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The experimental determination of permeability K and form coefficient C, two hydraulic properties

necessary to characterize a porous medium, is beset with undesired secondary effects, which

augment the uncertainties in their determination. This study sets forth a new measuring protocol,

with derived model equations, to guide the design of experiments for accurate determination of K
and C, using Darcy’s law of flow through a porous medium and Newton’s law of flow around a bluff

body as constitutive equations defining K and C, respectively. The analysis shows that the model

equation for measuring C requires the separation between the viscous-drag effect imposed by the

porous medium and the viscous effect of the boundary walls on the measured pressure drop when

defining K. Furthermore, the model equations suggest large aspect ratio channels and laminar flow

with maximum Re as the best choice for measuring K and C �contrary to prevailing belief�. The

protocol is applicable to either individual or concurrent determination of K and C. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1979307�

Permeability K�m2� is one of the two hydraulic proper-

ties necessary to characterize the flow of a fluid through a

porous medium, the other one being the form coefficient

C�m−1�. During the years since their original propositions, by

Darcy
1

and Dupuit,
2

respectively, the two equations defining

K and C have progressively lost their distinction of being

constitutive equations. Instead, they are now commonly pre-

sented as momentum balance equations
3,4

for predicting the

fluid velocity in porous medium flows. A constitutive equa-

tion is understood here as an equation necessary to reduce

the number of unknowns in a balance equation by defining a

material property.

To determine the property defined by a constitutive

equation, such as K and C, one has to design specific experi-

ments to isolate the effect of the particular property from

other effects. The resulting experiment allows considerable

simplifications to the balance equation. Sometimes the sim-

plification is such that the resulting balance equation be-

comes identical to the constitutive equation. This aspect in-

duces the mischaracterization of the constitutive equations as

the balance �of momentum� equations.

This study aims at clarifying the limitations of the origi-

nal constitutive equations for K and C in light of the practical

aspects of their experimental determination. We begin by

analyzing the determination of permeability.

When presented as originally intended, i.e., as a consti-

tutive equation,
1

the permeability equation
5

K =
�

��P�/L�
u �1�

requires the measurement of the cross-section-averaged fluid

speed u�m s−1�, and of the pressure drop �P��Pa�, in the flow

of a Newtonian fluid, along a length L�m� of the channel

occupied by a porous medium.

Let us now recall the differential form of the volume-

averaged momentum equation for the flow of a Newtonian

fluid through a porous medium, with uniform, isotropic, and

constant properties,
5

namely,

�

�
� �v

�t
+

1

�
�v · � �v� = − � p + �eff�

2
v +

�

K
v + �C�v�v ,

�2�

where ��kg m−3� and �eff�kg m−1 s−1� are the fluid density

and effective dynamic viscosity, � is the porosity of the po-

rous medium �defined as the ratio of fluid-occupied volume

to the total volume� necessary to correct the increased speed

of the fluid through the pores as compared to the clear �of

porous medium� channel case, v�m s−1� is the local fluid ve-

locity, and p�Pa� is the local pressure. The terms to the left

side of the equal sign of Eq. �2� represent the fluid accelera-

tion �local and convective�. To the right of the equal sign we

have pressure gradient, viscous diffusion, viscous drag, and

form drag, respectively.

For steady, fully developed �unidirectional� flow and

negligible viscous-diffusion and form-drag effects, the mo-

mentum balance equation �Eq. �2�� reduces to

�P

L
=

�

K
u , �3�

which is almost identical to Eq. �1�. The difference between

the constitutive equation defining K �Eq. �1�� and the mo-

mentum balance equation �Eq. �3�� is on the pressure drop.

The single value K originating from the constitutive equation

�Eq. �1�� represents a material property of the porous me-

dium. Hence, the implicit assumption behind Eq. �1� is that,

once determined, the value of K would not change witha�
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changes in the porous medium length, channel geometry, or

flow rate, but only with changes in the internal structure of

the porous medium. To satisfy this assumption, the pressure

drop �P� of Eq. �1� must be a measure of the pressure drop

caused by the viscous drag only, induced by the internal

structure of the solid porous matrix. The momentum balance

equation version of Darcy’s law �Eq. �3�� need not have this

restriction. Consequently, the applicability of Eq. �1� for de-

termining K is more restricted than that of the momentum

balance equation �Eq. �3��.
To guarantee that only the viscous-drag effect is ac-

counted for in using Eq. �1� �i.e., for the measured pressure

drop �Pm to be identical to �P��, the testing channel must be

straight and of uniform cross section. Moreover, the effect

imposed on the fluid pressure drop by the bounding walls of

the channel would have to be made negligible as well

�boundary viscous-diffusion effects�. Obviously, this last re-

quirement might be difficult to satisfy in practice. Two alter-

natives exist to resolve this dilemma. The first alternative is

to relax the requirement for �P being affected only by the

solid matrix viscous-drag effect. Accordingly, Eq. �1� would

be rewritten as

K =
�

��Pc�/L�
u , �4�

where �Pc� is the measured pressure drop, which includes

the viscous-drag ��P�� and the channel boundary ��Pc� con-

tributions. Two important consequences of this alternative

are as follows: �a� K determined from Eq. �4� would be de-

pendent on the channel geometry, i.e., K is no longer a ma-

terial property of the porous medium alone, and �b� Eq. �4�
would yield a nonzero permeability value even in the ab-

sence of a solid porous matrix inside the flow channel.

Exploring this alternative a little further, we can consider

the pressure-drop versus average fluid-speed relationship for

a clear channel flow, for which �Pm=�Pc. In general, an

analytical expression for the channel pressure-drop �Pc ver-

sus fluid-speed relationship for steady, fully developed lami-

nar flow in a straight channel with a uniform cross-section

can be written as

�Pc

L
=

�

b
u , �5�

where b is a coefficient dependent only on the geometry of

the channel. Comparing Eqs. �4� and �5�, for �Pc�=�Pc, we

conclude that b plays the role of permeability for a clear

channel. In general,

b =
Dh

2

2Po
, �6�

where Po is the Poiseuille number, Po=2�wDh /�u,

�w�N m−2� is the wall shear stress, and Dh�m� is the hydraulic

diameter of the channel. For a parallel-plate channel, for in-

stance, Po=24 and Dh=2h, so

b =
Dh

2

48
=

h2

12
, �7�

where h�m� is the distance between the plates. For a circular

tube channel, of diameter d�m�, Po=16 and Dh=d, so

b =
Dh

2

32
=

d2

32
. �8�

For a square cross-section channel, b=Dh
2 /28.46, and for an

equilateral triangular cross section, b=Dh
2 /26.66 �see Cengel

and Cimbala
6

for a detailed corroboration�. Consequently,

there is a relationship between cross-sectional geometry and

b, so we surmise that there exists a geometry which leads to

a maximum b value, or, equivalently, to a maximum perme-

ability among all possible wall-bounded channel flows.

The second alternative to resolve the channel boundary

viscous effect dilemma is to model the contributions by the

boundary viscous-diffusion and viscous-drag effects to the

total pressure drop as additive. In this case, the pressure-drop

contribution by the viscous-drag effect alone can be esti-

mated as

�P�

L
�

�Pc�

L
−

�Pc

L
. �9�

Following this alternative, a different conclusion is

reached. In general the channel boundary effect on �Pc� is

not known, but conservatively one can use the smallest pos-

sible boundary effect, which is the pressure drop of steady,

fully developed laminar flow as indicated previously. So, us-

ing Eqs. �1� and �5�, Eq. �9� can be rewritten as

K = 	�Pc�

L�u
−

2Po

�Dh
2
−1

. �10�

As defined in Eq. �10�, K is no longer limited to a maximum

value, but instead it tends to infinity when the channel tends

to a clear channel because, in this case, �→1 and �Pc� /L
→�u2Po/Dh

2, according to Eqs. �4�–�6�.
Consider now the K definition given by Eq. �4�. Setting

K=b and using Eq. �6�, the Darcy number, defined as Da

=K /Dh
2, becomes Da=1/ �2Po�. This Darcy number value,

dependent on the channel cross-section geometry, represents

the maximum possible Darcy number for the wall-bounded

channel flow �without porous medium�. However, when de-

fined by Eq. �10�, the value of K �and by consequence that of

Da� has no upper bound. So, any parametric �numerical�
study involving wall-bounded channel flow through a porous

medium using Da�1/ �2Po� is valid only provided K is de-

fined by, and measured according to, Eq. �10�. The striking

difference in the maximum attainable permeability values

when K is defined by Eq. �4� and �10� highlights the impor-

tance of defining K rigorously.

The second hydraulic parameter characterizing a porous

medium is the form coefficient C. Although C can be related

to K in some specific cases,
4,5

the form coefficient in general

should be regarded as an individual coefficient dependent on

the form �shape� of the porous obstruction.
7,8

In line with the

model proposed by Dupuit,
2
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C =
��P f/L�

�u2
, �11�

where �P f is the pressure drop due to form drag alone. Ob-

serve that Eq. �11� can be obtained from Eq. �2� when accel-

eration, viscous-drag, or boundary viscous effects are negli-

gible in uniform flow across a porous medium of length L.

As explained by Lage,
5

model Eq. �11� is better interpreted

as a simple extension to flow in a porous medium of New-

ton’s law of fluid flow around a bluff body.

Similar to Eq. �1�, Eq. �11� is also a constitutive equa-

tion, now defining C. In practice, the determination of C also

involves the flow of the fluid through a walled channel

bounding the porous medium and the measurement of �Pm

along this channel at a certain fluid speed u. The applicability

of Eq. �11� for the accurate determination of C requires �Pm

to match �P f. Again, and according to Eq. �2�, the testing

channel must be straight and of uniform cross section so as

to hold acceleration effects negligible. Likewise, the viscous-

diffusion effect imposed by the bounding walls of the chan-

nel and the viscous-drag effect of the porous medium would

have to be made negligible as well.

Analogous to the permeability issue, the requirements of

negligible viscous-drag and channel wall effects might be

very difficult to satisfy in practice. The option of incorporat-

ing these effects on the form coefficient itself, similarly to

what was considered in the case of K, is problematic because

the nature of the pressure-drop dependency on the fluid

speed for viscous drag and the overall viscous-diffusion

channel wall effect differs from the nature of the fluid-speed

dependency for form drag �linear versus quadratic�.
Hence, the only alternative in the present case is to

model the measured pressure drop �Pm as the sum of a com-

ponent due to the form drag, �P f, and a component due to

the other viscous effects. Let us consider first the case in

which the other viscous effects �channel boundary viscous

effect and viscous-drag effect� are lumped together and rep-

resented as �Pc�, or equivalently, assuming K is defined by

Eq. �4�. In this case,

�P f

L
=

�Pm

L
−

�Pc�

L
. �12�

Substituting Eqs. �4� and �11� into Eq. �12� and rearranging

the terms, we obtain

C =
1

�u2	�Pm

L
−

�Pc�

L

 =

1

�u2	�Pm

L
−

1

K
�u
 . �13�

As defined by Eq. �13�, the form coefficient C would be zero

for laminar fully developed flow through a straight, uniform

cross-section, clear channel, for which, from Eq. �5�,
�Pm /L=�Pc /L=�u /b=�u /K. This result is physically con-

sistent with the expectation of a straight channel imposing

zero form drag.

A difficulty hindering the use of Eq. �13� is the possibil-

ity of turbulence in the channel flow. Recall that turbulence

can become important in the porous channel flow before or

after the form-drag effect becomes relevant �see discussion

by Lage
5

and experiments by Wilson, Narasimhan, and

Venkateshan
9�. If one attempts to use Eq. �4� for determining

K using measurements for a turbulent channel flow, the result

will be inconsistent because the turbulence effect on �Pm is

likely to be quadratic in the fluid speed, not linear as as-

sumed in Eq. �4� �where �Pm��Pc��. Therefore, to allow

for the possibility of having channel wall effects caused by

turbulence setting in prior to the form-drag effects, we are

compelled to use Eq. �10� instead of Eq. �4�. In this case, Eq.

�12� becomes

�P f

L
=

�Pm

L
− 	�Pc

L
+

�P�

L

 . �14�

In consideration of possible turbulence effect, it is more

convenient to represent the channel wall viscous effect in

terms of Darcy’s friction factor f , namely,

�Pc

L
=

1

2Dh
�u2f . �15�

In this case, an equivalent equation to Eq. �10� for determin-

ing K when form drag is negligible would be

K = 	�Pm

L�u
−

1

2�2Dh�
�uf
−1

. �16�

Combining Eqs. �1�, �11�, �14�, and �15�,

C =
�Pm/L

�u2
−

f

2�2Dh
− 	 1

K

 �

�u
. �17�

Equation �17� in dimensionless form becomes

Du = � Eu −
f

2�2
−

1

Da Re
, �18�

where Dupuit �Du�, aspect-ratio ���, Euler �Eu�, Darcy �Da�,
and Reynolds �Re� numbers are defined, respectively, as

Du = DhC, � =
Dh

L
, Eu =

�Pm

�u2
, Da =

K

Dh
2
, Re

=
�Dh

�
u . �19�

Similarly, Eq. �16� in nondimensional form becomes

Da = 	� Eu Re − Re
f

2�2
−1

. �20�

Equations �16� and �17�, or the equivalent Eqs. �18� and

�20�, are model equations for K and C in terms of directly

measurable quantities. These equations are in line with the

original constitutive equations for K and C, respectively,

Eqs. �1� and �11�, for subtracting from the measured pressure

drop the other flow effects known to exist but not related to

the property of interest.

The resulting models for K and C are also consistent

with known results for particular flow configurations. For

instance, the limit of no porous medium in the channel �i.e.,

clear channel� with �→1 would lead to �Pm /L
→�u2f / �2Dh�, which, from the definitions listed in Eq. �19�,
can be written as �� Eu�→ f /2 or as �� Eu Re�→Re f /2.

Consequently, from Eq. �20� Da→	 and hence, Du→0

from Eq. �18�. These results are consistent for a clear channel
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flow configuration. Notice also that the constitutive equation

defining the friction factor for a wall-bounded clear channel

flow is recovered from Eq. �18� when no porous medium is

present in the channel. This result is only possible when the

representation of K excludes boundary wall effects �as in Eq.

�16��, in line with Eq. �18�.
In the limit of a very impermeable porous medium, we

have K→0 and, consequently, Da→0. Observe that the term

�f /2�2� in Eq. �18� remains finite, as long as Re is finite. In

this case, for a finite Du, the term 1/ �Da Re� can only be

balanced by the �� Eu� term. Consequently, Eq. �18� ap-

proaches the limiting behavior

Da →

1

�Eu Re
. �21�

Equation �21�, with �Pm→�P�, tends to a result identical to

Eq. �1�. That is, Darcy’s constitutive equation for K is recov-

ered, independent of the values f , Re, and Du might have

when the porous medium permeability tends to zero, as one

would expect.

Finally, observe that Eq. �20� results from setting Du

=0 in Eq. �18�, a consequence of assuming negligible form

drag when deriving Eq. �20�. It is important to consider when

this assumption is valid. Physically we know the viscous-

drag and form-drag concepts are useful in modeling a single

drag phenomenon. In reality, these two drags are always

present in any practical �finite Re� flow. Therefore, the best

we can do is to compare the two. Using Eq. �18�, we find that

the viscous-drag and form-drag effects are comparable when

Du�1/ �Re Da�, which in dimensional form translates into

��uCK /���1. This criterion for transition from viscous-

drag-dominated to form-drag-dominated regime is identical

to the criterion suggested by Lage.
5

In practice, K and C should be measured together, fol-

lowing specific recommendations.
8

When designing an ex-

periment to measure K and C, the experimentalist should

seek to minimize the viscous effect of the channel wall

boundary on the measured pressure drop, from Eq. �18�

� �
f

2�2Eu
. �22�

Clearly from Eq. �22�, having small f is beneficial.

Hence, maximizing Re but maintaining the flow laminar

seems to be the best approach to determine K and C with

better accuracy. In cases in which K is already known, C
may be determined using Eq. �18�. For accuracy, especially

when we anticipate C to be small, it is optimal for the bound-

ing channel wall and porous medium viscous-drag effects to

be kept minimal, which, according to Eq. �18�, requires

� �
f

2�2 Eu
+

1

Eu Da Re
. �23�

Observe that Eq. �23�, in comparison to Eq. �22�, has an

additional term dependent on �1/Re�. There might be situa-

tions under the laminar flow requirement for which Eq. �22�
demands particular values of Eu, which, combined to par-

ticular values of Da, make it difficult to satisfy Eq. �23�. In

this case, it might be necessary to increase Re even further to

neutralize the effect of the last term of Eq. �23�. Aiding this

requirement, it is worth recalling that for flow in regular

channels f remains constant under turbulent flow �assuming

a rough wall�.
To summarize, the measurement of permeability K and

form coefficient C, the two defining hydraulic properties of a

porous medium, are usually affected by secondary �accelera-

tion and viscous diffusion� effects. This note treats Darcy’s

law of flow through a porous medium and Newton’s law of

flow around a bluff body as constitutive equations defining K
and C, respectively. A study of the behavior of these consti-

tutive equations �Eqs. �1� and �11�� leads to more general

model equations involving relevant dimensionless numbers,

i.e., Eqs. �18� and �20�. These model equations are shown to

yield consistent results when limiting situations with known

results are considered.

Finally, the resulting equations provide firm

guidelines—minimizing secondary effects—in the design of

experiments for accurate determination of K and C. If a

choice is made to determine K and C separately, then use of

Eq. �20�, along with Eq. �22� and maximizing Re while

maintaining laminar flow to minimize f , is proposed for the

accurate determination of permeability K for any porous me-

dium. With a known K, the accurate determination of C can

be done using Eq. �18�, together with Eq. �23�, and if neces-

sary with higher Re �since f is constant for a fully turbulent

channel flow�. If K and C are to be determined concurrently,

via interpolation of experimental data as recommended by

Antohe, Lage, Price, and Weber,
8

then Eq. �18� is suggested.

Because the criterion requires values for K and C, to be

determined by the interpolation of the experimental data, an

iterative procedure would have to be followed in this case.
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