that

the emergence of thermoacoustic instability (order) from

combustion noise (chaos) and the appearance of discrete

scales during the occurrence of thermoacoustic instability in

contrast to the multiple scales present during the occurrence

of combustion noise might be due to self-organization in the

system. The traditional reductionist approach which moni-

tors individual elements is no longer sufficient to describe

the emergent behavior of complex systems.14

Complex networks are used to study complex sys-

tems15–17 as they help in understanding the connectivity pat-

tern. Complex networks comprise nodes and links. Nodes

represent the components of the system and links represent

the interactions between these components. The topology

and the measures derived from a network can be used to

characterize the qualitative and quantitative behavior of a

complex system. The variation in the dynamics of a system

is reflected in the topology of the network. The measures

derived from complex networks can be used to analyze the

transitions between the dynamical regimes in a complex sys-

tem.18 The underlying dynamics of a physical system is pre-

served in the time series data. Hence, in order to study

complex systems, time series data from such systems are

converted into complex networks. Modeling the network

structure is crucial to understand the underlying dynamics of

the system. Many methods have been devised to convert the

time series into complex networks.19–22 Strozzi et al.23 have

shown that time series can be converted into complex net-

works and vice versa.

Murugesan and Sujith24 introduced complex networks

to analyze the dynamical regimes in the thermoacoustic sys-

tem. They used a visibility algorithm to convert the time

series to complex networks.25 The visibility algorithm con-

siders a data point of the time series as a node. Two nodes

are connected if they satisfy a visibility condition. (The line

connecting the two data points should not intersect the height

of an intermediate data point.) They detected a scale-free

behavior during the occurrence of combustion noise and reg-

ularity at the onset of thermoacoustic instability. Further,

Murugesan and Sujith26 showed that the quantities derived

from complex networks such as characteristic path length

(CPL) (indicates the average of the minimum number of

steps required to reach from one node to another), clustering

coefficient (a measure that provides the local clustering or

cliquishness of a node), network diameter (the maximum dis-

tance between two nodes in a network), and global efficiency

(how efficiently a node can be reached from the other nodes

in the network) can be used as precursors to predict the onset

of thermoacoustic instability and blowout.

While converting the time series into a complex network

using a visibility algorithm, information related to the geom-

etry and structure of the attractor is lost. In order to preserve

the geometric characteristics of the attractor, we use

e–recurrence networks (RN). RN preserves the information

related to the geometry of the attractor. Further, as recur-

rence is a fundamental property of any deterministic dynami-

cal system, the rationale behind constructing complex

networks from time series using recurrence networks is more

natural and simpler than visibility networks.27

RN does not depend on temporal correlations explicitly.

Thus, RN is more robust than other methods that consider

temporal correlations such as detrended fluctuation analy-

sis,28 in the cases where there is external noise in the sys-

tem.29 Constructing RN from a time series requires lesser

number of data points than those required for computing
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Lyapunov exponent. Hence, compared to Lyapunov expo-

nent, measures derived from RN are well suited to discrimi-

nate between chaotic and periodic states when a shorter time

series is available.29

In our present work, we construct RN from the time

series of acoustic pressure obtained from a turbulent com-

bustor. The recurrence threshold is chosen by the approach

proposed by Jacob et al.,30 which determines an admissible

range for e. Hence, the choice of the recurrence threshold is

not arbitrary. We demonstrate that RN preserves the geome-

try of the attractor and hence the topologies of RNs con-

structed for various dynamical regimes in a turbulent

combustor are different. We study the variation of the degree

distribution of RN with e. We proceed to investigate the vari-

ation of RN measures with the equivalence ratio in order to

analyze the transitions to thermoacoustic instability and

blowout. To the best of our knowledge, this is the first appli-

cation of RN to study the thermoacoustic instability and

blowout.

In Sec. II, we describe the methodology to convert time

series into e–recurrence networks. The experimental setup is

described in Sec. III. The results are presented in Sec. IV.

Finally, the conclusions are described in Sec. V.

II. ANALYSIS OF DYNAMICS USING RECURRENCE
NETWORKS

A. From time series to e–recurrence networks

There are several methods to generate complex net-

works from a time series; e–recurrence method is one of

them. In this method, we compute the recurrences of phase

space vectors after reconstructing the phase space using

Takens’ embedding theorem.31 The discretely sampled

experimental time series x(1), x(2),…x(NT) is embedded in

an M-dimensional phase space using an appropriate time

delay, where NT is the total number of points in the time

series. The delay vectors are given by

XðtiÞ ¼ xðiÞ; xðiþ sÞ;……; xðiþ ðM � 1ÞsÞ: (1)

In this paper, the embedding dimension M is chosen

using Cao’s algorithm.32 The first minimum of the average

mutual information is chosen to be the time delay for com-

puting delay vectors from the discretely sampled time series.

A state (phase space vector) X(ti) is said to be recurrent

if there are ti and tj such that d(X(ti), X(tj))< e, where d(X(ti),

X(tj)) is the distance between the phase space vectors X(ti)

and X(tj), computed using the Euclidean norm and e is the

recurrence threshold. The structure of the recurrences in the

phase space is encoded in the recurrence matrix,33,34

Ri;j ¼ hðe� jjXðtiÞ � XðtjÞjjÞ: (2)

Here, h is the Heaviside function.

We consider only the spatial interdependencies in recur-

rence networks. To construct a recurrence network from the

time series, we use the adjacency matrix Ai,j computed using

the recurrence matrix Ri,j according to the relation27

Ai;j ¼ Ri;j � di;j; (3)

where Ai,j is the adjacency matrix and di,j is the Kronecker

delta. di,j¼ 1 when i¼ j and di,j¼ 0 when i 6¼ j.

The adjacency matrix provides information regarding

the nodes and the connections between them. If Ai,j¼ 1, then

the nodes i, j are connected, which implies that the state

space vectors are in a proximity of the recurrence threshold e

in the phase space.

The measures derived from the recurrence matrix char-

acterize the dynamical properties of phase space trajectories

in contrast to the measures derived from RN, which describe

the geometrical properties of the attractor. A dynamical

property characterizes the dynamics of the system, i.e., regu-

lar or irregular dynamics, whereas a geometrical property

characterizes the geometry and structure of the reconstructed

phase space. Recurrence network provides additional mea-

sures from the complex network theory to characterize the

geometric properties of the attractor. Hence, RN provides

more tools for the analysis of time series.35

A crucial parameter in constructing the network is the

recurrence threshold e. If the threshold is very large, the net-

work becomes very dense as there are too many links leading

to false recurrences. On the other hand, if the recurrence

threshold is too small, the network breaks down into mutu-

ally disjointed components. Hence, the network characteris-

tics can become ambiguous. After embedding, the size of the

attractor depends on the range of the signal. The time series

data are transformed into uniform deviate. Thereby, the

attractor size is rescaled into the interval [0, 1].

A random time series is generated and the embedding

dimension is chosen to be the same as that of the time series

of acoustic pressure obtained from the combustor. Recurrence

networks are then constructed from the time series data of

acoustic pressure and the random time series. The characteris-

tic path length (CPL), the average of the shortest paths

between two nodes, is computed for the networks constructed

from time series data of acoustic pressure and from random

time series. The brief description of CPL is provided in Sec.

IIB. The CPL of RN constructed from the time series

acquired during combustion noise decreases with the increase

in the threshold beyond e1 (Fig. 1). When the threshold is e1,

then a cluster of nodes is formed. Thus, a further increase in

FIG. 1. Variation of the characteristic path length (CPL) of recurrence net-

works with threshold, constructed from both random time series and the

time series corresponding to combustion noise. The time series correspond-

ing to combustion noise is embedded in M¼ 10 dimensions and the random

time series is also embedded in the same dimension.

063113-3 Godavarthi et al. Chaos 27, 063113 (2017)



threshold results in an effective decrease in CPL as the degree

of each node increases. When the recurrence threshold is

greater than e2, the CPL of the time series corresponding to

combustion noise becomes nearly the same as that of random

time series. This is due to the false recurrences. Hence, the

upper bound and the lower bound are fixed for the recurrence

thresholds as e1¼ 0.2 and e2¼ 0.4, respectively. We use

e¼ 0.25 for our present work. Having an e above the lower

threshold ensures that the network has no disconnected nodes.

Having the threshold e below the upper threshold also ensures

that RN constructed from the time series of acoustic pressure

is different from the RN constructed from a random time

series.

In Subsec. II B, we provide a brief description of the

measures derived from RN such as degree distribution, char-

acteristic path length, and betweenness centrality, which are

used to analyze the transitions in the thermoacoustic system.

B. Measures describing the topological properties of
the network

The following measures are computed from the adja-

cency matrix A, which encodes the information related to the

connectivity of each node.36

1. Degree distribution

Degree distribution is the graph plotted between P(k)

and k where P(k) is the probability of a given node to have a

degree k. P(k) is given by n(k)/N where n(k) is the number of

nodes having the degree k and N is the total number of nodes.

The degree of a node ki represents the connectivity of the

node. The degree of a node i is the sum of all the elements in

the ith row of the adjacency matrix. As the topology of RN

resembles the structure of the attractor, the local connectivity

of the nodes is related to the local phase space density of the

attractor.36 Thus, the variation in the degree distribution

reflects the variation of the local phase space density over

the attractor.

2. Betweenness centrality

Betweenness centrality computes the fraction of shortest

paths passing through a vertex (node)

bv ¼
XN

i;j 6¼v

r̂i;j vð Þ

r̂i;j

; (4)

where r̂i;j gives the number of shortest paths between two

nodes i and j. r̂i;jðvÞ gives the number of shortest paths

between the nodes i and j that are passing though the node v.

The shortest path between the nodes i, j is computed by cal-

culating the minima of all the path lengths between the two

nodes i, j in the network represented by the adjacency

matrix. Betweenness centrality determines bottleneck nodes

or the regions of low phase space density that connect two

regions of high phase space density.

3. Characteristic path length

Characteristic path length is the average of the length of

the shortest paths between two nodes

CPL ¼
1

N N � 1ð Þ

XN

i;j�1

di;j; (5)

where di,j is the length of the shortest path between a pair of

nodes (i, j), which is nothing but the minimum number of

links between node i and node j. We do not consider the dis-

connected nodes while calculating CPL.

III. EXPERIMENTAL SETUP

The schematic of the experimental setup is shown in

Fig. 2. The time series of acoustic pressure analyzed in our

present work is acquired from a backward facing step com-

bustor with a bluff body used as the flame stabilizing mecha-

nism. The cross section area of combustor is 90� 90mm2.

The bluff body is a circular disc whose diameter and thick-

ness are 47mm and 10mm, respectively. The bluff body is

positioned 50mm from the dump plane inside the combustor.

Liquid petroleum gas (LPG) used as the fuel is injected

120mm upstream of the bluff body. A spark plug positioned

at the dump plane is used for ignition. The uncertainty of the

mass flow controllers is 6(0.8% of readingþ 0.2% of full

scale). The pressure measurements are performed using a

PCB106B50 piezoelectric transducer located 90mm from

the backward facing step with an uncertainty of 60.15 Pa.

The pressure measurements are sampled at a frequency of

10 kHz and the fuel flow rate is 1.04 g/s. The detailed

description of the experimental setup is given by Unni and

Sujith,11 and Nair and Sujith.5

IV. RESULTS

We observe the transitions from combustion noise to

thermoacoustic instability and then to lean blowout as the

equivalence ratio (/) is varied. We varied the equivalence

ratio (/) from 0.98 to 0.29 in this study. When the equiva-

lence ratio is closer to 1, we observe combustion noise and

when we approach the equivalence ratio of 0.29, blowout

occurs. The time series of acoustic pressure is plotted for

various equivalence ratios in Fig. 3. When the equivalence

ratio is 0.98, we observe combustion noise composed of ape-

riodic fluctuations [Fig. 3(a)]. When the equivalence ratio is

0.8, we observe intermittency [Fig. 3(b)], which consists of

large amplitude periodic fluctuations amidst aperiodic oscil-

lations. The equivalence ratio is reduced to 0.77 [Fig. 3(c)],

the number of intermittent bursts is increased, and the onset

FIG. 2. Schematic of experimental setup.
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of periodic oscillations can be seen when the equivalence

ratio is further reduced to 0.74 [Fig. 3(d)]. As the equivalence

ratio is further reduced to 0.5, we observe thermoacoustic

instability [Fig. 3(e)]. On further reduction of equivalence

ratio to 0.47, we observe that intermittency sets in Fig. 3(f).

The equivalence ratio is further reduced to 0.44, and the

amplitude and the duration of the periodic bursts in intermit-

tency are decreased [Fig. 3(g)]. When the equivalence ratio is

reduced to 0.29, we observe low amplitude aperiodic oscilla-

tions [Fig. 3(h)]. If we reduce the equivalence ratio further,

the flame blows off.

Thus, as we progress from combustion noise to thermoa-

coustic instability, the periodicity of the signal increases. We

also observe that on further reduction of equivalence ratio,

during the transition from thermoacoustic instability to lean

blowout, the periodicity of the signal decreases. On further

reduction in the equivalence ratio, prior to lean blowout the

periodicity of the time series signal is lost. This can be seen

from the power spectra of time series (FFT). The power

spectra of the same pressure time series are plotted by Unni

and Sujith.37 During combustion noise, there is no dominant

frequency, and as we approach thermoacoustic instability,

there is a dominant frequency of about 120Hz. As we

approach lean blowout limit, the periodicity is lost and there

is no dominant frequency in the time series signal. Further,

Unni and Sujith37 observed a slight variation in the dominant

frequency as the equivalence ratio is varied, which was

attributed to varying flame dynamics.

The adjacency matrix obtained from the recurrence matrix

represents the topology of the network. Figure 4 represents the

network topologies corresponding to various dynamical

regimes in the turbulent combustor. The network topology is

visualized using Gephi (https://gephi.org/) software. Figure

4(a) represents the network topology for combustion noise.

Figure 4(b) represents the network topology for intermittency

prior to thermoacoustic instability. Figure 4(c) represents the

network topology for thermoacoustic instability. The structure

of the attractor is a limit cycle for thermoacoustic instability

as the time series of acoustic pressure is periodic. Figure 4(d)

represents the network topology for intermittency just after

thermoacoustic instability. The attractor corresponding to the

intermittency before thermoacoustic instability is different

from that of the intermittency just after thermoacoustic insta-

bility. This is because the periodic bursts during intermittency,

occurring past thermoacoustic instability, are present for a lon-

ger duration in contrast to the periodic bursts during the inter-

mittency prior to thermoacoustic instability. Figure 4(e)

represents the network topology for the aperiodic oscillations

prior to lean blowout. We can observe that the network topol-

ogy resembles the geometry of the attractor. Thus, we can

reaffirm that RN preserves the geometry of the attractor.

Figure 4(f) represents the network topology for white noise.

We observe that the attractors corresponding to the time series

of acoustic pressure are significantly different from the attrac-

tor corresponding to white noise. We can also observe that the

nodes in the networks corresponding to that of combustion

noise [Fig. 4(a)] and low amplitude aperiodic oscillations prior

to blowout [Fig. 4(e)] have a lower degree compared to the

degree of the nodes in the networks corresponding to intermit-

tency and thermoacoustic instability. The degree of the nodes

FIG. 3. The time series of acoustic pressure for various equivalence ratios

(a) 0.98, (b) 0.8, (c) 0.77, (d) 0.74, (e) 0.5, (f) 0.47, (g) 0.44, and (h) 0.29,

respectively. The amplitude of the acoustic pressure is scaled to the interval

[0,1].

FIG. 4. The topologies of recurrence networks constructed from the time

series of acoustic pressure for the equivalence ratios (a) 0.98 (combustion

noise), (b) 0.8 (intermittency prior to thermoacoustic instability), (c) 0.5

(thermoacoustic instability), (d) 0.47 (intermittency just after thermoacoustic

instability), (e) 0.29 (oscillations prior to lean blowout), and (f) white noise.

The networks are constructed from 2000 data points and the recurrence

threshold is 0.25. The colorbar shows the variation of the color with the

degree of the nodes. This figure reaffirms that RN preserves the geometry of

the attractor.
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in the network corresponding to white noise is very less com-

pared to the RNs constructed from the time series of acoustic

pressure.

A. Variation of degree distribution with recurrence
threshold

We say that the degree distribution follows a power law

if P(k)¼ k–c, where c is the power law exponent. We study

the variation of log(P(k)) vs log(k) with the recurrence

thresholds, e¼ 0.2, 0.25, 0.3, and 0.35 for the RNs con-

structed from the time series data of acoustic pressure for

various dynamical states.

Figures 5 and 6 depict the variation of degree distribu-

tion of RN constructed from time series acquired during

combustion noise (/ ¼ 0:98) and aperiodic oscillations prior

to lean blowout (/ ¼ 0:29). We can observe that the degree

distribution follows a power law for the thresholds 0.2, 0.25.

As the threshold increases, a significant portion of the degree

distribution does not follow a power law. Theoretically, we

say that there is a power law, if the whole distribution fol-

lows a power law, i.e., there should not be any outliers. As

we are considering time series from a practical system, the

entire degree distribution may not follow a power law. We

need to account for some outliers. In our present work, we

consider a degree distribution to follow a power law if more

than 90% of the points in the degree distribution follow a

power law. Figures 7, 8, and 9 depict the variation of the

degree distribution of RN constructed from the time series

acquired during intermittency before thermoacoustic insta-

bility (/ ¼ 0:8), during thermoacoustic instability (/ ¼ 0:5),

and during intermittency just after thermoacoustic instability

(/ ¼ 0:47). We can see that the degree distribution does not

follow a power law for any of the chosen thresholds.

The long term distribution (invariant measure) of the

phase space vectors of a dynamical system is associated with

a probability distribution38 of an invariant measure. The time

for which a state stays at a particular location in phase space

can be associated with an invariant density at that location.

Thus, a probability distribution can be associated with the

invariant density distribution over the attractor. The degree

distribution determines the local connectivity pattern of a

FIG. 5. The variation of log(P(k)) vs log(k) of recurrence networks con-

structed from the time series corresponding to combustion noise (/ ¼ 0:98)

with various thresholds e¼ 0.2, 0.25, 0.3, and 0.35, respectively. We can see

that the power law is significant at lower thresholds.

FIG. 6. The variation of log(P(k)) vs log(k) of recurrence networks con-

structed from the time series corresponding to low amplitude aperiodic oscil-

lations prior to lean blowout. (/ ¼ 0:29) with various thresholds e¼ 0.2,

0.25, 0.3, and 0.35, respectively. The width of the degree distribution is less

and the power law is significant for lower thresholds.

FIG. 7. The variation of log(P(k)) vs log(k) of recurrence networks con-

structed from the time series corresponding to intermittency prior to ther-

moacoustic instability (/ ¼ 0:8) with various thresholds e¼ 0.2, 0.25, 0.3,

and 0.35, respectively. We can see that the degree distribution does not fol-

low a power law.
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node. As the recurrence network preserves the geometry of

the attractor, there is a direct mapping between the degree

distribution and the invariant density over the attractor.39

Therefore, the presence of power law in the degree distribu-

tion can be attributed to the presence of power law in the

invariant density function. In a strict sense, if the invariant

density function has a power law peak at some state X0, i.e.,

of the form f ðX � X0Þ
�k
, for some k> 0, then X0 is a singu-

larity. In a general case, if the invariant density function is

close to power law at the state X0, this results in power law

in degree distribution. The invariant density in phase space is

maximum near the singularity; hence, the phase space trajec-

tories closer to the singularity tend to converge and the

recurrence rate will be more near the singularities. The nodes

closer to the singularity have a very high degree when com-

pared to the nodes which are away from the singularity.

We observe that the presence of power laws in the

degree distribution of RNs corresponding to combustion

noise and the oscillations prior to lean blowout is significant

only at lower thresholds such as 0.2 and 0.25. This is because

the threshold corresponds to the local correlations over the

reconstructed attractor in the phase space. We can state that

for higher thresholds, the singularities that are local proper-

ties are masked by too many links. The invariant density

changes as the recurrence threshold changes and hence the

power law exponent also varies with the threshold. Further,

Jacob et al.39 have reported that the recurrence networks

from chaotic attractors with a continuous invariant density

function do not exhibit a scale free topology. As there are

power law degree distributions in RNs corresponding to

combustion noise and oscillations prior to lean blowout, we

can state that the invariant density distribution over the

attractors corresponding to combustion noise and the oscilla-

tions prior to lean blowout has singularities when lower

thresholds such as 0.2 and 0.25 are used.

B. Variation of measures derived from RN with
equivalence ratio

We proceeded to determine the impending transitions

from combustion noise to lean blowout using measures such

as characteristic path length and betweenness centrality

derived from RN.

For the construction of RN from the time series of

acoustic pressure, we consider e¼ 0.25 for the calculation of

topological measures of the network as the threshold ensures

that there is a single component in the network without any

disconnected nodes. The recurrence threshold e also ensures

that the RN constructed from the time series corresponding

to combustion noise is different from the RN constructed

from a stochastic process (white noise).

For most of the recurrence networks, the plot between

P(k) and k depends on the number of data points used for the

construction of RN. The degree distribution shifts to the right

with the increase in the number of data points (N) that are

used to construct RN as the average degree increases with N.

In order to avoid this dependence on N, the graph is plotted

between the rescaled variables P(k)N and k/N30 for various

equivalence ratios as shown in Fig. 10. Figures 10(a) to

10(e) correspond to the degree distributions of combustion

noise, intermittency prior to thermoacoustic instability, ther-

moacoustic instability, intermittency just after thermoacous-

tic instability, and the oscillations prior to lean blowout,

respectively. Figure 10(e) corresponds to the degree distribu-

tion in the network corresponding to white noise. In order to

provide vivid variation of degree distributions, correspond-

ing to combustion noise and the oscillations prior to lean

blowout, zoomed in views are plotted in Figs. 10(g) and

10(h), respectively.

FIG. 8. The variation of log(P(k)) vs log(k) of recurrence networks con-

structed from the time series corresponding to combustion instability

(/ ¼ 0:5) with various thresholds e¼ 0.2, 0.25, 0.3, and 0.35, respectively.

We can see that the degree distribution does not follow a power law.

FIG. 9. The variation of log(P(k)) vs log(k) of recurrence networks con-

structed from the time series corresponding to intermittency (/ ¼ 0:47) with

various thresholds e¼ 0.2, 0.25, 0.3, and 0.35, respectively. We can see that

the degree distribution does not follow a power law for these thresholds.
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As we decrease the equivalence ratio from 0.98 to 0.5,

the degree distribution shifts to the right. The degree distri-

bution of RN corresponding to thermoacoustic instability

[Fig. 10(c)] is concentrated at a higher degree indicating

higher connections. Hence, the phase space density at those

locations is high over the attractor. We can also see in Fig.

10(c) that there is a single prominent peak. Such a peak in

the degree distribution concentrated at higher degree corre-

sponds to a periodic signal.40 This reaffirms that thermoa-

coustic instability is periodic. The degree distribution

corresponding to / ¼ 0:47 [Fig. 10(d)] has multiple peaks in

the degree distribution and the degree distribution is broad.

Similarly, the degree distribution corresponding to the equiv-

alence ratio / ¼ 0:8 [Fig. 10(b)] is also wide spread. This

implies that there are large fluctuations in phase space den-

sity over the attractor. During the intermittent regime, there

are large amplitude periodic fluctuations amidst the aperiodic

oscillations, hence leading to the fluctuations in the local

phase space density over the attractor.

We observe that the degree distribution shifts to the left,

when we decrease the equivalence ratio from / ¼ 0:5 to

/ ¼ 0:29, and becomes more concentrated towards lower

degree. This implies that the link density of RN constructed

from the time series data prior to lean blowout is less. The

duration of the periodic bursts in the signal decreases as the

transition occurs from thermoacoustic instability to blowout.

As the recurrence rate is less, the phase space density is less

which results in a shift in the degree distribution towards the

left as the transition happens from thermoacoustic instability

to blowout. Therefore, the recurrence rate decreases and also

the average degree of the nodes decreases.

The peak in the degree distribution in the RN corre-

sponding to the oscillations prior to lean blowout is concen-

trated towards lower degree than in the RN corresponding to

combustion noise (Fig. 10). As the degree distribution can be

mapped to the phase space density, the average density in

phase space is less for the oscillations prior to lean blowout.

This results in a lower degree of recurrence for the oscilla-

tions prior to blowout. We also observe that the degree of all

the nodes is zero in the RN corresponding to white noise

[Fig. 10(f)]. This is because there are no connections

between the nodes in the RN constructed from white noise

using the threshold e¼ 0.25 (Fig. 1).

Figure 11 shows the variation of CPL with the equiva-

lence ratio. CPL is minimum for the RN corresponding to

thermoacoustic instability and maximum for the RN corre-

sponding to the oscillations prior to blowout. CPL measures

the spatial distance between two nodes which are nothing but

two states. For a periodic signal, the recurrences in the phase

space are more and hence the shortest path between two nodes

is less and CPL is minimum for thermoacoustic instability.

CPL is high for the oscillations prior to lean blowout and

combustion noise as the average degree and the recurrence

rate are less when compared with thermoacoustic instability.

Figure 12 shows the variation of the average between-

ness centrality with the equivalence ratio. We observe

lower values of betweenness centrality for thermoacoustic

instability and very high values for combustion noise and the

FIG. 10. The variation of degree distri-

bution of the RNs constructed from the

time series data of acoustic pressure

with equivalence ratios (a) 0.98 (com-

bustion noise); (b) 0.8 (intermittency

before thermoacoustic instability); (c)

0.5 (thermoacoustic instability); (d)

0.47 (intermittency just after thermoa-

coustic instability); (e) 0.29 (oscilla-

tions prior to lean blowout); and (f)

white noise. There is only one point

(abscissa is zero) in degree distribution

corresponding to white noise as there

are no connections in RN when

e¼ 0.25. The zoomed in views of the

degree distributions of (g) combustion

noise and (h) oscillations prior to lean

blowout are shown for clear visibility

of the degree distribution. We used

N¼ 10 000 data points and e¼ 0.25.
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oscillations prior to lean blowout. Betweenness centrality gives

the information related to the presence of regions with a low

phase space density that separates the regions of a high phase

space density. High values of betweenness centrality indicate

that the attractor has high local fragmentation.36 As the ther-

moacoustic instability is periodic, there will be uniform distri-

bution of the regions with a high phase space density. Hence,

betweenness centrality is low for thermoacoustic instability.

The network measures characteristic path length and

betweenness centrality captures the transitions from combus-

tion noise to thermoacoustic instability and from thermoa-

coustic instability to blowout. Hence, these measures can be

used to measure the proximity to an impending transition in

turbulent combustor, in industrial applications.

V. CONCLUSIONS

We introduce recurrence networks to study the transi-

tions between the dynamical regimes in a combustor with a

turbulent reactive flow, for the first time. We observed that

the network topology represents the geometry of the attractor

in phase space. The network topology varies with the dynam-

ical regimes. The network topology of RN constructed from

white noise is completely different when compared with the

topologies of RNs constructed from the time series of

acoustic pressure for various equivalence ratios. The average

degree and hence the recurrence and the degree of determin-

ism are higher for the RNs constructed from the time series

of acoustic pressure when compared with the RN constructed

from white noise. As the transition happens from combustion

noise to thermoacoustic instability, the corresponding topol-

ogy of the attractor changes from a complex topology to a

limit cycle. During the transition from thermoacoustic insta-

bility to lean blowout, the topology of an attractor changes

from a limit cycle to a complex topology. Thus, the topology

of RN is different for different dynamical regimes. The plot

of degree distribution in RN shows the presence of power

law degree distribution in the recurrence networks con-

structed from the time series of acoustic pressure corre-

sponding to combustion noise and oscillations prior to lean

blowout. The presence of power law is due to the presence

of singularities in the invariant density. We then proceeded

to study the variation of the measures derived from RN with

equivalence ratio. We observed that the variation of the net-

work measures CPL and betweenness centrality with equiva-

lence ratio is able to detect the transitions in a turbulent

combustor and hence can be used as early warning signals.

We henceforth conclude that RN can be used as a potential

tool to capture the transitions between the dynamical regimes

in a turbulent combustor, in industrial applications.
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