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[1] This study explores the potential of integrating two different artificial intelligence
techniques, namely neural network and fuzzy logic, effectively to model the rainfall-runoff
process from rainfall and runoff information. The integration is achieved through
representing fuzzy system computations in a generic artificial neural network (ANN)
architecture, which is functionally equivalent to a fuzzy inference system. The model is
initialized by a hyperellipsoidal fuzzy clustering (HEC) procedure, which identifies
suitable numbers of fuzzy if-then rules through proper partition of the input space. The
parameters of the membership functions are optimized using a nonlinear optimization
procedure. The consequent functions are chosen to be linear in their parameters,
and a standard least squares error method is employed for parameter
estimation. The proposed model is tested on two case studies: Narmada basin in India and
Kentucky basin in the United States. The results are highly encouraging as the
model is able to explain more than 92% of the variance. The performance of the proposed
model is found to be comparable to that of an adaptive neural based fuzzy inference
system (ANFIS) developed for both the basins. The number of parameters in the proposed
model is fewer compared to ANFIS, and the former can be trained in lesser time.
It is also observed that the proposed model simulates the peak flow better than ANFIS.
Overall, the study suggests that the proposed model can potentially be a viable
alternative to ANFIS for use as an operational tool for rainfall runoff modeling purposes.
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1. Introduction

[2] Rainfall-runoff modeling is one of the most important
topics in hydrology and it is an essential measure in water
resources planning and development. Modeling of rainfall-
runoff dynamics is performed not only to provide a flood
warning system to reduce flood risks but also in managing
reservoirs particularly during the drought periods. It is well
understood that the relationship between precipitation and
runoff is extremely complex owing to temporal and spatial
variability of watershed characteristics, heterogeneity in pre-
cipitation, as well as numerous factors involved in generating
runoff. Among the components involved in transforming
precipitation to runoff, the dominant ones are evaporation,
infiltration, soil moisture, overland flow, and channel flow
[Beven, 2000]. In addition, soil properties, land use, and
geomorphology of watersheds also play an important role.
Consequently, modeling the rainfall-runoff process is a
complex task.
[3] Over the last 25 years, a large number of studies have

been undertaken to enhance our understanding of rainfall
runoff process. The modeling techniques can be broadly
classified into two classes: the theory-driven (conceptual

and physically based) approach and the data-driven (empir-
ical and black box) approach [Solomatine and Dulal, 2003].
Although the theory-driven models provide reasonable accu-
racy, the implementation and calibration of such models can
typically present various difficulties [Duan et al., 1992];
requiring sophisticated mathematical tools, and some degree
of expertise and experience with the model. Conventional
systems�theoretic models like autoregressive models and
their variations [Box and Jenkins, 1976] suffer from being
based on the linear systems theory and may only be margin-
ally suitable in capturing the highly complex, dynamic, and
nonlinear rainfall-runoff process [Jain and Srinivasulu,
2004]. Owing to the difficulty associated with parameter
optimization in nonlinear systems, the development of non-
linear system theoretic models are very limited [Hsu et al.,
1995].
[4] It is reported that most of the hydrologic models are still

far from perfect and hydrologists need to put the models in
better compliance with observations prior to use in forecasting
[Moradkhani et al., 2005]. In this context, data-driven models
(DDM), which can discover relationships from input-output
data without having the complete physical understanding of
the system, may be preferable. While such models do not
consider any physics of the hydrologic processes, they are, in
particular, very useful for river flow forecasting where the
main concern is with making accurate predictions of flow at
specific river locations. During the last decade, there has been
an increased interest in applying artificial neural network
(ANN) and fuzzy inference system (FIS), which are the most
common DDM tools, to river flow forecasting [ASCE Task
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Committee on Application of Artificial Neural Networks in
Hydrology, 2000a, 2000b; Dawson and Wilby, 2001; Maier
and Dandy, 2000; See and Openshaw, 1999; Hundecha et al.,
2001; Xiong et al., 2001; Xiong and O’Connor, 2002; Sen and
Altunkaynak, 2003; Nayak et al., 2005a; Vernieuwe et al.,
2005; Chang et al., 2005]. The major reason for such an
increasing interest in DDM is that they can be easily applied to
a wide range of data types and can handle real-life uncertainty
with low-cost solutions. Although there is plethora of studies
in hydrology using these two computing techniques (ANN
and FIS), there are lots of issues (as discussed in a later
section) that need to be addressed by the hydrologists to
effectively use these to model the rainfall-runoff processes.
While both these techniques have been proved to be effective
when used on their own, the individual strengths of each
approach can be exploited by effectively synergizing them for
the construction of powerful intelligent systems.
[5] The major objective of this paper is to develop a hybrid

intelligent system (HIS) for rainfall runoff modeling by
combining ANN and FIS. The effectiveness of the proposed
HIS is evaluated by developing two real world case studies:
(1) for Narmada basin in India, and (2) for Kentucky basin,
USA. This paper is organized as follows: after the introduc-
tion, a brief overview of the data driven modeling in hydrol-
ogy and the research issues are discussed. The section on
proposed HIS describes the identification of premise param-
eters using hyperellipsoidal fuzzy clustering technique, which
includes optimal number of input-output space partitions
and membership function parameter optimization using
Levenberg-Maquardt (LM) algorithm. In the succeeding
section, the development of the HIS model for rainfall-runoff
modeling for selected basins is presented. The results are
analyzed and discussed in the results and discussions section.
The performance of the proposed HIS model is compared
with a competing model [Nayak et al., 2005b] developed for
the same basins and is discussed in the subsequent sections.
The paper ends with conclusions drawn from this study.

2. Data-Driven Modeling in Hydrology and
Research Issues

[6] Data-driven modeling (DDM) is based on the analysis
of historical hydro-meteorological data sets describing the
system and primarily aims at establishing functional rela-
tionships between input (in this case rainfall, evaporation,
etc.) and output (in this case runoff). In the context of DDM,
ANN and FIS are being extensively used for rainfall-runoff
modeling. ANN is well suited for hydrologic modeling
[Connor et al., 1994; Atiya et al., 1999] as ANNs can
approximate virtually any (measurable) function up to an
arbitrary degree of accuracy [Hornik et al., 1989]. FIS uses
‘if-then’ rules and logical operators to establish qualitative
relationships among the variables, and has attracted many
applications in hydrology [e.g., Vernieuwe et al., 2005;
Chang et al., 2005].
[7] Although there is a plethora of studies using these two

computing techniques (ANN and FIS), there are lots of
issues that need to be addressed by the hydrologists to
effectively use these to model the rainfall-runoff process.
For instance, while developing rainfall-runoff models using
ANNs, Hsu et al. [1995] experienced that the ANN models
consistently underpredicted the low flows, and overpre-
dicted the medium flows, Jain and Srinivasulu [2004]

found that the regular back-propagation algorithm fails to
guarantee the optimal weight vector for a model. Many
researchers have indicated that ANN models are unable to
predict extreme values in the river flow [Minns and Hall,
1996; Dawson and Wilby, 1998; Campolo et al., 1999;
Sudheer et al., 2003]. The applications of FIS to runoff
modeling are relatively fewer compared to ANNs, probably
owing to the bottleneck of the FIS development in the
identification of the antecedent parameters which includes
optimal number of if-then rules and shape of the member-
ship function (MF). If the number of MFs is large (and
therefore the number of fuzzy rules is large), the system
requires large computation time for inference [Babuska,
1998]. Moreover, the huge rule base may overfit the system
and cause it to lose the capability of generalization [Setnes,
2000]. If the parameters of MFs are arbitrarily fixed, the
tuning process takes long time, and the tuning procedures
get easily trapped in local minima [Jang, 1993]. In addition,
the data sets play a crucial role in DDM since the data
obtained from real processes often contain noise, conflicting
subsets, and may not adequately cover the entire input
space.

3. Hybrid Modeling Approach

[8] Nayak et al. [2005b] reported that the limitations of
ANN and FIS are almost complementary and advocated their
effective integration to improve the computing potential of a
model. In general, this integration aims at overcoming the
limitation of individual techniques through hybridization or
fusion, leading to hybrid intelligent systems (HIS). A syn-
thesis of various techniques is required to create a HIS, and it
is crucial for the design of HIS to primarily focus on the
integration and interaction of different techniques, rather
than merge different methods to create ever-new techniques
[Abraham, 2001; Brown and Harris, 1994]. Among the
applications in water resources that employ integrated mod-
els using ANN and FIS, Deka and Chandramouli [2003]
used it for developing stage discharge relationship and Kisi
[2005] for suspended sediment estimation. Later, Deka and
Chandramouli [2005] developed a fuzzy neural network
(FNN) model for river flow prediction and reported that it
performed better compared to an ANN model. Nonetheless,
the performance of FNN for estimating the high flows was
not good, indicating room for improvement.
[9] Nayak et al. [2004, 2005b] employed an HIS by

combining ANN and Takagi-Sugeno (TS) type fuzzy model
for flood forecasting (ANFIS), which was originally proposed
by Jang [1993]. They employed gradient descent learning
algorithm (back-propagation) for antecedent parameter opti-
mization and grid partitioning to partition input space in a TS
fuzzy model. Grid partitioning refers to dividing the input
space into rectangular grids and the fuzzy rules are confined to
the corners of the grid [Brown and Harris, 1994]. However in
grid partitioning, regular partition of the input space may not
be able to produce a rule set of acceptable size. If, for
example, the data contains regions with several small clusters
of different classes, then small rule patches have to be created
to correctly classify the data in this region. Owing to the grid
partition, however, the fine resolution needed in this particular
area is also propagated to areas which are much easier to
handle, perhaps because they only contain data belonging to a
single class. The grid-partitioning approach enforces a large
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number of small identical rule patches, although one large
patch would theoretically be able to correctly classify the data
in this region. It is to be noted that an effective partition of the
input space can decrease the number of rules and thus increase
the speed in both learning and application phases. To elimi-
nate the problems associated with grid partitioning, scatter
partitioning of the input space into rule patches have been
proposed [Setnes, 2000; Chiu, 1994]. In this type the ante-
cedent parts of the fuzzy rules are positioned at arbitrary
locations in the input space. This means that rules are not
confined to corners of a rectangular grid. Rather, they can be
chosen freely, for example, by a clustering algorithm working
on the training data. Attractive features of clustering approach
for partitioning are simultaneous identification of the ante-
cedent membership functions (MFs), which attribute to min-
imum number of fuzzy rules from the data set.
[10] In a recent study to identify the most suitable

clustering algorithm for this purpose, a hyperellipsoidal
clustering (HEC) technique was found to be more effective
compared to other methods by Nayak and Sudheer [2007].
Similar conclusions have been reported by Vernieuwe et al.
[2005]. The advantage of HEC is that the method identifies
clusters of different geometrical shapes in the data set. This
helps in effective implementation of local approximation.
Further, the back-propagation algorithm which is used in
ANFIS for optimization of MF parameters is a gradient
descent method that may get stuck in local minima and the
parameters determined on a basis that may not be globally
optimal. Typically, the optimization of MF parameters can
be considered as a nonlinear optimization problem that
minimizes the mean square error of prediction and any
nonlinear optimization procedure can be adapted for this.
Levenberg-Marquardt (LM) learning procedure is one of the
most efficient higher-order adaptive algorithms and often
finds better optima [Efe and Kaynak, 2001]. This algorithm
may be a viable choice for MF optimization.

4. Hybrid Intelligent Systems (HIS)

[11] The HIS proposed in this paper comprises of combin-
ing TS fuzzy model with ANN. There are various types of
fuzzy rule-based models in the literature [e.g., Mamdani and
Assilian, 1975; Tsukamoto, 1979; Takagi and Sugeno, 1985],
and each of them is characterized by their consequent function
only. The TS fuzzy model has resulted from an effort to
develop a systematic approach to generate fuzzy rules from a
given input-output data set [Takagi and Sugeno, 1985; Sugeno
and Kang, 1988], in which the rule consequents are typically
taken to be either crisp numbers or linear functions of the
inputs. The first-order TS model is described below.
[12] Consider a function y = f (x) being mapped by the TS

model, in which y is the dependent variable and x is the
column vector (k-dimensional) of independent variables that
have a causal relationship with y. Assume that ‘n’ number of
example (patterns) pairs [x, y] are available for parameter
estimation. Considering ‘m’ rules, the mathematical func-
tioning of the TS model is:

RRi: If x1 is Ai;1 and . . . and xk is Ai;k then yi ¼ aTi xþ bi; ð1Þ

where x 2 <k is the input variables (antecedent), yi 2 < is the
output (consequent) of the ith rule Ri, and ai and bi are the

parameters of the consequent model. The notation ai
T refers to

the transpose the matrix ai. Ai is the membership function
(MF). A Gaussian MF has the form

A xkð Þ ¼ e
1
2
ðxk�ciÞ=ðsið ÞÞ2 ; ð2Þ

where {ci, si} is the parameter set termed as centre and spread
function. These parameters with maximum equal to 1 and
minimum equal to 0 determine the shapes of the membership
function. These parameters are called premise parameters or
antecedent parameters.
[13] The number of rules is denoted by m and A is the

antecedent fuzzy set (membership function) of the i th rule
such that

Ai xkð Þ : <k ! 0; 1½ 
; i ¼ 1 : m: ð3Þ

[14] In case of univariate membership functions mij (xj),
the fuzzy antecedent in the TS model is typically defined as
an AND-conjunction by means of the product operator

Ai xkð Þ ¼
Y

k

j¼1

mij xkð Þ: ð4Þ

[15] For the nth input patterns xn, the total output ŷ(n) of
the model is computed by aggregating the contribution of
the individual rules yi(n),

ŷ nð Þ ¼
X

m

i¼1

uniyi nð Þ; ð5Þ

where ŷ(n) is the estimated output for the pattern xn, and uni
is the normalized degree of fulfillment of the antecedent
clause of rule Ri, defined as

uni ¼
Ai xnð Þ

P

m

i¼1

Ai xnð Þ
: ð6Þ

[16] In this way, a weighted average of the individual rule
outputs is computed and a nonlinear function can be
approximated.
[17] The basic structure of a fuzzy system consists of

three conceptual components: a rule base which contains a
selection of fuzzy rules, a database which defines the
membership function (MF) used in the fuzzy rules, and a
reasoning mechanism which performs the inference proce-
dure upon the rules and a given condition to derive a
reasonable output conclusion [Nayak et al., 2005b]. A FIS
implements a nonlinear mapping from its input space to an
output space. A FIS can utilize human expertise by storing
its essential components in a rule base and data base, and
perform fuzzy reasoning to infer the overall output value.
The derivation of if-then rules and corresponding member-
ship functions depends heavily on the a priori knowledge
about the system under consideration. However, there is no
systematic way to transform experience or knowledge of
human experts to the knowledge base of a FIS.
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[18] ANN learning mechanisms do not rely on human
expertise. Owing to the highly parallel structure of an ANN,
it is hard to extract structured knowledge from either the
weights or the configuration of the ANN. The weights of the
ANN represent the coefficients of the hyperplane that
partitions the input space into two regions with different
output values. If one can visualize the hyperplane structure
from the training data then the subsequent learning proce-
dures in an ANN can be reduced. On the contrary, a priori
knowledge is usually obtained from the human experts and
it is most appropriate to express the knowledge as a set of
fuzzy if-then rules. The limitations that arise when these
techniques (ANN and FIS) are individually used can be
addressed by creating hybrid systems by combining the two
techniques. A common way to integrate FIS with ANN is to
represent FIS in a general ANN architecture called adaptive
neural network, and to use the learning algorithms of ANN
to estimate MF parameters [Jang, 1993]. However, the
conventional ANN learning algorithms (e.g., gradient
descent) cannot be directly applied to such a system as
the transfer function of the FIS need not usually be
‘nondifferentiable.’ This problem can be tackled by using
differentiable functions in the inference system or by not
using the standard neural learning algorithm.

4.1. Integration of FIS and ANN

[19] In theory, ANN and FIS are equivalent in that they
both are convertible. Figure 1 shows a neural network
representation of FIS with two inputs x and y. Each of
these input variables is associated with 3 MFs. The compu-
tations are performed in 5 layers (L1 through L5). It is to be
noted that the directions marked in Figure 1 imply only the
flow of information and that no weights are associated with
the links.
[20] For a first-order TS model, a common rule set with

two fuzzy if-then rules can be written as

Rule 1

If x is A1 and y is B1; then f1 ¼ p1xþ q1yþ r1 ð7Þ

Rule 2

If x is A2 and y is B2; then f2 ¼ p2xþ q2yþ r2; ð8Þ

where x and y are linguistic variables A1, A2, B1, B2 are
corresponding fuzzy sets and p1, q1, r1 and p2, q2, r2 are
consequent (linear) parameters. Each node in the first layer
(L1) generates the membership grade of an input variable.
These membership grades of each input variable are
combined at second layer (L2) to compute the firing
strength of a rule. In the third layer (L3), the firing strength
of each rule is normalized by considering the combined
firing strength of all rules. The contribution of each rule
toward the model output is computed in the fourth layer
(L4). Overall output of the model is computed at fifth layer
(L5) by combining the signals received from the previous
layer.

4.2. Parameter Identification

[21] The parameters for optimization in HIS are the
number of rules, the premise parameters, which describe
the shape of the MFs, and the consequent parameters, which
describe the overall output of the system. Ideally for n
domains (MFs) and p input variables, there could be np

different if-then rules. Each of these rules is characterized
by distinct antecedent and consequent parameters. As a
result, increasing the number of membership functions on
the input variables will increase the number of fuzzy if-then
rules; simultaneously it increases the model complexity and
hence affects the model parsimony.
[22] In the current study, the parameters of the HIS model

were identified in a sequential manner. Initially, the number
of rules and the fuzzy antecedents Ai in the rules were
determined using a fuzzy clustering algorithm. The initial
values of the antecedent parameters identified by the
clustering algorithm essentially require further tuning. Fine
tuning for the number of rules is also required to evaluate
the sensitivity. This is achieved in a nested computational
framework where two loops are nested: the parametric
(antecedent and consequent parameters) and the structural

Figure 1. Representation of fuzzy inference system in a functionally equivalent ANN architecture.
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(number of rules). The parametric loop (the inner one)
searches for the best set of parameters by minimizing a sum-
of-squares cost function, which depends exclusively on the
training set. In the case of linear TS models, this cost
minimization procedure (for estimating antecedent and
consequent parameters) can be decomposed into a combi-
nation of a least squares problem to estimate the linear
parameters of the consequent models f i and a nonlinear
optimization to find the parameters of the MFs. As stated
earlier, the current study employed Levenberg-Marquardt
algorithm for the optimization of antecedent parameters.
The structural loop evaluates the sensitivity of the number
of rules identified by the fuzzy algorithm. Details of various
algorithms employed for parameter identification are
discussed in the following sections.

4.3. Initialization of Antecedent Parameters and
Number of Rules by Hyperellipsoidal Clustering

[23] A fuzzy inference system (FIS) can be viewed as a
partition in the multidimensional feature space where the
number of partitions in each dimension corresponds to the
number of fuzzy sets and the corresponding membership
function that are defined in that dimension. Consequently,
the input space partitioning plays a major role in the optimal
architecture of the model. Input space partitioning is carried
out in different ways: grid and scattering partitioning. As
mentioned earlier, a clear drawback of grid partitioning is
that the number of rules grows exponentially and the
optimization of antecedent parameter becomes complex.
Consequently, while developing a FIS, scattering partition-
ing is commonly employed [Setnes, 2000] for FIS structure
identification as the antecedent parameters are obtained
directly from the fuzzy clusters. In the present study
hyperellipsoidal fuzzy clustering approach has been applied
to find out the rules from the hybrid system. Details of the
clustering procedure are given below.
[24] Clustering can be depicted as a problem to minimize

the sum of the within cluster dissimilarity measures. Given a
set of n different samples {xijxi 2 Rk, i = 1, 2,. . ., n}, which
are in the k-dimensional real space, the goal of clustering is
to partition these samples to m clusters {cjjcj 2 Rk, j = 1,
2,. . ., m}. Let m = (mij) 2 <nXm be the assignment matrix,
where mij denotes the membership value of xi in j th cluster.
Vector set M = (p1, p2, . . ., pj, . . ., pm) 2 <kxm is the set
of prototypes of m clusters. The similarity measure between
xi and prototype pj is D(xi, pj). It is well known that the

clustering cost function, for example, the sum of the within-
cluster dissimilarity measures, is

Jj m; pð Þ ¼
X

n

i¼1

X

m

j¼1

ma
ij :D xi; pj

� �

; ð9Þ

subject to

0 � mij � 1; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m;

where a is the fuzzy exponent whose typical value is 2, and

X

m

j¼1

mij ¼ 1; i ¼ 1; 2; :::; n: ð10Þ

[25] The function D(xi, pj) measures the distance between
the data vector xi and the center pj of the jth cluster. The
most commonly used distance measure is the squared
Euclidean distance. A clustering algorithm with Euclidean
distance favors hyperspherically shaped clusters of equal
size. This has the undesirable effect of splitting large as well
as elongated clusters under some circumstances. Indeed, it
has been noted that most clusters in real data sets are neither
well-isolated nor have the spherical shape. Other distance
measures, such as the Mahalanobis distance, can be used to
find hyperellipsoid shaped clusters. The squared Mahala-
nobis distance between a pattern vector xi and a centre pj is
defined as follows:

D xi; pj lj

�

�

� �

¼ xi � pj

� �T

l�1
j xi � pj

� �

; ð11Þ

where lj
�1 is the inverse of the [n X n] covariance matrix of

the jth cluster. The matrix lj is defined as

lj ¼

P

n

i¼1

ma
ij xi � pj
� �

xi � pj
� �T

P

n

i¼1

ma
ij

� �

; 1 � j � m; ð12Þ

where pj is the jth center coordinate and mij is the
membership between xi and pj, and n is the total number
of the training samples.
[26] The axes of the ellipsoids (eigenvectors of the scatter

matrix) are used to initialize the parameters of the conse-
quent functions. The cluster centers on the input domain are
projected to initialize the centers of the antecedents and the
scatter matrix is adopted to compute the width of the MFs.
An example of fuzzy clustering in the case of a single-input-
single-output function modeled by a fuzzy inference system
with Gaussian antecedents is represented in Figure 2.

4.4. Optimization of Antecedent Parameters by
Levenberg-Marquardt Algorithm

[27] LM is a nonlinear optimization technique, considered
as the standard of nonlinear least squares function minimi-
zation [Press et al., 1994]. LM method is an approximation
to Newton’s method. The algorithm uses the second-order
derivatives of the cost function so that a better convergence
behavior is observed. In the ordinary gradient descent
method, only the first-order derivatives are evaluated and

Figure 2. Hyperellipsoidal fuzzy clustering initialization
procedure.
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the parameter change information contains solely the
direction along which the cost is minimized. In the LM
technique, a better parameter change vector is determined. It
has the advantage that it requires only the computation of
the output gradients with respect to parameters which can be
obtained efficiently using the back-propagation technique.
A detailed mathematical description of the LM algorithm is
given by Olaru and Wehenkel [2003].
[28] The objective function used in the LM algorithm is

e ¼ d� F F; uð Þ; ð13Þ

E ¼
1

2
e2; ð14Þ

DF ¼ � r2E Fð Þ
� ��1

rE Fð Þ; ð15Þ

where e is observed output error, d is desired output, F is fuzzy
system response, F is a generic parameter of fuzzy system,
E is cost function, DF is change in parameter F, r2E(F) is
the Hessian matrix and rE(F) is the gradient relevant to the
cost of equation (14). The observation error in equation (13) is
to minimize the realization cost in equation (14) by utilizing
the rule described by equation (15). The objective is to
minimize instantaneous cost defined by equation (14). If the
Taylor series expansion is applied around the operating point
to e, which is a function of F, the first derivatives result in the
Jacobean is given by

Es ¼

@e1
@F1

. . .
@e1
@FB

� � � �

� � � �

� � � �

@eL
@F1

. . .
@eL
@FB

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: ð16Þ

[29] In equation (16), B is the number of adjustable
parameters and L is the number of outputs. The final form
of the parameter update algorithm is given below:

DF ¼ NF ¼ � ET
S ES þ qI

� ��1
ET
S e; ð17Þ

where I is the identity matrix and q is a time-varying
stabilization parameter. Here q will decrease after each
reduction in the error function and will increase only when a
tentative step would increase the error function.

4.5. Consequent Parameter Identification Using LSE

[30] Let xe denote the matrix [x, 1] with rows [xl
T, 1]. The

activation of each rule Ri, i = 1, 2,. . ., m is gathered in Gi

which is a diagonal matrix in <kXk having the normalized
degree of fulfillment uni as its nth diagonal element. Further,
denote by X0 the matrix in <nXmn composed from matrices
obtained by multiplying the matrices Gi and xe, suh that

X0 ¼ G1xe;G2xe; . . . ;Gmxe½ 
: ð18Þ

[31] Denote by q0 the vector in <nXmn given by

q0 ¼ qT1 ; q
T
2 ; . . . ; q

T
m

� �T
; ð19Þ

where qi
T = [ai

T, bi] for 1 � i � m. The model in equation (4)
can now be written as a regression model,

y ¼ X0q0 þ e; ð20Þ

where e is the approximation error. From this, the least
squares solution to the consequent parameter estimation
problem can be written as

q0 ¼ X0ð Þ
T
X0

h i�1

X0ð Þ
T
y: ð21Þ

4.6. Implementation of Learning Procedure in HIS

[32] As discussed in the previous sections, two types of
tuning are implemented, namely structural and parametric
tuning. Structural tuning aims to find suitable number of rules
through a proper partition of the input space using the
clustering algorithm. Once a satisfactory structure is deter-
mined, the parametric tuning searches for the optimal MFs
using LM algorithm together with the optimal parameters of
the consequent models using LSE algorithm. However, HIS
also suffers from the problem of equifinality; that is, there may
be a number of structure/parameter combinations, all resulting
in similar performance. The problem can be addressed by
considering minimum structural complexity (in terms of
number of rules) and maximum generalization property for
the fitted model. An incremental approach was adopted in the
current study where different architectures having different
complexity (i.e., number of rules) were first assessed in K-fold
cross validation [Stone, 1974] and then compared across in
order to select the best one. The whole learning procedure is
represented in the flow chart in Figure 3.

5. Application to Rainfall-Runoff Modeling

[33] The HIS discussed above is illustrated through two
examples by developing rainfall-runoff models: (1) for a
subbasin of the Narmada River up to the Manot gauging site
in India, (2) the Kentucky basin, USA. The rationale behind
the selection of these case studies are that (1) the available
data were in different timescales (hourly for Narmada, and
daily for Kentucky) and (2) the two basins are hydrologi-
cally different in terms of climate as well as magnitude of
river flow. These applications will help in evaluating the
statistical significance of the model proposed in this study.

5.1. Narmada Basin

[34] The subbasin of the Narmada River up to the Manot
gauging site lies between East longitudes 80�240 to 81�470

and North latitudes 22�260 to 23�180, most of the part lying
in Mandla district and some part in Shadol district of
Madhya Pradesh in India (Figure 4). The basin occupies
an area of 4980 km2 and length of the river is about 269 km.
Here Narmada flows in a generally northwesterly direction,
but just upstream of Manot, it turns in a loop to the south.
The climate of the basin is humid and tropical, although at
places extremes of heat and cold are often encountered.
Topography of the Narmada basin above Manot is hilly with
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forest cover, especially in upper reaches. Flat farmland is
more evident in the lower reaches. Flat agricultural areas
containing bunded fields are interrupted by low hills with a
medium to dense forest cover. Topographically, the basin
can be divided into three distinct levels: low land areas, hill
slopes or semihilly areas, and upland or hilly areas. The
elevation ranges from 450 m near the Manot gauging site to
1100 m in the upper part of the basin. The study area
consists of mainly black soil. At the end of the dry season,
cracks in the soil may be 2 to 6 m deep and support rapid
infiltration of the early monsoon rains, thereby inhibiting
runoff. In the upland forest areas, surface runoff may be
generated at earlier stage in monsoon season because of the
shallower soils. The runoff may also be more concentrated

in small channels whereas in the flat low land areas, sheet
flow may be more prevalent.
[35] In the current study, rainfall and runoff data on an

hourly interval during the monsoon season (June to October)
for two years (1992–1993) are used. The hourly rainfall data
are available for four stations over the entire Narmada basin
(one of them falling in the study area; see Figure 4) and areal
averages of rainfall values, computed by constructingThiessen
polygons, are used in the study.

5.2. Kentucky Basin

[36] Figure 5 shows the map of the Kentucky River basin,
which encompasses over 4.4 million acres of the state of
Kentucky. Forty separate counties lie either completely

Figure 4. Study area map of the river Narmada.

Figure 3. Flow chart of HIS learning procedure.
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or partially within the boundaries of the river basin. The
Kentucky River is the sole water supply source for several
water supply companies of the state. There is a series of
fourteen Locks and Dams on the Kentucky River, which are
owned and operated by the USArmy Corps of Engineers. The
drainage area of the Kentucky River at Lock and Dam 10
(LD10) near Winchester, Kentucky is approximately
6300 km2. The data used in the study presented in this paper
include average daily streamflow (m3/s) from the Kentucky
River at LD10 and daily average rainfall (mm) from five
rain gauges (Manchester, Hyden, Jackson, Heidelberg, and
Lexington Airport) scattered throughout the Kentucky River
Basin (see Figure 5). The total length of the available rainfall
runoff data was 26 years (1960�1989 with data in some years
missing).

5.3. Input Selection and Data Preprocessing

[37] One of the most important steps in the model
development process is the determination of significant
input variables. Usually, not all of the potential input
variables will be equally informative since some may be
correlated, noisy or have no significant relationship with the
output variable being modeled [Maier and Dandy, 2000].
Generally some degree of a priori knowledge is used to
specify the initial set of candidate inputs [e.g., Campolo et
al., 1999; Thirumalaiah and Deo, 2000]. Although a priori
identification is widely used in many applications and is
necessary to define a candidate set of inputs, it is dependent
on an expert’s knowledge, and hence is very subjective and
case dependent. Intuitively, the preferred approach for
determining appropriate inputs and lags of inputs, involves
a combination of a priori knowledge and analytical
approaches [Maier and Dandy, 1997]. When the relation-

ship to be modeled is not well understood, then an analytical
technique, such as cross correlation, is often employed [e.g.,
Sajikumar and Thandaveswara, 1999; Luk et al., 2000;
Silverman and Dracup, 2000; Coulibaly et al., 2000, 2001;
Sudheer et al., 2002]. The major disadvantage associated
with using cross correlation is that it is only able to detect
linear dependence between two variables. Cross correlation
is unable to capture any nonlinear dependence that may
exist between the inputs and the output, and may possibly
result in the omission of important inputs that are related to
the output in a nonlinear fashion. Bowden et al. [2004],
while reviewing the current state of input selection proce-
dures in water resources applications, report that the cross-
correlation methods represent the most popular analytical
techniques for selecting appropriate inputs. It follows that
there is good scope for addressing this issue in future
studies.
[38] The current study employed a statistical approach

suggested by Sudheer et al. [2002] to identify the
appropriate input vector. The method is based on the
heuristic that the potential influencing variables correspond-
ing to different time lags can be identified through statistical
analysis of the data series. The procedure uses cross
correlations, autocorrelations, and partial autocorrelations
between the variables in question along with their 95%
confidence interval. By analyzing these correlogram plots,
the significant lags of independent variables that are
potentially influencing the output (dependant variable) can
be identified. The correlogram for both the basins are
presented in Figures 6 and 7 respectively for Narmada and
Kentucky basins. The input vector identified according to
Sudheer et al. [2002] for modeling the river flow in
Narmada included a total number of 6 variables, and hence

Figure 5. Study area map of River Kentucky.
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Figure 6. Correlogram plot of the rainfall-runoff series at Narmada basin: (a) autocorrelation (ACF) of
runoff series, (b) partial autocorrelation (PACF) of runoff series, and (c) cross (serial) correlation (CCF)
between rainfall and runoff.

Figure 7. Correlogram plots of the rainfall-runoff series at Kentucky: (a) autocorrelation of runoff series,
(b) partial autocorrelation of runoff series, and (c) cross (serial) correlation between rainfall and runoff.
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the functional form of the HIS, in the case of Narmada, for
rainfall runoff modeling is given by

Q tð Þ ¼ f ½R t� 16ð Þ;R t� 17ð Þ;R t� 18ð Þ;

� Q t� 1ð Þ;Q t� 2ð Þ;Q t� 3ð Þ
; ð22Þ

where Q(t) and R(t) are river flow and rainfall respectively
at any time t in hour.
[39] Similarly for Kentucky basin, from Figure 7, it can

be seen that the most appropriate input vector according to
Sudheer et al. [2002] includes streamflows up to a lag of
2 days and precipitation up to a lag of 2 days along with the
current day precipitation.
[40] Sudheer et al. [2003] suggest that by following the

guidelines used in traditional statistical modeling, the model
performance can be improved in the case of ANN based
models. They illustrated that since an ANN is doing a local
approximation of the input-output function, a local variation
induced by the skewness of the data may influence the
effectiveness of the model. Consequently, they suggested
that an appropriate transformation that reduces the skewness
of the original data may help improve the performance of

ANN models. Data transformations are often used to
simplify the structure of the data so that they follow a
convenient statistical model [Sudheer et al., 2003]. In the
neuro-fuzzy approach (of modeling the rainfall-runoff
process or any other function), the time series (with or
without exogenous inputs) is first embedded in a state space
using delay coordinates, and the underlying nonlinear
mapping is inferred by a local approximation using only
the nearby states. Therefore any local variations in the data
will certainly influence the model performance. Hence the
suggestions by Sudheer et al. [2003] can be very much
applied to neuro-fuzzy systems also. Accordingly, log-
normal transformation was used and the deterministic
component in the runoff and rainfall series was removed
prior to the modeling in the current study.
[41] While developing any model, the total available

samples are generally divided into training and validation
sets prior to the model building, and in some cases a cross-
validation set is also used. In the majority of data-driven
modeling applications in hydrology, the available data are
divided arbitrarily into the required subsets. However, recent
studies have shown that the way the data are divided can have
a significant impact on the results obtained [Tokar and
Johnson, 1999]. In other words, though the network may
fit training samples with great precision, it may fail to
simulate flows outside the range of the training data. It has
been suggested that the statistical properties (e.g., mean and
standard deviation) of the various data subsets need to be
considered to ensure that each subset represents the same
population [Shahin et al., 2000]. In this study, the rainfall
and discharge data during the years 1992 are used for
training the HIS, and calibrated model is tested using the
data for the year 1993, for Narmada basin. The mean value
of river flow for the calibration and validation data was
291.45 m3/s and 265.86 m3/s respectively. The standard
deviation of the two data sets were 450.05 (calibration) and
387.91 (validation). The training data set for Kentucky
basin is for thirteen years (1960�1972) for parameter
estimation, and a testing data set of thirteen years
(1977�1989) for validation of the model. While dividing
the data into training and validation set, care has been taken
to ensure similar statistical properties of both the data sets.

5.4. Performance Evaluation of HIS

[42] To evaluate the adequacy of developed model, dif-
ferent evaluation measures are considered and the resulting
hydrographs from the developed model are analyzed. These
indices include the root mean square error (RMSE) between
the computed and observed runoff, coefficient of correlation
(CORR), the model efficiency (EFF). These indices are the
most commonly used indices in any soft computing appli-
cation and hence the definition for these indices can be
obtained from literature [e.g., Hsu et al., 1995].
[43] The predictive uncertainty of the models is evaluated

by an index called the noise-to-signal ratio. The unbiased
standard error of estimate (SEE) is a measure of the unex-
plained variance [Tokar and Johnson, 1999]. It is usually
compared with the standard deviation of the observed
values of the dependent variable (STD). The ratio of SEE to
STD, called the noise-to-signal ratio, indicates the degree to
which noise hides the information [Gupta and Sorooshian,
1985]. If the SEE is significantly smaller than the STD, then
the model can provide accurate predictions. On the contrary,

Figure 8. Variation of average RMSE (scaled domain)
with number of fuzzy if-then rules during cross validation
(a) for Narmada basin and (b) for Kentucky basin.
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if the ratio is greater than or equal to unity, then the model
predictions will not be accurate [McCuen, 1993].
[44] Noise to signal ratio

NS ¼
SEE

sy

; ð23Þ

where

SEE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

t¼1

yot � yct
� �2

v

v

u

u

u

t

; ð24Þ

where yi
o and yi

c respectively are the observed and computed
flow values at time t, and yo and yc are themean of the observed
and computed flow values corresponding to n patterns, v is the
degree of freedom and sy is the standard deviation of the
observed flow.

6. Results and Discussions

6.1. HIS Parameters

[45] The number of rules was determined using hyper-
ellipsoidal fuzzy clustering algorithm. As stated earlier,
K-fold cross-validation procedure [Stone, 1974], considering
10 subsets, was employed to find out the best architecture of
the HIS. The values of root mean squared error (RMSE)
were used as the index to check the performance during
cross validation. The plot showing cross-validation error
against the number of rules is presented in Figure 8a, from
which it can be observed that average RMSE value is
minimum for 3 fuzzy if-then rules in the case of Narmada
basin. The optimized membership functions corresponding
to 3 fuzzy if-then rules are presented in Figure 9, in which

the MF overlapping is clearly visible. Since medium- and
high-range flow values were high compared to low values
in the data, the MF shows high grade for medium- and high-
range values. The input coordinates of the 3 cluster centers
obtained are given below:

x1* ¼ 0:1495 0:14691 0:14998 0:45236 0:45229 0:4522½ 


x2* ¼ 0:1566 0:15704 0:15601 045522 0:45511 0:4550½ 


x3* ¼ 0:1639 0:16639 0:16415 0:45610 0:45595 0:4558½ 


where xi* represent ith cluster centre, and the values in each
raw correspond to the vector of the input values given in the
functional relationship in the order

R t� 16ð Þ;R t� 17ð Þ;R t� 18ð Þ;Q t� 1ð Þ;½ Q t� 2ð Þ;Q t� 3ð Þ
;

where R and Q are as defined earlier. Note that the values of
coordinates in the xi* matrix are log-transformed, standar-
dized values of variable. The corresponding output equations
(consequent) derived for each cluster are as follows:

y1* ¼ 0:0250 0:0747 � 0:035 2:3885 � 0:0575 � 0:5468½ 


� x½ 
Tþ 3:629

y2* ¼ 2:0441 2:5185 2:0675 3:0382 � 1:6881 2:5850½ 


� x½ 
Tþ 7:728

y3* ¼ 0:8328 1:1985 1:0510 0:2565 2:4531 � 1:2356½ 


� x½ 
T� 12:223

where yi* is the model output for ith cluster corresponding to
an input vector x.

Figure 9. Optimal membership functions for three fuzzy if-then rules (for Narmada basin).
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[46] In the case of Kentucky basin, the minimum value of
average RMSE during cross validation was obtained
corresponding to 4 clusters (Figure 8b), indicating 4 rules
for the HIS model for Kentucky. The optimized consequent
equations for Kentucky basin are as follows:

y1* ¼ 3390:20 4404:60 � 286:83 1990:80 2585:80½ 


� x½ 
Tþ 174630:00

y2* ¼ 13080:0 11123:00 � 2336:40 11825:00 12480:00½ 


� x½ 
T �43471:00

y3* ¼ �148:04 � 82:39 � 126:56 � 163:89 � 170:69½ 


� x½ 
T � 2136:60

y4* ¼ 3688:3 2039:30 573:85 3791:30 4314:60½ 


� x½ 
T �133980:00

where the variables are as defined earlier.

6.2. HIS Model Performance

[47] The values of the evaluation measures during cali-
bration and validation period for HIS for both the basins are
summarized in the Table 1, from which it is very vivid that
HIS is able to mimic the rainfall runoff transformation
reasonably well. The correlation statistic, which evaluates
the linear correlation between the observed and the com-
puted runoff, is consistent during calibration and validation
period for both the basins. The RMSE statistic is a measure
of residual variance, and its value for the current model
varies from 33 to 36 m3/s, in the case of Narmada indicating
a very good performance when compared to the mean flow

(hourly) value of 290 m3/s. The mean daily flow in
Kentucky is 170 m3/s, and the RMSE statistic in this case
is found to be of the order of 30% of the mean flow. The
HIS performance is very good in terms of the efficiency
statistic [Shamseldin, 1997], as the calibration and valida-
tion efficiency is greater than 99% in the case of Narmada.
The noise to signal ratio (NS) illustrates how the noise is
hiding the information in the model performance, and a
value less than unity is preferred. It should be noted that in
the case of HIS the value of NS is close to zero in the case
of Narmada, while it is of the order of 22% in the case of
Kentucky.
[48] The scatterplots of flows (observed and computed by

HIS) during calibration and validation period for both the
case examples are presented in Figures 10 and 11 for
comparison respectively for Narmada and Kentucky basins.
These plots give clear indication of the simulation ability of
the developed model across the full range of flows. It is
noted that most of the flows tend to fall close to the 45� line
(rather reduced scattering), showing a good agreement
between observed and forecasted flows, even though the
scatter is relatively high in the case of Kentucky. Although
the results in general indicate the potential of HIS in
effective modeling the rainfall runoff relationship, it is
observed from Table 1 as well as Figure 11 that the
performance of HIS is relatively lower for Kentucky basin
compared to that for Narmada basin; this may be plausibly
attributed to the variation in nonlinear dynamics of the
mapped relationships in different timescales (hourly in
Narmada versus daily in Kentucky).

Table 1. Statistical Performance Indices of HIS and ANFIS for Narmada and Kentucky Basin

Statistical Indicesa

Narmada Basin Kentucky Basin

HIS ANFIS HIS ANFIS

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

CORR 0.997 0.996 0.999 0.990 0.986 0.964 0.984 0.942
Efficiency, % 99.55 99.24 99.78 98.11 95.18 92.99 96.92 87.60
RMSE, m3/s 33.09 35.78 20.88 53.30 51.57 55.42 42.30 73.73
NS 0.075 0.052 0.047 0.138 0.220 0.265 0.176 0.353

aCORR, coefficient of correlation; NS, noise to signal ratio.

Figure 10. Scatterplots for observed and computed flows (a) calibration and (b) validation period for
Narmada basin.
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6.3. Comparison With Other HIS Model

[49] In order to evaluate the potential of the proposed HIS
over ANFIS [Nayak et al., 2005b], an ANFIS model was
developed for both the basins using the same input
parameters. The ANFIS algorithm also produces fuzzy
models consisting of the Takagi-Sugeno type rules [Nayak
et al., 2004, 2005b]. The major difference between the
ANFIS and the proposed HIS is that ANFIS uses back-
propagation algorithm to determine premise parameters (to
learn the parameters related to membership functions) and
least squares estimation to determine consequent para-
meters. Gaussian membership functions are selected for the
model and input space partitioning is carried out using grid
partitioning. Note that in the grid partitioning method,
ideally for n domains (rules) and p input variables there
could be np different if-then rules. In the current study, the
number of MFs assigned to each input variable has been
varied from 2 (64 and 32 rules respectively for Narmada and
Kentucky) to 4 (4096 and 1024 rules respectively for
Narmada and Kentucky) and it was observed that ANFIS
suffers from curse of dimensionality beyond 2 membership
functions, which is manifested by an exponentially growing
number of rules in relation with the pattern dimensionality.
The final model parameters were identified through cross
validation technique in the case of ANFIS also.
[50] The performance indices for the developed ANFIS

model in estimating flow values in both the case examples
are also summarized in the Table 1. It is evident from the
Table 1 that the performance of the ANFIS model is close to
HIS during training as well as validation. However, it is
observed that the RMSE for ANFIS during validation is not
in similar range as during calibration, implying a problem of
overtraining. It is to be noted that huge rule base may overfit
the system and cause it to lose the capability of generaliza-
tion. It is logical to believe that as ANFIS has more number
of parameters, it may outperform HIS. Note that the ANFIS
model uses two membership functions for each input
variable (6-input runoff model for Narmada), leading to
64 fuzzy partitions in the input space, and thus 64 rules
(5-input runoff model for Kentucky implying 32 rules).
Consequently, in the case of Narmada basin, the developed
ANFIS model has 24 parameters (2 Gaussian MF per input

each having 2 parameters) that are optimized through back-
propagation and 448 parameters optimized through linear
least squares estimation (7 parameters for each consequent
equation). On the contrary, the proposedHIS has only 3 fuzzy
rules comprising of 36 premise parameters (3 Gaussian MF
per input) and 21 consequent parameters. Evidently, despite a
significant reduction in the number of rules HIS results in
similar performance as that of ANFIS. This observation is
found to be true in the case of Kentucky basin too.
[51] Constructing models from data with nontrivial

dynamics involves the problem of how to choose the best
model from within a class of models, or to choose between
the competing classes. The model selection problem involves
selecting k nonzero elements (l, the parameters of the
model) in a given nonlinear model, g(x, l). In the absence
of proper guidelines for model selection, getting to the best
model in the quickest amount of time with the least number
of parameters (model parsimony) seems to be a useful goal.
Accordingly the proposed HIS could be a viable alternative
to ANFIS. Also, for both ANFIS and HIS, interpretable
fuzzy knowledge bases can be derived in terms of dis-
tinguishable fuzzy sets and rules. However, as the number
of rules increases, as in the case of ANFIS, the interpreta-
tion of rules becomes more complex.
[52] The indices presented in Table 1 are computed over

the entire range of flow; hence in order to have a closer
examination of each model’s performance, the computed
hydrograph by both the models for a typical flood event
from both the basins are depicted along with its observed
counterpart in Figure 12. It can be observed from Figure 12
that HIS is preserving the peak flows effectively than the
ANFIS, while in low and medium ranges of flow the
performance of both models is similar.
[53] The improved performance of HIS over ANFIS can

be reinforced from the results presented in Table 2, where
the error in peak flows (for a few typical flood events) and
error in the volume of hydrograph is depicted. Note that the
error in peak flow prediction is less for HIS compared to
ANFIS in various ranges of flow. Note that for Narmada
basin, the first peak event in the Table 2 (2989.23 m3/s) is
the maximum flow observed in the validation period. It is
noted that HIS slightly over predicts all the peaks, while

Figure 11. Scatter plots for observed and computed flows (a) calibration and (b) validation period for
Kentucky basin.
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Figure 12. Plot of comparison between HIS and ANFIS model for a typical storm event for (a) Narmada
basin and (b) Kentucky basin.

Table 2. Comparison of Model Estimated Hydrograph Characteristics by HIS and ANFIS, for Three Typical Flood

Events During Model Validation Period (Narmada Basin and Kentucky Basin)

Observed Peak
Flow, m3/s

HIS ANFIS

Relative Error
in Peak Flow, %

Error in Volume
Under the Hydrograph, %

Relative Error in
Peak Flow, %

Error in Volume Under
the Hydrograph, %

Narmada Basin
2989.23 2.72 �0.13 3.12 0.33
1868.63 0.98 �0.13 �2.49 �2.44
2519.96 1.00 �0.11 �1.70 �1.70

Kentucky Basin
2553.93 �15.35 �0.01 �28.13 0.008
2010.28 �3.58 �0.16 10.87 �0.91
1896.92 1.40 �3.30 �8.52 �119.49

14 of 17

W07415 NAYAK ET AL.: RAINFALL-RUNOFF MODELING W07415



ANFIS underestimates majority of them. The error in
estimating peak flow was found to be lesser in the case of
HIS compared to ANFIS for Kentucky basin also. It can be
observed from Table 2 that a peak flow of 2010.28 m3/s was
computed as 2082.25 m3/s by the HIS and 1971.63 m3/s by
the ANFIS. The relative error in estimating other peaks
were also several times higher for ANFIS as compared to
HIS. The results, in general, confirm that the performance of
HIS was much superior as compared to ANFIS for both the
basins. This observation makes the ANFIS’s potential
(when grid partitioning is used) questionable for practical
application especially in the flood forecasting context. It is
evident that the total volume estimated by HIS is much
better than ANFIS for all the events considered.
[54] The distribution of forecast errors over the entire

range of flow by two models for validation period is
presented in Figures 13 and 14 respectively for Narmada
and Kentucky basins respectively. It is clear from these
figures that the assumption of homoscedastcity of residuals
(which is an inherent assumption when mean square error is
used as the objective function during parameter estimation)
is valid in the case of HIS models in both the case examples.
The earlier observation that HIS preserves the peak better,
can be further confirmed from Figures 13 and 14.
[55] Apart from the improvement in predicting the peak

flow characteristics and parsimonious model for HIS over
ANFIS, the HIS takes lesser time in calibration as the
number of parameters to be estimated are significantly less
for HIS. It is worth mentioning that parameter estimation of
the ANFIS model took about 948 s, while HIS was able to
learn the process in 563 s on a normal Pentium 4 processor

during training for the Narmada case study. This observa-
tion of reduction in time for training the model was found to
be true for Kentucky basin also.
[56] The results from this study clearly illustrate that the

HIS model performs better than the ANFIS model in
mapping the rainfall-runoff process. Though the general
performance of these models was comparable at a one step
ahead forecasts (both hourly as well as daily as illustrated in
two case examples), the ANFIS tends to underestimate the
peak flows of the hydrograph. It should be noted that the
preliminary concepts of both HIS and ANFIS are essentially
rooted in the same concepts of fuzzy computing; that is the
concept of reconstruction of a single-variable series in a
multidimensional phase space to represent the underlying
dynamics, and using a local approximation method for
making predictions. The only difference between both the
models is in terms of the methods employed for the
parameter identification. It is clear that since fuzzy comput-
ing is based on local approximations, the identification of
the local regions play a major role in its performance. This
is essentially evident from the current study that the use of a
hyperellipsoidal clustering to identify the local regions help
HIS to map the process better compared to ANFIS. The
foregoing discussions clearly illustrate that the HIS model
can be a preferable alternative to ANFIS in modeling the
rainfall-runoff process.

7. Summary and Conclusions

[57] This paper presents a new approach to automatically
extract fuzzy rules by direct learning from data and build a

Figure 13. Plot of distribution of error along the magnitude of flow for (a) HIS and (b) ANFIS models
during validation period (Narmada basin).
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model that closely represents the process. The approach is
based on a neuro-fuzzy model that is designed in such a way
that its learning algorithm works in a parameter space with
reduced dimensionality. The dimensionality of the reduced
space guarantees the generation of human-understandable
fuzzy rules. In a conventional fuzzy approach, the MFs and
the consequent models are fixed by the model designer
according to a priori knowledge. In the present investiga-
tion, initialization of the HIS architecture is provided by a
hyperellipsoidal fuzzy clustering procedure. Structural
learning procedure is applied to find out suitable numbers
of fuzzy if-then rules and proper partition of the input space
and the Levenberg-Marquardt parametric learning proce-
dure has been used to determine optimal MF. An advantage
of the proposed HIS structure is that by using fuzzy set
techniques the resulting model is transparent and linguisti-
cally interpretable. Therefore the model can be identified
with the help of linguistic rules and data gathered from the
process. As the proposed HIS model has a lower complexity
than other fuzzy models, it does not suffer from the curse of
dimensionality (unlike more general fuzzy models) and can
be easily implemented.
[58] The potential of the HIS model is illustrated by

developing a rainfall-runoff model for two basins:
(1) Narmada basin, India, (2) Kentucky basin, USA. A
tenfold cross-validation procedure was applied to find out
the best model developed from input/output data and the
best structure consists of 3 fuzzy if-then rules for Narmada
basin and 4 rules for Kentucky basin. The values of three

performance evaluation criteria, namely, the coefficient of
efficiency, the root-mean-square error, and the coefficient of
correlation, were found to be very good and consistent for
the HIS model. A comparison between HIS and ANFIS
suggests that both may perform similar. The results suggest
that the HIS can be a viable alternative to the other, as HIS
has certain advantages over ANFIS in terms of having less
number of parameters, transparent rules, lesser time require-
ment etc. It is also noted that HIS simulates the peak flow
better than ANFIS, which is of importance in a flood
forecasting problem. Further it is also observed that the
proposed HIS can be calibrated with lesser time than ANFIS
as it makes use of an optimization algorithm for structural
identification also.
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