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ABSTRACT

Understanding the interfacial heat transfer and thermal resistance at an interface between two dissimilar materials is of great importance in
the development of nanoscale systems. This paper introduces a new and reliable linear response method for calculating the interfacial thermal
resistance or Kapitza resistance in fluid-solid interfaces with the use of equilibrium molecular dynamics (EMD) simulations. The theoretical
predictions are validated against classical molecular dynamics (MD) simulations. MD simulations are carried out in a Lennard-Jones (L-J)
system with fluid confined between two solid slabs. Different types of interfaces are tested by varying the fluid-solid interactions (wetting
coefficient) at the interface. It is observed that the Kapitza length decreases monotonically with an increasing wetting coefficient as expected.
The theory is further validated by simulating under different conditions such as channel width, density, and temperature. Our method allows
us to directly determine the Kapitza length from EMD simulations by considering the temperature fluctuation and heat flux fluctuations at
the interface. The predicted Kapitza length shows an excellent agreement with the results obtained from both EMD and non-equilibriumMD
simulations.
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I. INTRODUCTION

Recent advancements in nanoscience and technology have
resulted in a large number of investigations into the transport of
mass, momentum, and energy in nanoconfinement systems.1,2 A
clear understanding of interfacial heat transfer and thermal resis-
tance at fluid-solid interfaces is crucial in the designing of various
micro/nanoscale electronic, photonic, and phononic devices.3 When
there is a heat transfer across an interface between two dissimilar
materials, a temperature discontinuity occurs due to the thermal
resistance at that interface. This thermal resistance, due to the dif-
ference in the electronic and vibrational properties of the two mate-
rials in contact, is called the interfacial thermal resistance and is
given by

Rk =
ΔT

Jq
, (1)

where ΔT is the temperature difference between the materi-
als in contact and Jq is the interface heat flux. The interfacial

thermal resistance across the fluid-solid interface is also known as
the Kapitza resistance. In 1941, Kapitza discovered a strong ther-
mal resistance across a solid interface which was in contact with
superfluid helium (<2 K).4 Later, Khalatnikov illustrated a theo-
retical model in which the interfacial thermal resistance is recog-
nized as a general phenomenon associated with all interfaces in all
temperature ranges.5 However, the measured heat flux across the
solid-superfluid interface is approximately two orders of magnitude
higher than the prediction of Khalatnikov. Also, confined fluids at
the nanoscale (within a fewmolecular diameters) may break classical
theories such as Navier-Stokes equations and the no-slip boundary
condition.6,7

The experimental study of interfacial heat transfer in nanoscale
systems is complex due to the difficulty of fabricating and handling
these objects at length scales below ≈10 nm. These challenges can
be overcome by using computational tools, such as classical molecu-
lar dynamics (MD) simulation techniques, which allows the mod-
eling of molecular structure and its interactions at atomic length
and time scales precisely. Calculation of transport coefficients using
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either equilibrium or nonequilibrium molecular dynamics (NEMD)
simulationmethods has proven effective inmany scenarios. The well
known Green-Kubo formulas8 can be used for calculating trans-
port coefficients using equilibriummolecular dynamics (EMD) sim-
ulations. An alternate way to compute the transport coefficients
is the nonequilibrium molecular dynamics simulation method, in
which the corresponding gradients and fluxes are measured directly,
similar to an experimental method.9,10 Both methods are mainly
focused on bulk transport coefficients such as viscosity, diffu-
sion coefficient, and thermal conductivity. However, the trans-
port process at the interface has received less attention. Of these,
the Kapitza resistance is one of the important interfacial prop-
erties in heat transfer problems. A more convenient term used
instead of the Kapitza resistance is called the Kapitza length and is
defined by

Lk = Rkκ, (2)

where κ is the thermal conductivity of either the solid or fluid
phase. Lk is similar to the slip length in fluid flow and can be
defined as the additional thickness of material required to achieve
the same heat transfer in place of the thermal resistance at the
interface. This additional thickness can be measured either in the
direction of solid or fluid from the interface as per convenience.
The thermal conductivity of the solid phase is used in Eq. (2)
to determine the Kapitza length toward the fluid side and vice
versa.

Researchers have developed different techniques to calculate
the interfacial thermal resistance. Also, different types of interfaces
such as solid-solid, fluid-solid, gas-solid, and fluid-gas are treated
separately. Liang and Hu11 reviewed different methods used for
understanding interfacial transport behavior for different types of
interfaces such as solid-solid, solid-liquid, and solid-gas interfaces
using MD simulations. They have also compared the pros and cons
of other MD techniques such as first-principles MD and approach-
to-equilibrium MD. One of the most popular methods for calculat-
ing the Kapitza resistance is the NEMD method. The NEMD sim-
ulation comprises of an initial equilibration of the system to the
required reference temperature and pressure, followed by the addi-
tion of a heat source and a heat sink on both end layers of the system,
respectively, which will create a temperature gradient across the sys-
tem. The interfacial thermal resistance can be directly determined by
Eq. (1) once the system reaches the steady state. Numerous studies
using the NEMD method have been carried out to understand the
interfacial heat transfer mechanism which allows us to reduce the
Kapitza resistance and enhance the heat transfer across interfaces by
varying the temperature, pressure, and chemical functionalization at
the interface.12–15 In NEMD simulations, the external driving forces
such as heat flux required to provide an input are several orders
of magnitude higher than the actual driving forces in experiments,
which is due to the small system size and simulation time compared
to experiments.16 Therefore, the response of the system should be
maintained at the linear response regime, such that the simulation
data can be extrapolated down to experimental conditions. Perform-
ing NEMD simulations at several external forces allows us to identify
the linear regime. Another challenge in the calculation of the Kapitza
resistance using NEMD simulation is the finite size effect. Several
studies reported that if the thickness of the materials composing the

interface is comparable with the bulk phonon mean free path, then
the results of the Kapitza resistance is size-dependent.17–20 Liang and
Keblinski21 studied the role of finite size effects on the calculation
of the Kapitza resistance between solid-solid interfaces described
by high phonon mean free paths. They have also used an EMD
method to extract a size-independent interfacial thermal resistance
from the time integral of the heat flux autocorrelation function.
The heat transfer between solids and fluids in which nanoparticles
are embedded is also an area of research interest as is the case of
the effect of the interface curvature on the Kapitza resistance.22–24

In addition, Muscatello et al.25 recently studied the heat transfer
between fluid-vapor interfaces and demonstrated through NEMD
simulation how structural features at the interface determine the
transport mechanisms. Several NEMD studies have been carried out
to investigate the Kapitza resistance between various types of inter-
faces, and different methods to control it have been suggested, which
may be useful in a number of practical scenarios. Hu and Sun26

studied the influence of surface nanopatterns on the Kapitza resis-
tance between a gold surface and boiling water. They found that
the Kapitza resistance is not affected by the phase change of water.
However, a reduction in the Kapitza resistance can be achieved by
increasing the height of nanopatterns due to the rise in interaction
energy per unit area. Also, it is possible to reduce the Kapitza resis-
tance by increasing the width-to-spacing ratio of the nanopatterns.
Pham et al.27 investigated the impacts of bulk liquid pressures on
the Kapitza length at water/solid interfaces and observed different
behaviors of liquid water in the vicinity of gold and silicon surfaces.
They found that the distance between the gold surface and the first
density peak layer of water was constant and was not affected by
the change in bulk liquid pressure. However, the same parameter
directly depends on the bulk liquid density for the silicon surface.
These findings show that the effect of pressure on the Kapitza resis-
tance cannot be generalized and it depends on the wettability of the
surface in contact. Ramos-Alvarado et al.28 characterized the inter-
facial thermal resistance between a silicon surface and water in terms
of wetting properties of the surfaces. They found that the interfacial
heat transfer is not primarily correlated with the wettability, which
is characterized by the work of adhesion and contact angle. Instead,
they suggested that the fundamental parameter for explaining inter-
facial thermal transport is the density depletion length, similar to the
hydrodynamics of liquids in nanoconfinement. Han et al.29 studied
the interfacial heat transfer between a gold surface and a suspen-
sion of ethanol containing gold nanoparticles. They found that the
Kapitza resistance increases with the addition of nanoparticles due
to the weakening of fluid-solid interaction strength. This increase
in the Kapitza resistance causes a shift in the boiling temperature
at the nanofluid/solid interface compared to pure ethanol. They
found this effect to be significant even for a small concentration of
nanoparticles.

The calculation of the Kapitza resistance from an EMDmethod
gives several advantages over NEMDmethods. Unlike NEMD, there
is no need to identify the linear regime for the EMD method, which
allows the calculation of the Kapitza resistance from a single sim-
ulation. Different studies have been carried out in this direction.
Barrat and Chiaruttini30 calculated the Kapitza length at the solid-
liquid interface using both EMD and NEMD methods. They have
used a heat flux autocorrelation function at the interface to the cal-
culate Kapitza resistance, which is analogous to the Green-Kubo
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formulas for calculating thermal conductivity. It was pointed out
that this method is strictly only true for an infinite system where
the heat capacity of the solid and liquid tends to infinity, Cv → ∞.
However, the systems used in MD simulations are always finite in
nature. For those systems, the running integral of the heat flux auto-
correlation function exhibits an exponential decay at long times,
from which the Kapitza resistance can be calculated. Rajabpour and
Volz31 proposed an alternative method for calculating the inter-
facial thermal resistance between crystals using the time integral
of the normalized temperature difference autocorrelation function.
They defined a characteristic time τ which yields the thermal resis-
tance between two interacting solid bodies having a temperature
difference ΔT. Merabia and Termentzidis32 introduced a method
based on the Green-Kubo formulation for calculating the interfa-
cial thermal conductance at the interface between crystals, which is
achieved by performing EMD simulations and measuring the decay
of thermal energy fluctuations of both crystals. They reported incon-
sistent results for EMD and NEMD methods. The reason for the
discrepancy is because the Green-Kubo method probes the Lan-
dauer conductance between two crystals, which assumes an equi-
librium between phonons on each crystal forming the interface.
Contrarily, NEMD accommodates the out-of-equilibrium thermal
conductance at the interface, consistent with the heat flux at the
interface, which describes the phonon transport in each crystal.
Liang et al.33 have calculated the thermal conductance at solid-
gas interfaces with different interfacial interaction potentials with
the help of the Green-Kubo method. They found the presence of
a layer of adsorbed gas at the solid surface. Therefore, to calcu-
late true interfacial thermal resistance using Green-Kubo formu-
las, the interface between solid and gas must be defined at a plane
outside the adsorbed gas layer. Chalopin et al.34 introduced a new
derivation to calculate the interfacial thermal conductance using
the EMD method, and the same was used to estimate the ther-
mal conduction mechanism in Si-Ge superlattices. They have com-
pared the results with the Green-Kubo thermal conductivity method
and demonstrated that the thermal conductivity of perfect super-
lattices could be directly inferred from the interfacial conductance
within the range of period of their study. This study also empha-
sized the significance of interfaces in materials with large phonon
mean free paths. Kim et al.35 investigated heat transfer between two
parallel plates filled by liquid-argon with the help of MD simula-
tions using Lennard-Jones (L-J) potentials. They have characterized
the effect of the interfacial thermal resistance for different param-
eters such as thermal oscillations, surface wettability, wall temper-
ature, frequency, channel height, and thermal gradient. Also, they
have developed an empirical model to calculate the Kapitza length,
which can be used as the jump coefficient of a Navier boundary
condition.

It is clear from the above discussion that Green-Kubo EMD
methods provide several advantages in calculating the Kapitza length
over NEMD methods in various scenarios. However, all the above-
mentioned EMD methods are based on the assumption that the
temperature of the system is constant and the temperature fluctu-
ation across the fluid-solid interface is not taken into account for
the calculation of the Kapitza length. This motivates us to develop
a more direct and potentially accurate EMD method for comput-
ing the Kapitza length, which includes both the heat flux and the
temperature fluctuations at the interface.

This paper introduces such amethod for calculating the Kapitza
resistance/length at fluid-solid interfaces by considering both the
heat flux autocorrelation and heat flux-temperature difference cross-
correlation functions. The proposed method is analogous to the
study by Hansen et al.36 which developed a new method to predict
slip at a fluid-solid interface from analogous correlation functions.
The values of the predicted Kapitza length show excellent agree-
ment with both the direct NEMDmethod and the EMDGreen-Kubo
method of Barrat and Chiaruttini30 for different conditions. The the-
ory is derived directly from the definition of the Kapitza resistance
and is tested for different simulation conditions by varying parame-
ters such as wetting coefficient, channel width, density, and temper-
ature. The following sections of the paper consist of the derivation
of the theory, the methodology adopted for the simulation, dis-
cussions about the obtained results, and finally some concluding
remarks.

II. THEORY

A. Calculation of the Kapitza resistance

The Kapitza resistance, denoted by the symbol Rk, is defined as

Rk =
ΔT

Jq
, (3)

where ΔT = Tf − Tw is the difference between the temperature of the
layer of fluid immediately adjacent to the wall, Tf , and the tempera-
ture of the wall, Tw, and Jq is the component of the heat flux vector
normal to the wall.

In what follows, we consider a liquid-solid system at equi-
librium. For the case of time dependence of the Kapitza kernel,
we can write the instantaneous governing constitutive equation
[Eq. (3)] as

ΔT(t) = ∫
t

0
Rk(t − t′)Jq(t′)dt′ + TR(t), (4)

where TR(t) is a random thermal noise term with zero mean and
which is uncorrelated with the heat flux, namely,

⟨TR(t)⟩ = 0 and ⟨Jq(0)TR(t)⟩ = 0. (5)

Here, we have assumed that we can ignore nonlocal effects induced
by fluid structural inhomogeneity as was assumed by Hansen
et al.36 Multiplying Eq. (4) by Jq(t = 0) and taking the ensemble
average we get

⟨Jq(0)ΔT(t)⟩ = ⟨Jq(0)∫
t

0
Rk(t − t′)Jq(t′)dt′⟩

= ⟨∫
t

0
Rk(t − t′)Jq(0)Jq(t′)dt′⟩

= ∫
t

0
Rk(t − t′)⟨Jq(0)Jq(t′)⟩dt′. (6)

If we define the time-correlation functions as CTJq(t)
≡ ⟨Jq(0)ΔT(t)⟩ and CJqJq(t) ≡ ⟨Jq(0)Jq(t)⟩, Eq. (6) can be
expressed as
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CTJq(t) = ∫
t

0
Rk(t − t′)CJqJq(t′)dt′. (7)

We define the Laplace transform of some arbitrary function f (t) as
L( f (t)) ≡ ∫

∞

0
f (t)e−stdt ≡ f̃ (s). (8)

Note that as a consequence, we have

f̃ (s = 0) = ∫
∞

0
f (t)dt, (9)

which is the time-independent steady-state value of f. Thus, taking
the Laplace transform of Eq. (7) gives

C̃TJq(s) = R̃k(s)C̃JqJq(s). (10)

Now, the Kapitza resistance can be evaluated directly via
Eq. (10), i.e.,

R̃k(s) = C̃TJq(s)
C̃JqJq(s) , (11)

from which Rk ≡ R̃k(s = 0) can be extracted. This procedure, while
reasonable, may in fact be an inefficient and statistically noisy way to
extract Rk. A more efficient method may be to extract R̃k(s) by fit-
ting the right-hand side of Eq. (10) to the left-hand side of that same
equation and then extracting the s = 0 value directly. This would
generate a statistically more accurate value since we are using all the
available data not just the s = 0 value.

Furthermore, as identified by Hansen et al.,36 if we assume that
Rk has a Maxwellian distribution in time, we can express this time-
dependence as10

Rk(t) =
n

∑
i≙1

kie
−μit . (12)

Taking the Laplace transform of this gives

R̃k(s) =
n

∑
i≙1

ki

s + μi
. (13)

Substituting Eq. (13) into Eq. (10) gives

C̃TJq(s) =
n

∑
i≙1

ki

s + μi
C̃JqJq(s). (14)

Therefore, for steady-state conditions (s = 0), we have

Rk ≡ R̃k(0) =
n

∑
i≙1

ki

μi
. (15)

Using EMD simulations, we can compute CTJq(t) and CJqJq(t)
and the corresponding Laplace transforms. From these data, we can
fit the right-hand side of Eq. (14) to the C̃TJq(s) and C̃JqJq(s) data
using ki and μi as fitting parameters.

B. Calculation of the heat flux

The heat flux across the fluid-solid interface is one of the most
important parameters in the calculation of the Kapitza resistance.
The expression of heat flux for inhomogeneous fluids can be split

into kinetic and potential terms. For a system with a temperature
gradient in the z-direction (such as the case in our geometry; see
Fig. 2), the instantaneous heat flux calculated at a plane located at z
with surface area A, Jqz(z, t), can be computed from the method of

planes technique of Todd et al.,37,38

Jqz(z, t) = JKqz(z, t) + J
ϕ
qz(z, t), (16)

where the kinetic term is given by

J
K
qz(z, t) = 1

A
∑
i

(vzi − vz(zi))uiδ(z − zi) (17)

and the potential term is given by

J
ϕ
qz(z, t) = 1

4A
∑
i,j

∥vi − v(z)∥ ⋅ Fϕij∥sgn(zi − z) − sgn(zj − z)∥. (18)

In Eq. (17), ui is the total internal energy of particle i, defined
such that the streaming kinetic energy is now subtracted out of the
energy density, i.e.,

ui =
1

2
mc

2
i +

1

2
∑
j

ϕij, (19)

where ci is the “peculiar” or thermal velocity of particle i, namely,
ci ≡ vi−v(z), vi is its laboratory velocity, and v(z) is the fluid stream-
ing velocity at z. For systems under no flow (such as in this current

study), v(z) = 0 and ci = vi. ϕij and F
ϕ
ij are the potential energy and

interatomic force between particles i and j, respectively.
The contribution of the kinetic part is, in general, not negli-

gible for a dense fluid system.38 However, it is found from simu-
lations that, at planes adjacent to the fluid-solid interface, there is
a small region in which no or negligible particles cross them. In
other words, there is a density depletion region created adjacent to
the interface which restricts the movement of fluid particles across
this region. This plane is taken as the interface between the solid
and fluid. Since negligible number of particles cross this plane, the
kinetic term is very small at the interface and can be safely ignored.
Therefore, the heat flux at the interface can be considered to be
almost solely due to the contribution from the potential term, so
only Eq. (18) is used in its computation. Equations (16)–(18) are
valid for both the EMD andNEMD simulations we performed in this
study.

III. METHODOLOGY

Equilibrium and nonequilibrium molecular dynamics
simulations were carried out to investigate the Kapitza resistance
at the fluid-solid interface. All the simulations were performed by
using the LAMMPS39 package. The interactions between particles
are of the Lennard-Jones form, and the quantities are given in stan-
dard dimensionless molecular dynamics units. The L-J parameters,
σ and ε, are set to unity as reference values. The L-J potential is given
by

ϕij(r) = 4ε[(σ
r
)12 − Cij(σ

r
)6]. (20)
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FIG. 1. Schematic depiction of the simulation box consists of fluid confined between two solid slabs.

Tomodel different wetting properties at the interface, the strength of
the attractive term was controlled by a wetting coefficient Cij (which
can also be achieved by introducing different combinations of val-
ues to σ and ε pairs). The fluid-fluid interaction C11 was taken as
1.2, solid-solid interaction C22 was taken as 1.0, and the fluid-solid
interaction C12 was varied between 1.0 and 0.5. By tuning the fluid-
solid interaction strength C12 from 1.0 to 0.5, we can attain a contact
angle that varies from θ ≈ 90○ to θ ≈ 140○, which corresponds to
the range of fluid-solid surface properties from wetting to nonwet-
ting situations.40 The effect of fluid channel width was studied by
varying the channel width, l, from 6 to 42 σ. To study the effect of
fluid density, ρ, on the Kapitza length, different simulations were
performed by changing ρ from 0.7 to 1.3. Finally, simulations at
various reference temperatures ranging from 0.9 to 1.2 were also
performed. The cutoff distance for the L-J potential was taken as
2.5 σ.

The simulation domain consists of a fluid block confined
between two parallel solid slabs, as shown in Fig. 1. The dimen-
sions for that particular system are Lx = 20, Ly = 20, and Lz = 64,
in which the fluid block thickness is 36 and each solid slab has a
thickness of 14. Periodic boundary conditions were given in x and y
directions, and confinement was in the z-direction. The solid atoms
were initially arranged in an fcc structure with (100) orientation
with a density of 0.9. The solid atoms were tethered around their
initial lattice positions req using a weak harmonic spring potential,

ϕs =
1
2
ks(ri − req)2, where the spring constant ks was taken as 150.36

The fluid density was kept at 0.88, and all the simulations were
carried out at a reference temperature T = 1, ensuring we were in
the liquid phase. For EMD simulations, the wall temperature was
maintained at the reference temperature by using a Nosé-Hoover
thermostat.41,42 The equations of motion for solid and fluid atoms
were integrated using a leap-frog integration scheme43 with a time
step Δt = 0.001. All the results were averaged over five independent
simulations with different initial configurations.

For EMD simulations, the instantaneous heat flux at the
fluid-solid interface was calculated using Eq. (16). As previously
noted, the contribution of the kinetic term of heat flux is neg-
ligible compared to the potential term at interfaces. In addition,
the instantaneous temperature difference ΔT between the wall and

the adjacent fluid slab was also calculated. The calculation of the
Kapitza length using the newly introduced method is described in
Sec. II.

NEMD simulations were carried out to verify the proposed
EMDmethod. In this case, a temperature gradient was created along
the z-direction to compute the Kapitza resistance. Two different
temperatures (0.9 and 1.1) were maintained at the two outermost
layers of the two solid walls with the implementation of a Nosé-
Hoover thermostat. The Kapitza resistance Rk is computed directly
from Eq. (3), where ΔT is the temperature difference at the interface
and Jq is the average heat flux across the interface. The tempera-
ture difference is calculated from the temperature profile along the
z-direction, and Jq is calculated from the energy added/subtracted
from the thermostated region per unit time across the unit interface
area. Table I shows the average ΔT as a function of wetting coef-
ficient C12. NEMD simulations were carried out over long enough
time durations to obtain a steady-state heat flux and a linear tem-
perature profile. The Kapitza length was calculated by Eq. (2), and
the thermal conductivity of the solid and fluid was calculated from
the temperature profile obtained from NEMD simulations using
Fourier’s law. The thermal conductivity of the fluid was used for
the calculation of the Kapitza length in all the cases. In addition
to this, the EMD method for calculating the Kapitza length derived
from the Green-Kubo method of Barrat and Chiaruttini30 was also
used for comparing our proposed new method. This method is itself

TABLE I. The average temperature difference, ΔT, quoted to 6 decimal place
accuracy, at the interface for different wetting coefficients obtained from NEMD
simulations.

Wetting coefficient (C12) Temperature drop at the interface (ΔT)

0.5 0.030 088
0.6 0.022 592
0.7 0.016 677
0.8 0.014 455
0.9 0.010 658
1.0 0.005 373
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based on a Langevin dynamics model inspired by Puech et al.44 and
is expressed here as

1

Rk

=

A

kBT2 ∫
∞

0
dt⟨Jqz(t)Jqz(0)⟩, (21)

where kB is the Boltzmann constant (set here to 1). Jqz(t) is the heat
flux across the interface of surface area A and is computed from the
work per unit time performed by the solid atoms on liquid atoms,30

Jqz(t) = 1

A
∑

i∈liquid

∑
j∈solid

F
ϕ
ij ⋅ vi. (22)

This is effectively the same as the heat flux expression given in
Eq. (18), which is what is used in both EMDmethods to allow direct
comparison between them.

Finally, we make the observation that the heat flux computed
by Barrat and Chiaruttini30 [Eq. (22)] excludes the kinetic contribu-
tion. As we have pointed out in the above discussion, if the interface
region is such that the kinetic contribution is minimal, then it can
be neglected, but it should formally be included in the total heat flux
expression.

IV. RESULTS AND DISCUSSION

The temperature profile obtained from NEMD simulations for
a wall-fluid wetting coefficient, C12 = 0.5, is shown in Fig. 2. The
maximum standard error in the temperature profile across the entire
fluid channel is found to be ∼0.35%. The temperature profile in the
solid and fluid region varies linearly with the position, which satis-
fies the predictions of Fourier’s law. The thermal conductivity of the
fluid and solid is calculated from the slope of the linear regime of the
temperature profile. The values of thermal conductivity obtained are
9.6 ± 0.7 and 8.4 ± 0.5 for bulk solid and fluid, respectively.

Figure 3 shows the normalized heat flux autocorrelation func-
tion, CJqJq , for different wetting coefficients and for short times. The
correlation function decays to zero at longer times as expected. The
normalized correlation function between heat flux and tempera-
ture difference CJqT for different wetting coefficients is shown in
Fig. 4. It is observed that the heat flux and temperature difference

FIG. 2. Temperature profile obtained from NEMD simulation for a wetting coeffi-
cient C12 = 0.5.

FIG. 3. Normalized heat flux autocorrelation function for different wetting coeffi-
cients.

are initially anticorrelated, which is because heat flux flows in the
direction opposite to the temperature drop across the interface. The
correlation function then decays to zero within 0.8–1.0 time units,
which is about two times higher than the correlation window of
the heat flux autocorrelation function. Both the correlation func-
tions CJqJq and CJqT are calculated during the EMD simulations by
using the instantaneous heat flux and temperature difference at the
interface, which is measured throughout the simulation period. The
Green-Kubo based EMD method only uses the heat flux autocor-
relation function, for which the correlation window is about two
times less than heat flux-temperature difference correlation func-
tion. Due to this smaller correlation window, the simulation time
required to get similar statistics is smaller compared to our new
EMD method. Even though the present method takes more simu-
lation time, it also incorporates the temperature fluctuation at the
interface, thus using more of the information available in the sim-
ulation. Our method also obviates the need to ensure that the time
correlation functions fully decay to zero as is needed in any Green-
Kubo method. Furthermore, by limiting the correlation functions
to an interface region of width Δ, we can be sure that the Kapitza
resistance we compute is a local interfacial and not a bulk fluid
property.

FIG. 4. Normalized heat flux-temperature cross-correlation function for different
wetting coefficients.
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FIG. 5. Normalized Laplace transform of the heat flux-temperature cross-
correlation function for different wetting coefficients.

The Laplace transform of the correlation function data was
calculated using a simple trapezoidal integration method. The nor-
malized Laplace transform of the heat flux-temperature difference
cross-correlation function, C̃TJq(s), for different wetting coefficients
is shown in Fig. 5. The C̃TJq(s) and C̃JqJq(s) data are fitted with
Eq. (14), and the fitting parameters μi and ki are used to calculate the
Kapitza resistance for steady-state conditions (s = 0) from Eq. (15).
It is found that a Maxwellian one term (n = 1) memory function is
adequate to describe the relation between CJqJq and CTJq . This applies
to all the cases in this study. The dependency of the fluid slab thick-
ness on the Kapitza length is shown in Fig. 6. The selection of the
fluid slab thickness is significant in calculating the Kapitza length. If
the thickness is too small, there will not be enough fluid particles to
compute the properties at the slab. If the thickness is too large, then
the computed properties will be bulk fluid properties. To find the
optimum slab thickness, the Kapitza length for different slab thick-
nesses, Δ, ranging from 0.2 to 5 was calculated. From Fig. 6, it can
be seen that for small slab thickness, the values of the Kapitza length
are very large and statistically noisy. As the slab thickness increases,
the uncertainty reduces, and the values of the Kapitza length remain
stable at about Δ = 2.0 for all types of interfaces. Therefore,

FIG. 6. Kapitza length as a function of fluid slab thickness for different wetting
coefficients. The inset shows the Kapitza length to a maximum of 25 to magnify
the scale.

FIG. 7. The variation of the predicted Kapitza length as a function of the wetting
coefficient. The results are compared with NEMD simulations and the Green-Kubo

method of Barrat and Chiaruttini.30

the slab thickness is taken as 2.0 for further calculations in this
study.

Figure 7 shows the comparison of our predicted Kapitza length
with both the direct NEMDmethod and the Green-Kubomethod by
Barrat and Chiaruttini30 for different wetting coefficients. The wet-
ting coefficient varied between 0.5 and 1.0 imitating a hydrophobic
to a hydrophilic interface. The plot shows that the predicted value
of the Kapitza length is in excellent agreement with the results of
both NEMD and Green-Kubo methods for all the wetting coeffi-
cients and serves as a validation for our method. It is found that
the Kapitza length decreases with an increase in the wetting coef-
ficient, in agreement with the results of Tascini et al.24 The higher
the wetting coefficient, the higher the wettability of fluid particles on
the wall. When a higher number of fluid particles are immediately
adjacent to the wall, the thermal resistance across the interface will
reduce. Thus, the temperature drop at the interface will reduce and
heat flux across the interface will increase, causing a reduction in the
Kapitza resistance. The variation of the Kapitza length as a function
of fluid channel width, l, for C12 = 0.5 is plotted in Fig. 8. Different
channel widths ranging from 6 to 42 were used to model the sys-
tem. From the plot, we can see that the uncertainty in the Kapitza

FIG. 8. The variation of the predicted Kapitza length as a function of the fluid
channel width. The results are compared with NEMD simulations.
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length is much higher for smaller channel width. For larger channel
widths, the uncertainty reduces and the values remain constant with
a further increase in channel width. Liang and Tsai45 have reported
a similar result in which they found a rapid increase in the Kapitza
resistance with an increase in fluid film thickness. The Kapitza resis-
tance is one order of magnitude smaller if the fluid thickness is one
molecular layer and increases rapidly with the addition of fluid lay-
ers. The size effects in the simulation results are visible in this plot.
The selection of system size is very crucial in MD simulations for
calculating the Kapitza resistance. A channel width of l = 36 is used
throughout this study, which was the width where convergence of
the Kapitza length was found. The predicted results are in excellent
agreement with direct NEMD simulation results.

We also note here that our formalism, along with those that use
a Green-Kubo formulation, ignores nonlocal transport effects. Such
effects may become important at extreme confinement lengths as has
been shown in the case of momentum transport (see the book by
Todd and Daivis37 and references therein as well as the recent work
by Camargo and colleagues46,47). Such an investigation is beyond the
scope of this current study, in which our local model is seen to work
well for the nanoscale confinement dimensions probed here. Fig-
ure 9 shows the variation of the Kapitza length as a function of fluid
density for C12 = 0.5. The density varied between 0.7 and 1.3, and it
is found that the Kapitza length reduces with an increase in the den-
sity. For the higher density systems and, in particular, for the two
highest density systems studied (where now the “fluid” is actually
in the solid phase), the number of particles adjacent to the inter-
face will be higher, which helps to improve the heat transfer between
these interface layers and causes a reduction in the Kapitza resis-
tance. From the above, we can conclude that the Kapitza length will
reduce if we increase the density of the fluid while keeping all other
variables unaltered. The predicted results are also in good agreement
with our NEMD simulations.

Several studies reported the dependency of temperature on the
Kapitza resistance.2,48,49 It is observed that the Kapitza resistance
tends to reduce with an increase in temperature of the system. How-
ever, these observations are limited to a particular range of tempera-
tures, type of interfaces, andmaterial type. Also, the thermal conduc-
tivity of the material is a function of temperature, which is a variable
in calculating the Kapitza length [Eq. (2)]. Thus, it is not possible to

FIG. 9. The variation of the predicted Kapitza length as a function of density. The
results are compared with NEMD simulations.

FIG. 10. The variation of the predicted Kapitza length as a function of temper-
ature. The results are compared with NEMD simulations. The inset shows the
variation of the Kapitza resistance and fluid thermal conductivity as a function of
temperature.

generalize the temperature dependency of the Kapitza length since
it depends on other factors also. The effect of temperature of the
system on the Kapitza length for C12 = 0.5 is shown in Fig. 10. The
reference temperature of the system changed from 0.9 to 1.2, and we
find that the Kapitza length tends to reduce with an increase in tem-
perature for this particular interface. However, this trend can vary
depending upon other factors of the system, such as type of inter-
faces, type of materials, and range of temperatures. The predicted
results are again compared with NEMD simulations and show good
agreement.

V. CONCLUSION

The calculation of the interfacial thermal resistance plays a
crucial role in nanoscale heat transfer problems and systems. The
present work introduces a new method to compute the Kapitza
length at a fluid-solid interface accurately using EMD simulations. A
theoretical framework is developed, and the same is validated using
classical molecular dynamics simulations. The simulation domain
consists of a Lennard-Jones system with fluid confined between two
solid slabs. Different kinds of interfaces are tested by modifying
the fluid-solid energy of interaction, which is achieved by varying
the wetting coefficient at the interface. In addition to that, simu-
lations at different conditions such as channel width, density, and
temperature were also carried out. The proposed method is vali-
dated by using NEMD and equilibrium Green-Kubo methods. The
Kapitza resistance and thermal conductivities of the solid and fluid
are directly calculated from NEMD simulations by providing a tem-
perature gradient across the system. It is observed that the Kapitza
length reduces with increasing the wetting coefficient, and the val-
ues are in excellent agreement with the NEMD and Green-Kubo
results for corresponding wetting coefficients. Thus, our proposed
method could be used in any interface ranging from hydrophobic
to hydrophilic as well as solid-solid interfaces (as shown in Fig. 9).
It may be particularly useful for complex fluids where the equilib-
rium heat flux time autocorrelation function decays slowly, making
Green-Kubo calculations difficult due to nonconvergence of the time
integral.
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These results provide relevant insight into the Kapitza length in
fluid-solid interfaces. Calculating the Kapitza length from EMD sim-
ulations has significant advantages over NEMD methods. NEMD
simulations require a considerable temperature gradient across the
interface to collect sufficient statistics. Due to this higher tempera-
ture gradient, there is a chance of obtaining a nonlinear response,
which deviates from the response that is of experimental interest.
Since the proposed EMDmethod evaluates the linear response of the
system, it does not suffer from this limitation. Moreover, for higher
values of wetting coefficient (hydrophilic surface), the temperature
difference at the interface is extremely low, such that the direct cal-
culation of the Kapitza resistance from Eq. (1) becomes difficult.
The Kapitza resistance is highly sensitive to even a small change in
the temperature difference at the interface for the NEMD approach.
Thus, our proposed EMD method overcomes these challenges and
provides an efficient and accurate way to calculate the Kapitza resis-
tance and length at fluid-solid interfaces. This in turn can be used to
predict the temperature profile of the system precisely without the
need to do NEMD simulations.

In future work, we will demonstrate how our equilibrium MD
method can be used to predict the Kapitza length for confined fluids
under flow conditions, particularly for superhydrophobic systems
such as water in graphene channels or carbon nanotubes, where fric-
tional forces are minimal and so too energy dissipation. For such
systems, both velocity and temperature profiles are almost flat, mak-
ing NEMD measurements of slip and Kapitza lengths very difficult
(see, for example, the work of Kannam et al.16,50).

Note added in proof. The stable convergence of the Kapitza
length (or Kapitza resistance) as a function of fluid slab thick-
ness as shown in Fig. 6 suggests the slab thickness could be
extended to cover the entire fluid channel volume, rather than just
a narrow interfacial volume. We are conducting further simula-
tions to verify this and will publish our findings in a subsequent
paper.
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