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The Raychaudhuri equation for a geodesic congruence in the presence of a zero-point length has been 
investigated. This is directly related to the small-scale structure of spacetime and possibly captures some 
quantum gravity effects. The existence of such a minimum distance between spacetime events modifies 
the associated metric structure and hence the expansion as well as its rate of change deviates from 
standard expectations. This holds true for any kind of geodesic congruences, including time-like and 
null geodesics. Interestingly, this construction works with generic spacetime geometry without any need 
of invoking any particular symmetry. In particular, inclusion of a zero-point length results into a non-
vanishing cross-sectional area for the geodesic congruences even in the coincidence limit, thus avoiding 
formation of caustics. This will have implications for both time-like and null geodesic congruences, which 
may lead to avoidance of singularity formation in the quantum spacetime.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Raychaudhuri equation governs the flow of geodesics in a given 
spacetime manifold and it has been the cornerstone in our un-
derstanding of formation of trapped surfaces and singularities (for 
a recent review, see [1]). Unlike the field equations, the Raychaud-
huri equation has no connection a priori to the gravitational theory 
one is interested in, since it is purely of geometrical origin. It es-
sentially determines the rate of change of area along a geodesic 
congruence, which gets connected to shear and rotation of the 
geodesic congruence and the component of Ricci tensor projected 
along the geodesics. Only when one tries to connect the Ricci 
tensor with matter energy momentum tensor, the gravitational 
field equations come into play. In Einstein gravity, with reasonable 
assumptions on the matter energy momentum tensor, the Ray-
chaudhuri equation demonstrates that the geodesics will converge 
forming caustics (see also [2]). This is broadly due to the attrac-
tive nature of gravity. In most of the situations these caustics do 
not lead to any spacetime singularities, but under certain circum-
stances they do, leading to formation of black hole or cosmological 
singularities. Removal of these curvature singularities has remained 
a puzzle for decades. In this work, we will present a novel ap-
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proach where formation of caustics can be avoided which possibly 
will lead to avoidance of curvature singularities as well [3–5].

It is generally believed that the quantum theory of gravity, as 
and when it comes into existence must take care of these curva-
ture singularities. Since we do not have any consistent quantum 
theory of gravity yet in sight, one can not attack the problem of 
singularity removal head on, but can take a cue from various other 
attempts. The single most important fact that is common to all the 
candidate theories of quantum gravity is the existence of a zero-
point length [6,7]. We will incorporate this fact in the spacetime 
geometry by postulating that as two points on the manifold co-
incide, the geodesic distance between them does not vanish. As a 
consequence the classical metric gab gets modified to an effective 
metric qab (which we will call the qmetric). The qmetric provides a 
squared geodesic interval between two events P and p which ap-
proximates to that provided by gab in the limit of large geodesic 
distances, while at the same time approaches a finite value differ-
ent from zero in the coincidence limit, i.e., as p → P [3–5]. Note 
that the above approach incorporates some relics of quantum grav-
ity irrespective of any specific theory of gravitational interaction.

A distinguishing aspect of this approach corresponds to the 
fact that it can incorporate some generic quantum gravity effects, 
but is based on the comfort zone of standard differential geom-
etry. This provides a useful and at the same time general tool 
in describing the small-scale quantum effects. Further it can also 
be argued that one can incorporate the qmetric to find out how 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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far one can proceed concerning understanding of various quan-
tum aspects of gravity, without embracing any specific theory of 
gravity. On this line, invoking qmetric in various situations of in-
terest, one can arrive at intriguing results also supported by other 
candidate theories of quantum gravity. In particular, in the qmet-
ric approach the spacetime becomes effectively two-dimensional 
while approaching the Planck’s scale [8]. The dimensional reduc-
tion of spacetime near the Planck scale is well known and appears 
in a variety of other approaches to quantum gravity, which include 
string theory, causal dynamical triangulations, causal set theory 
and loop quantum gravity [9–12]. Similar results stem from the 
small distance limit of Wheeler-DeWitt equation [13,14], from the 
asymptotic safety of the theory [15–17] and to different other at-
tempts based on existence of a minimum length [18–23] (see [24]
for a review and further references on the issue).

From the structure of the qmetric, several hints have been ex-
tracted regarding a possible statistical nature of the field equations 
for gravity, with intimate connection to the entropy extremization 
principle [25]. This derivation is similar to the earlier results dis-
cussed in [26,27] based on the macroscopic spacetime thermody-
namics alone. Thus qmetric may provide a microscopic justification 
for thermodynamic behaviour of null surfaces [28]. The key aspect 
to these observations is the realization that the cross-sectional ar-
eas of equi-geodesic hypersurfaces, remain finite in the coincidence 
limit.

Further investigation of this subject naturally calls for a de-
scription of Raychaudhuri equation in the spacetime geometry de-
scribed by the qmetric. As we have described earlier, given the 
generality of the approach, possibly the result derived in the con-
text of qmetric will not be restricted to any specific situation but 
applicable to various approaches to quantum gravity. As empha-
sized earlier an understanding of the Raychaudhuri equation in this 
context will be crucial to see if quantum effects can avoid singu-
larity formation [29].

There are indeed several results concerning the Raychaudhuri 
equation in a certain quantum gravity setting, even if perhaps they 
are not as numerous and general as in the context of dimensional 
reduction. However for completeness we will discuss earlier results 
suggesting that after accounting for quantum effects singularity 
formation could be avoided or, at least, not inevitable. For example, 
in [30] an attempt to derive the quantum Raychaudhuri equation 
has been presented based on exploitation of pilot’s wave formu-
lation of quantum mechanics. However this assumes an assigned 
background geometry and hence ignores back-reaction effects of 
the matter. There are also results from the context of loop quan-
tum cosmology exhibiting avoidance of singularity formation in the 
cosmological context [31,32]. This is due to the repulsive terms of 
quantum origin in the Raychaudhuri equation, which takes over 
when approaching the would-be cosmological singularity [33–35]. 
Similar results exist in the context of space-like singularity forma-
tion during collapse of a massive star to a Schwarzschild black hole 
[36]. Similar consideration of string theory, brane world models 
and theories beyond general relativity provides mixed results [35]. 
This is because the nature of additional terms in the Raychaudhuri 
equation in these contexts depend on the equation of state of the 
perfect fluid describing matter. Following this interesting body of 
works, our aim here is to derive the Raychaudhuri equation using 
the qmetric description and hence study the effect of zero point 
length on formation of caustics. We will present a unified formu-
lation for the null as well as space/time-like geodesic congruences. 
Subsequently we will investigate the derived equations in the co-
incidence limit and hence explore the consequences of zero point 
length in focussing of geodesics.

The paper is organized as follows: We have provided a ba-
sic introduction to the qmetric and have discussed the effect of 
qmetric on the expansion of null as well as space-like and time-
like geodesics in Section 2. Taking a cue from this analysis we 
have discussed the Raychaudhuri equation and its coincidence 
limit in Section 3. Finally we conclude with a discussion on the 
results obtained. Some additional computations are presented in 
Appendix A.

2. The qmetric and expansion of geodesics

In a D dimensional spacetime we consider a space-like, time-
like or null congruence � of affinely parameterized geodesics. 
In case � is made out of space-like or time-like congruence 
of geodesics, we define the normalized tangent vectors na to 
the geodesic curves as, na = {1/2

√
εσ 2(x, x′)}∇aσ

2(x, x′), where 
σ 2(x, x′) is the geodesic distance between the spacetime points xa

and x′ a and ε = ±1 for space-like/time-like geodesics. If xa denote 
the spacetime coordinates of a generic point on a geodesic γ ∈ �, 
then the qmetric qab(x, x′) at xa relative to the point x′ a can be 
written as [5]

qab(x, x′) = A gab + ε
( 1

α
− A

)
nanb . (1)

The above holds true if the two points xa and x′ a are sepa-
rated by space-like/time-like geodesics, i.e., when � consists of 
space-like/time-like geodesics. For null geodesics, a slightly differ-
ent structure is necessary. If �a is the tangent to a null geodesic γ , 
which is affinely parametrized by λ, it follows that �a = (d/dλ)a . 
For null geodesics one must introduce an additional structure 
through the null vector ka , defined as ka ≡ 2ua − �a , where ua is 
the four-velocity of any time-like observer at that spacetime point. 
The observer is chosen such that it satisfies the following condi-
tions, �a V a = −1 and gabka�b = −2. A priori these relations hold 
true at a fixed point on the null geodesic, but parallel transport 
helps one to define these relations all along the null geodesic γ . 
In terms of these two null vectors �a and ka , one can express the 
qmetric for null separated events as [37],

qab(x, x′) = A gab −
( 1

β
−A

)
�(a k b) . (2)

Here symmetrization comes with a factor of (1/2). The structure 
of the qmetric for space-like/time-like geodesics depends heavily 
on the quantities α and A respectively, both being functions of 
the squared geodesic distance σ 2(x, x′) between xa and x′ a respec-
tively. These two quantities are expressed as [5]

α = S

σ 2 S ′2 ; A = S

σ 2

(




S

) 2
D−1

, (3)

where S = S(σ 2) is the geodesic distance according to the qmet-
ric, with limx→x′ S = εL2

0, which is finite. In the above expression 
‘prime’ denotes differentiation with respect to σ 2 and 
 is the 
Van Vleck determinant associated with the geodesic distance σ 2

[38–41] (see also [42–44]), defined as,


(p, P ) = − 1√
g(x) g(x′)

det

[
− (∇a)x (∇b)x′

1

2
σ 2(x, x′)

]
. (4)

Further we have introduced another quantity 
S , which is defined 
as 
S (x, x′) ≡ 
(xS , x′), with xa

S being that point on γ which has 
the property σ 2(xS , x′) = S(x, x′). Along identical lines the quan-
tities β and A associated with the qmetric for the null geodesics 
are functions of the affine parameter λ such that (see, e.g., [37]),
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β = 1

dλS/dλ
; A = λ2

S

λ2

(




S

) 2
D−2

. (5)

Here λS is the qmetric affine parametrization of γ such that, 
limx→x′ λS → L0 in the coincidence limit. Further, we also have 

S(x, x′) = 
(xS , x′), where xa

S is that point on γ (on the same 
side of x) which satisfies the condition λ(xS , x′) = λS . This com-
pletes the basic discussion regarding the qmetric for both space-
like/time-like and null geodesics.

The main ingredient of Raychaudhuri equation is the expansion 
of the geodesics. For space-like/time-like geodesics the appropriate 
quantity to look for is the trace of the extrinsic curvature, which 
has the following expression, K = ∇ana . On the other hand, for 
affinely parametrized null geodesics, similar expression for the ex-
pansion reads θ = ∇a�

a . Our main aim of this work is to discuss 
the expansion Kq and its rate of change for space-like/time-like 
geodesics, as well as θq and its rate of change for null geodesics 
in the presence of a zero-point length. Ultimately we want to ex-
plore the behaviour of the resulting equations in the coincidence 
limit along γ .

In the non-null case we start from the results presented in [45]. 
In which case for geodesic curves the trace of the extrinsic curva-
ture associated with the qmetric reads

Kq = √
α

[
K + (D − 1)

d

dσ
ln

√
A
]

, (6)

where σ ≡ √
εσ 2. Here Kq = ∇(q)

a na
(q) , with na (q) = (1/2

√
εS)∇a S

is the tangent to γ at p according to the qmetric-affine param-
eterization. Further note that the covariant derivative is also de-
fined with respect to the qmetric, leading to its own connection 
�a

bc(q) = 1
2 qad(−∇dqbc + 2∇(b q c)d) + �a

bc , where �a
bc is the connec-

tion compatible with gab [45]. From Eq. (3), the parameter α can 
be rewritten as (d

√
εS/dσ)−2. Using Eq. (3) and Eq. (6) we readily 

get(
dK

dσ

)
q
= dKq

d
√

εS
= α

dK

dσ
+ (D − 1)α

d2 ln
√

A

dσ 2

+ 1

2

dα

dσ

[
K + (D − 1)

d ln
√

A

dσ

]
, (7)

which coincides with the expression reported in [45] for the rate 
of change of expansion of congruences of space-like/time-like equi-
geodesic curves associated with the qmetric. In the null case, on 
the other hand, the expansion θq associated with the qmetric takes 
the following form [37,46]

θq = ∇(q)
a �a

(q) =
(

dλ

dλS

)
θ + 1

2
(D − 2)

dλ

dλS

d lnA
dλ

= β
[
θ + (D − 2)

d ln
√
A

dλ

]
. (8)

Here, ∇(q)
a is the qmetric covariant derivative, which has been in-

troduced after Eq. (6) and la(q) = (d/dλS )
a is the tangent to the null 

geodesics with qmetric-affine parameterization λS . Using the ex-
plicit expressions for the quantity A from Eq. (5) in terms of the 
associated Van-Vleck determinant, we finally obtain,(

dθ

dλ

)
q
= dθq

dλS
= β

dθ

dλS
+ (D − 2)β

d

dλS

d

dλ
ln

√
A

+ dβ

dλS

[
θ + (D − 2)

d

dλ
ln

√
A

]

= β2 dθ + (D − 2)β2 d2

2
ln

√
A

dλ dλ
+ 1

2

d(β2)

dλ

[
θ + (D − 2)

d

dλ
ln

√
A

]
. (9)

This yields the rate of change of the expansion of the null gener-
ators along the null geodesic in the context of qmetric. It is inter-
esting to note that the equations, namely Eq. (7) and Eq. (9) for 
space-like/time-like and null geodesics can be transformed from 
one to the other. This is achieved through the following replace-
ment, namely, {(D −2), β2, A} ↔ {(D −1), α, A}, or in other words, 
{(D − 2), λ, λS } ↔ (D − 1), σ , 

√
εS}. Note that, so far we have not 

used the explicit expressions for the quantity A (or, A). Use of 
which along with some expression for the extrinsic curvature in 
terms of Van Vleck determinant enables us to provide alternative, 
but simpler expressions of the Raychaudhuri equation in the pres-
ence of zero point length, which will be useful while considering 
the coincidence limit.

For this purpose, we start with the following expression for the 
extrinsic curvature in terms of the Van Vleck determinant, namely, 
K = {(D − 1)/σ } − (d/dσ) ln 
. Inserting this expression in Eq. (7)
and using the expression for A from Eq. (3), we obtain (for a 
derivation see Appendix A),(

dK

dσ

)
q
= − D − 1(√

εS
)2

− d2 ln
S

d
√

εS
2

. (10)

Thus we can relate the rate of expansion of space-like/time-like 
geodesics in the presence of zero point length with the modified 
geodesic distance and modified Van Vleck determinant associated 
with the qmetric. It is possible to write down a similar expres-
sion for the rate of expansion of null geodesics as well. This re-
quires use of the following expression for the expansion θ of null 
geodesics, such that, θ = (D − 2)/λ − (d/dλ) ln 
. Use of this ex-
pression along with that for A as in Eq. (5), casts Eq. (9) to the 
following form (see Appendix A for derivation),(

dθ

dλ

)
q
= − D − 2

λ2
S

− d2 ln
S

dλ2
S

. (11)

This provides the simpler form of the rate of change of expan-
sion for null geodesics in the presence of zero point length. We 
would like to emphasize that, following our expectations, the rate 
of change of expansion for the space-like/time-like and the null 
case can be derived from one another through the following map-
ping: {(D −1), 

√
εS} ↔ {(D −2), λS }. This completes our discussion 

regarding derivation of the rate of change of expansion for qmet-
ric, inheriting zero point length, starting from the original classical 
spacetime, characterized by the metric gab or the geodesic distance 
σ 2. We will now try to understand the coincidence limit, i.e., as 
the geodesics starts to converge. In particular, we would like to 
see whether the convergence of geodesics can be avoided in the 
present premise.

3. Coincidence limit: finiteness of Raychaudhuri equation

In this section we will first write down the Raychaudhuri equa-
tion associated with geodesic observers for both space-like and 
null hypersurfaces and then shall discuss the coincidence limit of 
the Raychaudhuri equation and argue about finiteness of the same. 
This may have interesting implications for singularity structure 
in the presence of zero point length. First of all the Raychaud-
huri equation associated with the expansion of time-like geodesics 
without the zero point length reads,(

dK

dσ

)
= − 1

D − 1
K 2 − σabσ

ab − Rabnanb , (12)
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where, σab = Kab −{1/(D − 1)}Khab is traceless as hab = gab +nanb
is the induced metric on the equi-geodesic surface, and Kab =
hc

a∇cnb = ∇anb (since na satisfies geodesic equation). The twist ωab
is absent in the above expression due to hypersurface orthogonal-
ity of the vectors na , tangent to the geodesic. As evident from the 
expansion of K , both dK/dσ and K 2 diverges in the coincidence 
limit and hence in this limit the Raychaudhuri equation, presented 
above, becomes ill-defined.

Even though the extrinsic curvature K of the equi-geodesic sur-
faces scale as (1/σ ), the quantity σabσ

ab + Rabnanb is finite in the 
coincidence limit and takes the value,

lim
σ→0

(
σabσ

ab + Rabnanb
)

= −
(

dK

dσ

)
− 1

D − 1
K 2

= − 1

D − 1

(
D − 1

σ
− σ

3
F

)2

−
(

− D − 1

σ 2
− 1

3
F

)
= F ,

(13)

where F ≡ Rabnanb . Thus a part of the Raychaudhuri equation re-
mains finite in the coincidence limit, while overall both the sides 
of the Raychaudhuri equation diverge. This signifies the formation 
of caustics as the geodesics meet at a certain point.

The above conclusion was derived from general relativistic con-
sideration. However, incorporation of a zero-point length in the 
spacetime will presumably prohibit formation of such caustics. 
Thus it will be interesting to ask what happens to the Raychaud-
huri equation in the coincidence limit from the qmetric perspec-
tive, in particular can the associated geodesics form caustics? To 
answer that, we can immediately express the Raychaudhuri equa-
tion by appropriately generalizing Eq. (12), presented in the con-
text of qmetric as,

− D − 1(√
εS

)2
− d2 ln
S

d
√

εS
2

=
(

dK

dσ

)
q
= − 1

D − 1
K 2

q − σ
(q)

ab σ ab
(q) − R(q)

ab na
(q)n

b
(q) , (14)

where Eq. (10) has been used to relate (dK/dσ)q , appearing on 
the left hand side of the Raychaudhuri equation, to the modified 
geodesic distance S(σ 2) and derivative with respect to the mod-
ified Van-Vleck determinant 
S. From this and further inspection 
of the formula for Kq in Appendix A (see Eq. (26)), we see that 
we need to know the expression for Van Vleck determinant as 
well as its first and second derivatives to comment on formation 
of caustics in this case. We have to be careful, since there ex-
ist no general expression for the Van Vleck determinant, but only 
some expansion for small σ . It is certainly possible to carry over 
that expansion to qmetric as well (see Appendix A), but these se-
ries cannot converge if the curvature at x′ blows up. Even if the 
curvature is finite at x′ , still 
S can be diverging at point xS if 
geodesics emerging from x′ do have a focal point at xS (due the 
meaning of Van Vleck determinant as ratio of the actual density 
of geodesics and the density for flat spacetime, cf. [43]). If L0 is 
of the order of Planck’s length and we are not too near to a sin-
gularity (safely away with distance ∼ O(L0)), we can be sure that 
no such focal points can appear before a distance L0 from x′ , and 
thus limx→x′ 
S is finite. From the finiteness of the expansion of 

S , we can also deduce that its first and second derivatives will 
be finite. Thus the result we will derive next, has general direct 
applicability towards formation of caustics, but is not immediately 
applicable at an already formed singularity. For the second deriva-
tive, the expansion yields

d2 ln
S

d
√

εS
2

= F
3

+ Ḟ
2

√
εS +O(εS) , (15)

where, F = Rabnanb and ‘dot’ denotes derivative with respect to 
the geodesic distance σ . As mentioned, the above quantity is finite 
in the coincidence limit, and is proportional to F to the leading 
order. Analogously, even if K diverges in the coincidence limit, K(q)

does not. This can be seen by using Eq. (6) and expressions for α
and A from Eq. (3), such that for spacelike geodesics,

lim
x→x′ Kq = lim

x→x′

√
S

σ(dS/dσ 2)

[
D − 1

σ
− d ln


dσ

+ (D − 1)
d

dσ
ln

{√
S

σ

(




S

)1/(D−1)
}]

= lim
x→x′

√
S

σ(dS/dσ 2)

[
D − 1

σ
− d ln


dσ
− (D − 1)

σ

+ (D − 1)

2
√

S

1√
S

dS

dσ
+ d ln


dσ
− d ln
S

dσ

]

= lim
x→x′

√
S

σ(dS/dσ 2)

[
2(D − 1)σ

2S

dS

dσ 2

− d ln 
S

d
√

S
× 2σ

2
√

S

dS

dσ 2

]

= lim
x→x′

[
(D − 1)√

S
− d ln
S

d
√

S

]

=
(

D − 1

L0

)
− F

3
L0 − Ḟ

4
L2

0 +O(L3
0) . (16)

Here we have used the fact that, K = (D − 1)/σ − (d/dσ) ln 
, as 
well as Eq. (28) in Appendix A. A similar analysis can be performed 
for timelike geodesics as well, yielding an identical result. It turns 
out that alike the extrinsic curvature for the qmetric, its rate of 
change, i.e., (dK/dσ)q is finite as well in the coincidence limit. 
This can be seen from Eq. (10), leading to the following result

lim
x→x′

(
dK

dσ

)
q
= − D − 1

L2
0

− F
3

− Ḟ
2

L0 , (17)

which is also finite. Here we have used the expansion of the term 
ln 
S as presented in Appendix A. Thus both Kq and its rate of 
change along the geodesic are finite, as evident from Eq. (16) and 
Eq. (17), while the respective expressions for general relativity are 
diverging. Thus presence of a zero point length has smoothened 
the divergent quantities. Finally from Eq. (14) we can immediately 
obtain the coincidence limit of σabσ

ab + Rabnanb associated with 
the qmetric, which yield,

lim
x→x′

(
σabσ

ab + Rabnanb
)

q

= −
(

dK

dσ

)
q
− 1

D − 1
K 2

q

= D − 1

L2
0

+ F
3

+ Ḟ
2

L0 − 1

D − 1

{(
D − 1

L0

)
− F

3
L0 − Ḟ

4
L2

0

}2

= F + Ḟ L0 + terms depending on
(
F2, F̈

)
O(L2

0) . (18)

First of all, as expected, the above expression is finite, as in the 
case of gab , but more importantly inherits corrections over and 
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above the general relativity result which are proportional to the 
zero point length L0 and its higher powers. Thus both the left 
hand side and the right hand side of the Raychaudhuri equation for 
geodesics in qmetric are finite, in complete contrast with the cor-
responding situation with gab . This depicts another instance, where 
divergences in the qmetric manifest themselves in such a manner 
that geometric quantities derived from them are finite.

Another point must be emphasized in this context, expressions 
for quantities like, σabσ

ab as well as Ricci tensor associated with 
the qmetric are very difficult to determine in terms of geometri-
cal quantities associated with gab . This has to do with the com-
plicated non-local dependance of the qmetric on gab . Still, some 
components of the Ricci tensor associated with the qmetric can 
be presented in terms of geometrical quantities, which have highly 
non-trivial dependance on gab , see e.g., [5,45]. Thus it would be 
interesting to use Eq. (18) in order to check the consistency of any 
future computations connecting geometrical quantities associated 
with qmetric to that with gab .

This suggests that there will exist no caustics and hence 
geodesic convergence can be avoided in the context of qmetric. It 
is tempting to comment on possible removal of curvature singular-
ities as well in this context. This will happen in case of finiteness 
of the Van Vleck determinant 
S in the coincidence limit of col-
lapsing matter world lines. We will have a look at this in next 
section.

A similar consideration applies to null geodesics as well, for 
which the Raychaudhuri equation associated with the background 
metric takes the familiar form,

dθ

dλ
= − 1

D − 2
θ2 − σabσ

ab − Rab�
a�b . (19)

In this context as well, even though σabσ
ab and Rab�

a�b are fi-
nite, the expansion squared and its rate of change along the null 
geodesic diverges in the coincidence limit. This again signals for-
mation of caustics and convergence of null geodesics. The Ray-
chaudhuri equation for null geodesics in the qmetric can be ob-
tained by simply generalizing each geometrical quantities appear-
ing in the above expression to their respective counterpart for 
qmetric. Further using Eq. (11), the modified Raychaudhuri equa-
tion for qmetric becomes,

− D − 2

λ2
S

− d2 ln
S

dλ2
S

=
(

dθ

dλ

)
q
= − 1

D − 2
θ2

q − σ
(q)

ab σ ab
(q) − R(q)

ab �a
(q)�

b
(q) , (20)

where σab = θab − {1/(D − 2)}θ χab is the shear tensor associated 
with the null geodesics with χab = gab + (1/2)(�akb + �bka) be-
ing the induced metric on the equi-geodesic surface. In this case 
as well, in the coincidence limit the derivative of the Van Vleck 
determinant is given by Eq. (15) with 

√
εS replaced by λS . Along 

with this the following results for coincidence limit of various ge-
ometrical quantities of interest can also be derived,

lim
x→x′ θq =

(
D − 2

L0

)
− F

3
L0 − Ḟ

4
L2

0 +O(L3
0) , (21)

and

lim
x→x′

(
dθ

dλ

)
q
= −

(
D − 2

L2
0

)
− F

3
− Ḟ

2
L0 +O(L2

0) , (22)

where F is the null limit of Rabnanb , reading Rab�
a�b . These re-

sults can be derived by following the exact steps of Eq. (16) and 
Eq. (17), keeping in mind that we are working with null geodesics. 
As evident from Eq. (21) and Eq. (22), the quantities diverging in 
the coincidence limit for gab are finite when their counterparts in 
the qmetric is considered. Thus we obtain, the coincidence limit of 
the geometrical quantity σabσ

ab + Rab�
a�b for the qmetric to be,

lim
x→x′

(
σabσ

ab + Rab�
a�b

)
q

= −
(

dθ

dλ

)
q
− 1

D − 2
θ2

q

= D − 2

L2
0

+ F
3

+ Ḟ
2

L0 − 1

D − 2

{(
D − 2

L0

)
− F

3
L0 − Ḟ

4
L2

0

}2

= F + Ḟ L0 + terms depending on
(
F2, F̈

)
O(L2

0) , (23)

which is not only finite but also involve corrections proportional 
to various powers of the zero point length. Therefore, if we are 
not too close to already existing singularity (affine distance larger 
than orders of L0) all of the previous discussion for spacelike/time-
like case does apply also for the null case as well. Hence, in these 
circumstances, even in the context of null geodesics we have a fi-
nite coincidence limit for each term of the Raychaudhuri equation 
avoiding formation of caustics.

This is consistent with the result derived for time-like geodesics 
and to leading order is identical to F . This provides yet an-
other interpretation for the object Rab�

a�b , abundant in thermody-
namic description of gravity [28,47–49]. Thus our analysis explic-
itly demonstrates that the Raychaudhuri equation associated with 
qmetric remains finite in the coincidence limit, implying avoidance 
of caustics. This is because, there is always a residual length L0
preventing the two geodesics from merging.

Another interesting result in this context is non-vanishing of 
the cross-section of the geodesics in the coincidence limit. For 
time-like geodesics the effective cross-sectional region is a (D −
1)-dimensional volume, while for null geodesics it is a (D −
2)-dimensional area. In the context of qmetric both of them 
will be modified. It turns out that both the area and volume 
will be finite in the coincidence limit. In particular, the (D −
1)-dimensional volume in the coincidence limit will behave as 
dD−1 Vq = LD−1

0 (1/
S )(dη)D−1 and the (D − 2)-dimensional sur-

face will behave as dD−2 Aq = LD−2
0 (1/
S )(dη)D−2. Here (dη)D−1

(or, (dη)D−2) is the angular contribution from the volume (or, area) 
of the respective region in coincidence limit (for details, see [25,
37]). The finiteness of both these results are consistent with our 
findings from the Raychaudhuri equation for the qmetric. Since 
the fact that geodesics do not form caustics, as the coincidence 
limit is taken, ensures that the transverse area/volume normal to 
the geodesics must also remain finite. This provides yet another 
demonstration of the correctness of the result presented above.

4. Discussions and concluding remarks

One of the key mathematical structures of a Lorentzian man-
ifold is its causal structure, and global properties of this causal 
structure are crucial in understanding classical solutions of general 
relativity in the strong gravity regime. This is best demonstrated 
by the classical singularity theorems of Penrose and Hawking [50], 
the proofs of which crucially rely on the causal structure of the 
spacetime and some generic conditions on matter fields. How-
ever, what remains largely an unresolved issue is the behaviour 
of light cones, and the resultant causal structure of spacetime, at 
small scales. It is widely believed that quantum gravitational fluctu-
ations would drastically affect the behaviour of light cones at small 
scales, thereby altering the causal connectedness of spacetime at 
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very small scales. For example, in cosmology the BKL conjecture 
is effectively tied to the closing up of light cones near a space-like 
singularity. However, what happens to the light cones in a generic 
spacetime at an arbitrary event (not necessarily a singularity) re-
mains largely unclear, although there have been analysis based on 
Raychaudhuri equation and stress tensor fluctuations [51–53,56]. 
The analysis presented here is in a similar spirit, but attempts to 
go somewhat deeper, as we study the behaviour of light rays on a 
quantum spacetime, described by a qmetric, which admits a lower 
bound on geodesic intervals. This is perhaps the most minimalistic 
requirement that can be imposed on a quantum spacetime, sup-
ported by almost all known frameworks of quantum gravity.

For completeness, let us briefly comment on a possible connec-
tion of this approach with string theory, in particular the notion 
of T-duality. For this purpose one should note that in most of the 
string theory models presence of extra dimensions are unavoid-
able and they must be compact to avoid detection at present day 
energy scales, leading to a compactification length scale in the 
theory. Therefore from the perspective of a four-dimensional ob-
server the physics is bounded by the compactification length scale 
R associated with the compactified extra dimensions. However, 
such a scenario must also respect T-duality inherited from under-
lying string theory, which cannot distinguish between R and α′/R , 
where α′ is the string slope. This immediately suggests that from 
the perspective of a low energy observer, 

√
α′ acts as the mini-

mum length scale from the perspective of a low energy observer. 
Thus in this manner one can motivate the existence of such a min-
imum length scale from the perspective of a higher dimensional 
string theory [54,55].

When generalised to null intervals [37], the qmetric provides 
new insights into the small scale behaviour of light cones emanat-
ing from an arbitrary event in spacetime. These insights strengthen 
further as we inspect the Raychaudhuri equation on the quantum 
spacetime, which is what has been attempted in the present work. 
Two key results emerge from this analysis: (i) existence of an up-
per bound on the expansions of null and time-like geodesics, and 
(ii) additional terms in the Raychaudhuri equation related to the 
Van Vleck determinant associated with the modified geodesic in-
terval. (For a result similar to (i), see [56].) As stressed in the 
derivation, these results hold true provided we are not too close 
to an already existing singularity. But what about if we have no 
singularity at start? Will zero-point length analysis foresee avoid-
ance of singularity formation? To investigate this, following [46]
we may consider a null shell, let us say a shell of photons, under-
going spherically symmetric collapse towards a spacetime point C . 
Our geodesics are now explicitly actual world lines of particles. 
Classically, a curvature singularity blatantly develops at C . This is 
because energy per unit transverse area diverges and the geodesics 
become incomplete [50]. In the qmetric picture the situation is 
quite different. The energy density does not diverge as the van 
Vleck determinant 
S and then the area element remain finite in 
the coincidence limit. To see this, note that at coincidence, 
S is 
determined by a configuration in which no singularity is present, 
with the photons at points xS at affine distance L0 from the point 
C , point in which everything is finite and regular. We can be sure 
thus that the points at xS are not focal points and then that 
S is 
finite. Thus, the null geodesics do not cease to exist after a finite 
affine parameter and one hopes that a singularity never develops.

Hence, the most important implications of our analysis would 
be to study the structure of spacetime near a about-to-form space-
like singularity, that is in a domain where time-like and null 
geodesics terminate, resulting in geodesic incompleteness, usually 
also accompanied by divergences in the curvature tensor compo-
nents measured in some parallel propagated basis. Detailed quan-
titative predictions remain a challenging task. Indeed, it is worth 
emphasising here that our entire framework, based as it is on 
the structure of the qmetric, depends on the knowledge of the 
world function and the Van Vleck determinant. Exact expressions 
for these are not available even for the Schwarzschild geometry, 
while an approximate expansion in a covariant Taylor series would 
not be of much help at circumstances in which F is large. The 
essential complication we are hinting at can be conveyed by a sim-
ple consideration. We expect, on generic grounds, that the qmetric 
corrections would depend on the ratios q1 = L2

0/σ
2 and q2 = RL2

0, 
R being a typical magnitude of the curvature tensor components. 
Away from a curvature singularity, we expect q1 � q2 in the coin-
cidence limit. However, near a curvature singularity, R itself might 
diverge as 1/σ 2 (as happens for radial geodesics in Schwarzschild), 
thereby making q2 ∼ q1. It is therefore impossible to find a do-
main in which any kind of Taylor expansion would be applicable. 
The only way forward seems to be to find a non-covariant expan-
sion of the world function and the Van Vleck determinant in terms 
of some suitably chosen coordinates near the about-to-be singular 
region. This is currently being investigated.

It is worth noting, finally, that our derivation of the quantum 
Raychaudhuri equation does not hinge on any assigned particular 
symmetry of spacetime (like isotropy, for instance), and as such it 
refers to a completely generic geometry. This makes it applicable 
to arbitrary Lorentzian spacetimes, including the Lorentzian ge-
ometries arising as solutions to higher dimensional and/or higher 
curvature actions. Moreover, we have not made any assumptions 
regarding the nature of quantum fluctuations or of the matter 
stress-tensor that are responsible for distorting the causal struc-
ture of spacetime. Indeed, our results hold in the coincidence limit 
as long as geodesic intervals have a lower bound, and is insensi-
tive to the exact form of the modified geodesic intervals (provided 
they satisfy certain smoothness conditions, see [5]), which will 
anyway require a complete quantum gravitational analysis. In this 
sense, we expect our result concerning small scale behaviour of 
the Raychaudhuri equation on a quantum spacetime to be robust. 
It’s implications for singularities and singularity theorems are un-
der investigation.
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Appendix A. Some relevant computations

In this appendix we will briefly describe some calculations rel-
evant for the present work. First of all let us derive Eq. (10) start-
ing from the following expression for the extrinsic curvature in 
terms of the Van-Vleck determinant, namely, K = {(D − 1)/σ } −
(d/dσ) ln 
. Inserting this expression in Eq. (7) and using the ex-
pression for A from Eq. (3), we obtain,

(
dK

dσ

)
q
= α

{
− D − 1

σ 2
− d2

dσ 2
ln


+ (D − 1)
d2

dσ 2
ln

(√
εS

σ

(




S

) 1
D−1

)}

+ 1

2

dα

dσ

[
D − 1

σ
− d

dσ
ln
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+ (D − 1)
d

dσ
ln

(√
εS

σ

(




S

) 1
D−1

)]

= α

{
(D − 1)

d

dσ

(
1√
εS

d
√

εS

dσ

)

− d

dσ

(
d
√

εS

dσ

d ln
S

d
√

εS

)}

−
(

dσ

d
√

εS

)2 d2
√

εS

dσ 2

(
D − 1√

εS
− d ln
S

d
√

εS

)

= − D − 1

εS
α

(
d
√

εS

dσ

)2

+ α√
εS

(D − 1)
d2

√
εS

dσ 2

− α
d ln
S

d
√

εS

d2
√

εS

dσ 2
− α

d2 ln
S

d
√

εS
2

(
d
√

εS

dσ

)2

−
(

dσ

d
√

εS

)2 d2
√

εS

dσ 2

(
D − 1√

εS
− d ln
S

d
√

εS

)

= − D − 1

εS
− d2 ln
S

d
√

εS
2

. (24)

In a similar fashion it is also possible to write down an expression 
for the rate of expansion of null geodesics as well, which is pre-
sented in Eq. (11). The derivation requires use of the expression 
for θ and that for A, which casts Eq. (9) to the following form,

(
dθ

dλ

)
q
= β2

[
− (D − 2)

λ2
− d2

dλ2
ln 


+ (D − 2)
d2

dλ2
ln

(
λS

λ

(




S

) 1
D−2

)]

+ 1

2

d(β2)

dλ

[
D − 2

λ
− d ln


dλ

+ (D − 2)
d

dλ
ln

(
λS

λ

(




S

) 1
D−2

)]

= β2
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(D − 2)

d

dλ

(
1

λS

dλS

dλ

)
− d

dλ

(
dλS

dλ

d ln
S

dλS

)]

−
(

dλ

dλS

)2 d2λS

dλ2

(
D − 2

λS
− d ln
S

dλS

)

= − D − 2

λ2
S

β2
(

dλS

dλ

)2

+ β2

λS
(D − 2)

d2λS

dλ2

− β2 d ln 
S

dλS

d2λS

dλ2
− β2 d2 ln
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dλ2
S

(
dλS

dλ

)2

−
(

dλ

dλS

)2 d2λS

dλ2

(
D − 2

λS
− d ln
S

dλS

)

= − D − 2

λ2
S

− d2 ln
S

dλ2
S

. (25)

These are the two expressions used in the main text. Note that 
these results can also be arrived at from a completely different 
perspective. We will illustrate that as well for completeness. Let us 
start from the expression of trace of extrinsic curvature for space-
like/time-like geodesics, which we have described earlier. Substitu-
tion of this expression in Eq. (6), yields,
Kq = dσ

d
√

εS

[
D − 1

σ
− d

dσ
ln


+ (D − 1)
d

dσ
ln

(√
εS

σ

(




S

) 1
D−1

)]

= dσ

d
√

εS

[
D − 1√

εS

d
√

εS

dσ
− d

√
εS

dσ

d

d
√

εS
ln
S

]

= D − 1√
εS

− d

d
√

εS
ln
S . (26)

Taking another derivative of this expression with respect to the 
modified geodesic distance 

√
εS , we obtain (dK/dσ)q . One can 

immediately verify that the resulting expression is identical to 
Eq. (10). Finally for null geodesics as well one can use the expres-
sion for expansion parameter θ for the classical spacetime, yielding 
the modified expansion parameter θq for qmetric, such that,

θq = dλ

dλS

[
D − 2

λ
− d

dλ
ln 
 + (D − 2)

d

dλ
ln

(
λS

λ

(




S

) 1
D−2

)]

= dλ

dλS

[
D − 2

λS

dλS

dλ
− dλS

dλ

d

dλS
ln
S

]
= D − 2

λS
− d

dλS
ln
S .

(27)

This expression, as one can easily verify will lead to Eq. (11) as a 
derivative with respect to λS is taken. Note that in these (exact) 
expressions, any dependence of (dK/dσ)q or (dθ/dλ)q on α and A
or on β and A have been translated into a dependence on 

√
εS or 

λS and the modified Van Vleck determinant 
S . The modified Van 
Vleck determinant 
S can be expanded in a power series for small 
lS , with lS ≡ √

εS for space-like/time-like geodesics and lS ≡ λS for 
null geodesics, with coefficients depending on the Riemann tensor 
of the classical spacetime gab . These expansions have been used 
while considering the coincidence limit and hence it is beneficial 
to point it out here,


S = 1 + F(x′)
6

l2S + Ḟ(x′)
12

l3S +O
(

l4S

)
. (28)

Here F = Rabnanb and Ḟ = na∂aF for space-like/time-like geo-
desics, while F = Rab�

a�b and Ḟ = �a∂aF for null geodesics. We 
have used this expression in the main text.

References

[1] S. Kar, S. SenGupta, The Raychaudhuri equations: a brief review, Pramana 69 
(2007) 49, arXiv:gr-qc /0611123.

[2] D. Iosifidis, C.G. Tsagas, A.C. Petkou, Raychaudhuri equation in spacetimes with 
torsion and nonmetricity, Phys. Rev. D 98 (10) (2018) 104037, arXiv:1809 .04992
[gr-qc].

[3] D. Kothawala, Minimal length and small scale structure of spacetime, Phys. Rev. 
D 88 (2013) 104029, arXiv:1307.5618.

[4] D. Kothawala, T. Padmanabhan, Grin of the Cheshire cat: entropy density of 
spacetime as a relic from quantum gravity, Phys. Rev. D 90 (2014) 124060, 
arXiv:1405 .4967.

[5] D. Jaffino Stargen, D. Kothawala, Small scale structure of spacetime: van Vleck 
determinant and equi-geodesic surfaces, Phys. Rev. D 92 (2015) 024046, arXiv:
1503 .03793.

[6] L.J. Garay, Quantum gravity and minimum length, Int. J. Mod. Phys. A 10 (1995) 
145, arXiv:gr-qc /9403008.

[7] S. Hossenfelder, Minimal length scale scenarios for quantum gravity, Living Rev. 
Relativ. 16 (2013) 2, arXiv:1203 .6191.

[8] T. Padmanabhan, S. Chakraborty, D. Kothawala, Spacetime with zero point 
length is two-dimensional at the Planck scale, Gen. Relativ. Gravit. 48 (2016) 
55, arXiv:1507.05669.

[9] J.J. Atick, E. Witten, The Hagedorn transition and the number of degrees of 
freedom of string theory, Nucl. Phys. B 310 (1988) 291.

http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4B61723A323030366D73s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4B61723A323030366D73s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib496F736966696469733A32303138646979s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib496F736966696469733A32303138646979s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib496F736966696469733A32303138646979s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4B6F7445s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4B6F7445s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4B6F7446s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4B6F7446s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4B6F7446s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib53746141s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib53746141s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib53746141s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib47617241s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib47617241s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib486F7341s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib486F7341s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5061643035s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5061643035s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5061643035s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib57697441s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib57697441s1


8 S. Chakraborty et al. / Physics Letters B 797 (2019) 134877
[10] J. Ambjørn, J. Jurkiewicz, R. Loll, Spectral dimension of the universe, Phys. Rev. 
Lett. 95 (2005) 171301, arXiv:hep -th /0505113.

[11] S. Carlip, Dimensional reduction in causal set gravity, Class. Quantum Gravity 
32 (2015) 232001, arXiv:1506 .08775.

[12] L. Modesto, Fractal structure of loop quantum gravity, Class. Quantum Gravity 
26 (2009) 242002, arXiv:0812 .2214.

[13] S. Carlip, Spontaneous dimensional reduction in short-distance quantum grav-
ity?, AIP Conf. Proc. 1196 (2009) 72, arXiv:0909 .3329.

[14] S. Carlip, The small scale structure of spacetime, in: J. Murugan, A. Weltman, 
G.F.R. Ellis (Eds.), Foundations of Space and Time, Cambridge University Press, 
2012, arXiv:1009 .1136.

[15] O. Lauscher, M. Reuter, Ultraviolet fixed point and generalized flow equation of 
quantum gravity, Phys. Rev. D 65 (2002) 025013, arXiv:hep -th /0108040.

[16] R. Percacci, D. Perini, Should we expect a fixed point for Newton’s constant?, 
Class. Quantum Gravity 21 (2004) 5035, arXiv:hep -th /0401071.

[17] D.F. Litim, On fixed points of quantum gravity, AIP Conf. Proc. 841 (2006) 322, 
arXiv:hep -th /0606044.

[18] V. Husain, S.S. Seahra, E.J. Webster, High energy modifications of blackbody 
radiation and dimensional reduction, Phys. Rev. D 88 (2013) 024014, arXiv:
1305 .2814.

[19] G. Gubitosi, J. Magueijo, Reappraisal of a model for deformed special relativity, 
Class. Quantum Gravity 33 (2016) 115021, arXiv:1512 .03268.

[20] L. Modesto, P. Nicolini, Spectral dimension of a quantum universe, Phys. Rev. D 
81 (2010) 104040, arXiv:0912 .0220.

[21] M. Maziashvili, Quantum-gravitational running/reduction of space-time dimen-
sion, Int. J. Mod. Phys. D 18 (2009) 2209, arXiv:0905 .3612.

[22] D.N. Coumbe, Hypothesis on the nature of time, Phys. Rev. D 91 (2015) 124040, 
arXiv:1502 .04320.

[23] D.N. Coumbe, Quantum gravity without vacuum dispersion, Int. J. Mod. Phys. D 
26 (2017) 1750119, arXiv:1512 .02519.

[24] S. Carlip, Dimension and dimensional reduction in quantum gravity, Class. 
Quantum Gravity 34 (2017) 193001, arXiv:1705 .05417.

[25] T. Padmanabhan, Distribution function of the atoms of spacetime and the na-
ture of gravity, Entropy 17 (2015) 7420, arXiv:1508 .06286.

[26] T. Padmanabhan, Dark energy and gravity, Gen. Relativ. Gravit. 40 (2008) 529, 
arXiv:0705 .2533.

[27] T. Padmanabhan, A. Paranjape, Entropy of null surfaces and dynamics of space-
time, Phys. Rev. D 75 (2007) 064004, arXiv:gr-qc /0701003.

[28] S. Chakraborty, T. Padmanabhan, Thermodynamical interpretation of the geo-
metrical variables associated with null surfaces, Phys. Rev. D 92 (10) (2015) 
104011, arXiv:1508 .04060 [gr-qc].

[29] N. Dadhich, Singularity: Raychaudhuri equation once again, Pramana 69 (2007) 
23, arXiv:gr-qc /0702095.

[30] S. Das, Quantum Raychaudhuri equation, Phys. Rev. D 89 (2014) 084068, arXiv:
1311.6539.

[31] M. Bojowald, Absence of singularity in loop quantum cosmology, Phys. Rev. 
Lett. 86 (2001) 5227, arXiv:gr-qc /0102069.

[32] A. Ashtekar, Singularity resolution in loop quantum cosmology: a brief 
overview, J. Phys. Conf. Ser. 189 (2009) 012003, arXiv:0812 .4703.

[33] P. Singh, Are loop quantum cosmos never singular?, Class. Quantum Gravity 26 
(2009) 125005, arXiv:0901.2750.
[34] L.-F. Li, J.-Y. Zhu, Thermodynamics in loop quantum cosmology, Adv. High En-
ergy Phys. 2009 (2009) 905705, arXiv:0812 .3544.

[35] D.J. Burger, S. Das, S.S. Haque, N. Moynihan, B. Underwood, Towards the Ray-
chaudhuri equation beyond general relativity, Phys. Rev. D 98 (2018) 024006, 
arXiv:1802 .09499.

[36] A. Ashtekar, M. Bojowald, Quantum geometry and the Schwarzschild singular-
ity, Class. Quantum Gravity 23 (2006) 391, arXiv:gr-qc /0509075.

[37] A. Pesci, Quantum metric for null separated events and spacetime atoms, Class. 
Quantum Gravity 36 (2019) 075009, arXiv:1812 .01275.

[38] J.H. van Vleck, The correspondence principle in the statistical interpretation of 
quantum mechanics, Proc. Natl. Acad. Sci. USA 14 (1928) 178.

[39] C. Morette, On the definition and approximation of Feynman’s path integrals, 
Phys. Rev. 81 (1951) 848.

[40] B.S. DeWitt, R.W. Brehme, Radiation damping in a gravitational field, Ann. Phys. 
9 (1960) 220.

[41] B.S. DeWitt, The Dynamical Theory of Groups and Fields, Gordon and Breach, 
New York, 1965.

[42] S.M. Christensen, Vacuum expectation value of the stress tensor in an arbitrary 
curved background: the covariant point-separation method, Phys. Rev. D 14 
(1976) 2490.

[43] M. Visser, Van Vleck determinants: geodesic focussing and defocussing in 
Lorentzian spacetimes, Phys. Rev. D 47 (1993) 2395, arXiv:hep -th /9303020.

[44] E. Poisson, A. Pound, I. Vega, The motion of point particles in curved spacetime, 
Living Rev. Relativ. 14 (2011) 7, arXiv:1102 .0529.

[45] D. Kothawala, Intrinsic and extrinsic curvatures in Finsler esque spaces, Gen. 
Relativ. Gravit. 46 (2014) 1836, arXiv:1406 .2672.

[46] A. Pesci, Effective null Raychaudhuri equation, Particles 1 (2018) 230, arXiv:
1809 .08007.

[47] T. Padmanabhan, General relativity from a thermodynamic perspective, Gen. 
Relativ. Gravit. 46 (2014) 1673, arXiv:1312 .3253 [gr-qc].

[48] S. Chakraborty, T. Padmanabhan, Evolution of spacetime arises due to the de-
parture from holographic equipartition in all Lanczos-Lovelock theories of grav-
ity, Phys. Rev. D 90 (12) (2014) 124017, arXiv:1408 .4679 [gr-qc].

[49] S. Chakraborty, Lanczos-Lovelock gravity from a thermodynamic perspective, J. 
High Energy Phys. 1508 (2015) 029, arXiv:1505 .07272 [gr-qc].

[50] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge 
University Press, Cambridge UK, 1973.

[51] H. Vieira, L. Ford, V. Bezerra, Spacetime geometry fluctuations and geodesic 
deviation, arXiv:1805 .05264.

[52] J. Borgman, L. Ford, The effects of stress tensor fluctuations upon focusing, 
Phys. Rev. D 70 (2003) 064032, arXiv:gr-qc /0307043.

[53] L. Ford, T. Roman, Minkowski vacuum stress tensor fluctuations, Phys. Rev. D 
72 (2005) 105010, arXiv:gr-qc /0506026.

[54] E. Spallucci, M. Fontanini, Zero-point length, extra-dimensions and string T-
duality, arXiv:gr-qc /0508076.

[55] M. Fontanini, E. Spallucci, T. Padmanabhan, Zero-point length from string fluc-
tuations, Phys. Lett. B 633 (2006) 627, arXiv:hep -th /0509090.

[56] S. Carlip, R.A. Mosna, J.P.M. Pitelli, Vacuum fluctuations and the small scale 
structure of spacetime, Phys. Rev. Lett. 107 (2011) 021303, arXiv:1103 .5993.

http://refhub.elsevier.com/S0370-2693(19)30591-X/bib416D6242s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib416D6242s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4361726C47s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4361726C47s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4D6F6441s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4D6F6441s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4361726C43s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4361726C43s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4361726C4332s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4361726C4332s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4361726C4332s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib52657541s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib52657541s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib50657241s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib50657241s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4C6974s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4C6974s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib48757341s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib48757341s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib48757341s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4775626941s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4775626941s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4D6F6442s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4D6F6442s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4D617A41s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4D617A41s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib436F7541s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib436F7541s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib436F7542s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib436F7542s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4361726C48s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4361726C48s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5061643036s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5061643036s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib50616447s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib50616447s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib50616446s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib50616446s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4368616B7261626F7274793A32303135686E61s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4368616B7261626F7274793A32303135686E61s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4368616B7261626F7274793A32303135686E61s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44616441s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44616441s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44617341s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44617341s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib426F6A41s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib426F6A41s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib41736844s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib41736844s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib53696E6768s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib53696E6768s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4C69s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4C69s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44617342s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44617342s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44617342s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib41736842s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib41736842s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5065734Es1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5065734Es1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib76566Cs1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib76566Cs1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4D6F72s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4D6F72s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44655741s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44655741s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44655742s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib44655742s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib58656Es1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib58656Es1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib58656Es1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib56697341s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib56697341s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib505056s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib505056s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4B6F7447s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4B6F7447s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5065734Ds1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5065734Ds1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5061646D616E616268616E3A323031336E7861s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5061646D616E616268616E3A323031336E7861s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4368616B7261626F7274793A32303134726761s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4368616B7261626F7274793A32303134726761s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4368616B7261626F7274793A32303134726761s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4368616B7261626F7274793A32303135776D61s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib4368616B7261626F7274793A32303135776D61s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib48617742s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib48617742s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib666F72642D6574616C31s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib666F72642D6574616C31s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib666F72642D6574616C32s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib666F72642D6574616C32s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib666F72642D6574616C33s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib666F72642D6574616C33s1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5370616C6C756363693A32303035626Ds1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib5370616C6C756363693A32303035626Ds1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib466F6E74616E696E693A32303035696Bs1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib466F6E74616E696E693A32303035696Bs1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib6361726C69702D70726Cs1
http://refhub.elsevier.com/S0370-2693(19)30591-X/bib6361726C69702D70726Cs1

	Raychaudhuri equation with zero point length
	1 Introduction
	2 The qmetric and expansion of geodesics
	3 Coincidence limit: ﬁniteness of Raychaudhuri equation
	4 Discussions and concluding remarks
	Acknowledgements
	Appendix A Some relevant computations
	References


