
Tuberculosis is an infection caused by Mycobacterium tu-
berculosis, which commonly affects the respiratory tract, i.e.
lungs.1) It is termed as “a global health emergency” by world
health organization (WHO) in 1993 as it affects 1.7 billion
people per year, that is equal to one-third of the entire world
population. The first line of drugs used in the treatment of tu-
berculosis (TB) is a combination of isoniazid, rifampicin,
pyrazinamide and ethambutol. The high concentration of
lipids in the cell wall of M. tuberculosis has been attributed
to its resistant to antibiotics. The lipid fraction of cell wall
consists of three major components mycolic acids, cord fac-
tor and wax-D. Isoniazid is known to inhibit the synthesis of
mycolic acid. Ethambutol is known to inhibit the incorpora-
tion of mycolic acid into the cell wall. Rifampicin acts by
binding to DNA-dependent RNA polymerase and inhibits
initiation of RNA synthesis. Pyrazinoic acid, the active form
of pyrazinamide, is reported by Zhang Y., et al. to inhibit M.
tuberculosis membrane transport function and disrupt mem-
brane energetics.2) It is expected that the disease can be com-
pletely eliminated with the help of combination therapy, but
these hopes were dashed with the advent of drug resistant
strains. The development of drug resistant strains is due to
point mutations in the bacterial chromosome, resulting in
changes in the antibiotic target that renders the strain no
longer susceptible to the drug.

Thus the increasing clinical importance of tuberculosis has
lent additional urgency to researchers to identify new and ef-
fective antimycobacterial compounds. Literature survey re-
veals that chalcones, flavones and flavanones possess anti-
inflammatory,3) anticancer,4) antileishmanial,5) antimalarial,6)

antimicrobial and antioxidant7) activities. It is reported that
the chalcones and their derivatives are more effective against
Gram-positive bacteria than against Gram-negative bacteria.8)

But it is interesting to note that they are also effective against
this acid-fast bacillus which is neither Gram-positive nor
negative. These compounds show very good activity against
H37Rv strain. Understanding the effect of structural features
on the activity would help the researchers to design new mol-

ecules that may exhibit higher activity. Quantitative structure
activity relationship (QSAR) approach is better for designing
new drugs when the target is not known or if there are multi-
ple targets.

QSAR studies on heterocyclic analogues of salicylanilides
performed through the combination of Free-Wilson and Han-
sch approach explains the influences of electronic and hy-
drophobic properties.9) Gupta M. K., et al. have observed
that topological descriptors are correlated with the anti-
mycobacterial activity of nitro/acetamido alkenol and
chloro/amino alkenol derivatives.10) 3D-QSAR uses three-di-
mensional properties of the molecules (particularly steric and
electrostatic factors) and correlates these descriptors with the
biological activity. 3D-QSAR studies carried out by Sh-
agufta, et al. on diaryloxy-methano-phenanthrene derivatives
helped in optimizing the phenanthrene ring and its side
chain.11) Hydrophobicity of the molecule is found to play a
major role in determining the antitubercular activity. Rela-
tionship between descriptors such as logP (hydrophobicity of
the molecule) and dipole moment with toxicity of com-
pounds is explained by Coleman M. D., et al.12) Comparative
molecular field analysis (CoMFA) and comparative molecu-
lar similarity index analysis (CoMSIA) techniques are ap-
plied on ring-substituted quinolines to arrive at relationship
linking structure and activity. The study helped in elucidating
the importance of the steric and electronic factors on the ac-
tivity.13) In the present paper QSARs are developed for four
groups of compounds namely, chalcones, chalcone-like com-
pounds, flavones and flavanones which have shown good
anti-tuberculosis activity. Although QSAR studies for these
compounds have not been reported in the literature similar
analysis as listed above has been carried out for other anti-
mycobacterial compounds.

Experimental
The structure and anti-tuberculosis inhibitory concentration of chalcones,

chalcone-like compounds, flavones and flavanones was collected from the
literature for developing the QSAR models.14) The structure of various mole-
cules, as shown in the Tables 1—4 was built and its energy was minimized
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using the Consistent-Valence Force Field (CVFF) available in Cerius2 soft-
ware® (Acceryls Inc, U.S.A.). CVFF is commonly used for the minimization
of small molecules and macromolecules.15) Forty-eight descriptors that in-
clude topological indices, spatial, charge, geometrical, constitutive proper-
ties, quantum mechanical and thermodynamic were evaluated for all the
compounds. Several literature references16—18) give a detailed description of
these descriptors. A GFA technique was used to select the best set of de-
scriptors from the forty eight descriptors, so that it gives the most appropri-
ate QSAR. The problem that is faced frequently by a researcher is that of a
small number of observations (experiments) and a large number of molecu-
lar parameters in the descriptor pool. One has to select the best set of de-
scriptors that represent the molecule from this large set. At times selecting
the wrong set of descriptors could lead to chance correlations or incorrect
understanding.

According to researchers the quality of a QSAR depends on two factors
namely, the kind of molecular descriptors selected and the method used to
extract the useful molecular information. These problems are addressed by
the use of GFA. This is a useful technique for searching in a large parameter
space when the data is small. This technique can be used together with stan-
dard regression analysis for constructing QSAR. This method provides mul-
tiple models that are created by evolving random initial models using differ-
ent descriptors. Models are improved by performing a crossover operation to
recombine terms of better scoring models. The GFA algorithm approach has
a number of important advantages over other techniques such as, it builds
multiple models rather than a single model and it automatically selects
which features are to be used in the models etc. GFA has been used by other

researchers as well to develop good QSAR models.19,20)

The goodness of the regression fits are estimated using parameters such
as, r2 (�1�SSE/TSS), r2

adj (�1�(n�1)(1�r2)/(n�p�1)), XV r2 (cross-val-
idated r2�1�PRESS/TSS), F ratio (�(n�2)r2/(1�r2)) and MSSE (�mean
sum of square of error�SSE/n) where, TSS�total sum of squares and
SSE�sum of squares, PRESS�predicted sum of squares based on leave-
one-out method.21) The quantity r, called the correlation coefficient, meas-
ures the strength and the direction of the relationship between two variables.
In bootstrap validation, K n-dimensional groups are generated by a randomly
repeated selection of n-objects from the original data set. Each group of data
is always of n-dimension. The model obtained on the first selected objects is
used to predict the values for the excluded sample. From each bootstrap
sample the statistical parameter of interest is calculated. Bootstrap r2 (BS r2)
is the average squared correlation coefficient calculated during the validation
procedure.22) The root mean square error (also known as the standard error
of the estimate) is the square root of the residual mean square and it is an in-
dication of the quality of the fit. It is the standard deviation of the data about
the regression line, rather than about the sample mean. A large F indicates
that the model fit is not a chance occurrence. If r2, r2

adj, and XV r2 are above
a value of 0.6 it indicates a good model fit.

Results and Discussion
Table 5 lists the best QSAR models derived for the series

of chalcones, chalcone-like compounds, flavones and fla-
vanones using the reported biological activity. The descrip-
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Table 1. Anti-tuberculosis Activity of Chalcones

S. No Compounds
B-ring A-ring

% inhibition at 
12.5 mg/ml

2� 3� 4� 5� 6� 2 3 4 Data Model

1 1 OH — OCH3 — — — — — 78 58.65
2 2 OH — — — OCH3 — — OCH3 75 62.71
3 3 OH — — Phenyl — — — — 68 54.86
4 4 — — NO2 — — — — OCH3 62 54.03
5 5 OH — — — — — — — 61 60.99
6 6 OH — OCH3 — OCH3 — — OCH3 40 46.83
7 7 OH — OCH3 — — — — OCH3 32 39.55
8 8 OH — — — — — OH — 18 41.44
9 9 OH — — — — — NH2 — 11 7.25

10 10 OH — — NH2 — — — — 6 2.88
11 11 — — NH2 — — — — — 5 19.14
12 12 F — — — — — — OCH3 82 84.91
13 13 OH — — — F — — OCH3 66 62.42
14 14 OH — F — — — — OCH3 63 53.29
15 15 OH — — — — — Cl — 90 85.73
16 16 OH — Cl — — — — — 89 74.96
17 17 OH — — Cl — — — — 67 77.67
18 18 OH — — — — — — Cl 67 69.51
19 19 OH — Cl — — — — OCH3 57 57.32
20 20 OH — — — — Br — — 83 102.06
21 21 OH Br — — — — — — 79 74
22 22 OH — — — — — — Br 70 49.06
23 23 OH — — Br — — — — 68 66.08
24 24 OH — Br — — — — — 57 58.85
25 25 OH — Br — — — — OCH3 25 32.74
26 26 OH — — Br — — — OCH3 23 36.71
27 27 OH — Br — — NH2 — — 12 3.18
28 28 OH — — Br — NH2 — — 8 10.13
29 29 OH — — — — — I — 92 105.21
30 30 — NH2 — — — I — — 88 72.8
31 31 OH — — I — — — — 51 48.94
32 32 OH — I — — — — — 21 37.26
33 33 OH — — — — — — I 21 24.19
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Table 2. Anti-tuberculosis Activity of Chalcone-Like Compounds

S. No Compounds R R�
% inhibition at 12.5 mg/ml

Data Model

34 34 4-Fluorophenyl Pyridin-3-yl 98 77.53
35 35 3-Hydroxyphenyl- Phenanthren-9-yl 97 76.63
36 36 Pyridin-3-yl Phenanthren-9-yl 96 62.23
37 37 Furan-2-yl 3-Phenyl 96 120.26
38 38 Phenanthren-2-yl 2-Aminopyridino-3-yl 74 68.29
39 39 3-Flurenyl- 2-Aminopyridino-3-yl 53 75.63
40 40 Pyridin-2-yl Pyridin-2-yl 42 39.47
41 41 Naphthalen-1-yl- Phenyl- 37 23.64
42 42 Pyridin-2-yl 4-Dimethylaminophenyl- 16 35.86
43 43 4-Bromo-2-hydroxyphenyl- Furan-2-yl 17 34.80
44 44 Pyridin-4-yl Indol-2-yl 12 9.78
45 45 2-Hydroxy-4-methoxyphenyl- Furan-2-yl 3 9.48
46 46 4-Aminophenyl 2-Aminopyridin-3-yl 7 10.39
47 47 Pyridin-4-yl 4-Dimethylaminophenyl- 1 5.009

Table 3. Anti-tuberculosis Activity of Flavones

S. No Compounds 3 5 6 7 8 2� 3� 4�

% inhibition at 
12.5 mg/ml

Data Model

48 48 OH — I — — — — — 64 47.46
49 49 OH — — — — — Br — 60 50.56
50 50 OH — — Cl — — — — 58 51.43
51 51 OH — Br — — — — — 58 47.73
52 52 OH — — Cl — — — — 52 51.43
53 53 OH — — F — — — OCH3 50 39.19
54 54 OH — Cl — — — — OCH3 48 33.29
55 55 OH — — — — — — OCH3 48 51.91
56 56 OCH3 Br — — — — — — 44 50.10
57 57 OH — — I — — — — 43 47.95
58 58 OH — — — — — — — 38 47.28
59 59 — — — — — — — OCH3 29 36.09
60 60 OH — F — — — — OCH3 29 37.25
61 61 Br — — — — — — OCH3 28 43.90
62 62 — — — — — — — Br 26 18.40
63 63 OH — Br — — — — OCH3 24 30.61
64 64 — — — — Br — — 23 18.29
65 65 — — — — — I — — 22 14.90
66 66 — — — — — — I — 22 13.19
67 67 — — — I — — — — 20 23.37
68 68 Br — — OCH3 — — — Cl 19 25.52
69 69 — — — — — — — OH 18 6.24
70 70 — — — F — — — — 15 18.87
71 71 — — — Br — — — — 15 12.82
72 72 — — I — — — — OCH3 15 14.44
73 73 Benzoyl — — Benzoyl — — — — 12 11.28
74 74 — — — — — — — Cl 7 22.94
75 75 — — F — — — — — 7 5.25
76 76 — — — — I — — — 5 14.73
77 77 — — COOH — — — — OCH3 2 3.87
78 78 — — — — — OH — — 1 11.75



tors which gave the best models for all the four groups of
compounds are Jurs descriptors surface-weighted charged
partial surface (WNSA-3), atomic charge weighted negative
surface area: sum of the product of solvent-accessible surface
X partial charge for all negatively charged atoms (PNSA-3)
and relative positive charge surface area: solvent-accessible
surface area of the most positive atom divided by descriptor
(RPCS), principal moments of inertia (PMI-mag), dipole-
mag, Kier and Hall-molecular Connectivity index valence-
modified CHI-2 (CHI-V-2), order 1 chi index, related to the
number of edges and rings order: number of skeleton atoms
in the subgraphs considered (CHI-1), valence-odified CHI-
3_C, C: cluster (CHI-V-3_C), valence-modified CHI-3_P, V:
valence-modified connectivity index (CHI-V-3_P), confor-
mational energy (Energy), H-bond donor and HOMO. Blood
Brain Barrier (BBB) permeation depends on multiple factors
such as H-bonding capacity, local hydrophobicity, molecular
size, and lipophilicity. It is observed that for all the models
the data fit (r2�0.8—0.97) and the predictive capability
(XV r2�0.79) is good. Other statistical measures such as
r2adj, F-value and PRESS for all the cases were found to be
satisfactory. The QSAR models for the four different groups
of compounds are shown below.

Model-1 is developed to predict the anti-tubercular activity
of chalcone analogues. The statistically significant Eq. 1
shows a positive correlation with CHI-V-2 and negative cor-
relation with H-bond donor, PMI-mag and Jurs WNSA-3 as
shown below

activity�3.45�38.14(CHI-V-2)�31.93(H-bond donor)

�0.11(PMI-mag)�1.11(JursWNSA-3) (1)

The structural descriptor namely H-bond donor denotes
the number of hydrogen-bond donors present in the com-
pounds, the spatial descriptor PMI calculates the principal
moments of inertia about the principal axes of a molecule
and Jurs WNSA-3 represents the partial weighting of the sur-
face accessible portions of the molecule. Valence-modified
CHI-2 connectivity index (CHI-V-2) is a topological descrip-
tor that gives information related to the connectivity of atoms
namely, the number of bonds present in the atoms. This is an
indication of size, degree of branching and flexibility. H-
bond donor, flexibility and C logP are part of “Lipinski rule
of 5” which describes the drug likeliness property and they
play a major role in designing anti-tubercular drugs.23) Mo-
ment of inertia is also an indication of the size and shape of
the molecule.

Model-2 is developed to predict the anti-tubercular activity
of chalcone-like compounds. The Eq. 2 shows a positive cor-
relation with CHI-1 and conformational energy, negative cor-
relation with Jurs PNSA-3 and CHI-V-3_C.

activity�186.53�2.33(Jurs PNSA-3)�2.62(CHI-V-3_C)

�1.34(energy)�17.85(CHI-1) (2)

Conformational energy is the internal energy of the mole-
cule, related to the stability and biological activity (lowest
energy conformer will have highest biological activity) of the
molecule. Jurs descriptor PNSA-3 is the atomic charge
weighted negative surface area, namely sum of the product of
solvent-accessible surface area and partial charge for all neg-
atively charged atoms. Kier and Hall molecular connectivity
indices CHI-V-3_C and CHI-1 give information regarding
the connectivity of the various atoms in the compound. Con-
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Table 4. Anti-tuberculosis Activity of Flavanones

S. No Compounds 3 5 6 7 8 3� 4� 5�

% inhibition at 
12.5 mg/ml

Data Model

79 79 OCH3 — — — Br — — — 87 85.54
80 80 — — — — — Br — — 73 78.30
81 81 OH — — — — Cl — — 63 60.85
82 82 — — — Br — — — — 53 43.63
83 83 — — — OCH3 — — — — 48 48.63
84 84 — — Cl — — — — — 30 31.53
85 85 — — I — — — — — 27 32.04
86 86 Br2 OCH3 — OCH3 — OCH3 OCH3 OCH3 16 16.68
87 87 — — Br — — — — — 8 7.81

Table 5. Regression Statistics for the Best QSAR Models

Model Compounds n r r2 r2
adj F XV r2 BS r2 PRESS Error

1 Chalcone 33 0.92 0.85 0.83 39.49 0.79 0.85 5550.59 0.0016
2 Chalcone-like 14 0.97 0.94 0.91 37.17 0.87 0.94 2499.84 0.0001

compounds
3 Flavone 31 0.92 0.86 0.83 38.90 0.81 0.86 1958.23 0.0019
4 Flavanone 9 0.99 0.97 0.96 61.20 0.94 0.97 342.08 0.0007



tributions of connectivity indices in QSAR in predicting ac-
tivity against Mycobacterium avium has been reported by
other researchers as well.24)

Model-3 is developed to predict the anti-tubercular activity
of flavone analogues. The statistically significant Eq. 3 shows
a positive correlation with Jurs RPCS and conformational
energy, and negative correlation with CHI-V-3_P and
ADME_BBB_Level_2D.

activity�56.90�19.87(ADME_BBB_Level_2D)�7.81(Jurs RPCS)

�0.39(energy)�11.13(CHI-V-3_P) (3)

Jurs RPCS is a measure of the relative positive surface
charge of the molecule. ADME_BBB_Level_2D measures
BBB permeation value of the compounds which is computed
using actual solvent-accessible surface area using either 3-D
or both 2-D and 3-D models of the molecule.

Model-4 is developed to predict the anti-tubercular activity
of flavanone analogues. This Eq. 4 shows a negative correla-
tion with Energy, HOMO and Dipole-mag.

activity�190.16�0.91(energy)�19.37(dipole-mag)

�2.70(HOMO) (4)

Molecules with high HOMOs can donate electrons with
ease and are hence relatively reactive, compared to molecules
with low HOMOs. Thus HOMO measures the nucleophilic-
ity of a molecule. Its importance has been previously re-
ported by other researchers.12,25) The dipole mag descriptor is

a 3D electronic descriptor that indicates the strength and ori-
entation behavior of a molecule in an electrostatic field meas-
ured in Debyes units. Previous contribution lists dipole-mag,
as an important descriptor in antitubercular activity.26)

Figures 1 to 4 compare the experimental and the predicted
anti-tubercular activities for all the four cases. The graphs
clearly show the goodness of the model fit.

Our recent research work related to the synthesis, anti-
mycobacterial evaluation and QSAR studies of twenty three
analogues of chalcones with methylthio, dimethylamino,
methoxy substitutions at 2-, 3-, 4-, and 5-position in 
the A- and B-rings also showed the importance of
ADME_BBB_Level_2D, CHI-V-1, PMI-mag and H-bond
donor descriptors (paper in communication). The models de-
veloped there were similar to the ones reported in this paper.

Conclusion
QSARs were developed for the reported anti-tuberculosis

activity of chalcones, chalcone-like compounds, flavones and
flavanones using a robust statistical technique such as GFA.
The generated equations in each model were analyzed, for
the goodness of fit and their predictive capability. Jurs de-
scriptors, Kier and Hall molecular connectivity indices, di-
pole-mag and conformational energy have contributed signif-
icantly to the observed activity. The analysis also points out
to the importance of the presence of hydrogen bond donor,
PMI-mag and HOMO. This study indicates that these re-
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Fig. 1. Graph between Experimental and Estimated Activity of Chalcones

Fig. 2. Graph between Experimental and Estimated Activity of Chalcone-
Like Compounds

Fig. 3. Graph between Experimental and Estimated Activity of Flavones

Fig. 4. Graph between Experimental and Estimated Activity of Fla-
vanones



ported compounds are more lipophilic in nature and hence,
as expected exhibit good activity since M. tuberculosis has a
high concentration of lipid layer. These reported models
could be explored further to design potent, newer compounds
having better antimycobacterial activity.
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