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a b s t r a c t

A finite-dimensional Port-Hamiltonian formulation for the dynamics of smooth open channel flows is
presented. A numerical scheme based on this formulation is developed for both the linear and nonlinear
shallow water equations. The scheme is verified against exact solutions and has the advantage of
conservation of mass and energy to the discrete level.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Port based network modeling of complex lumped parameter
physical systems naturally leads to a generalized Hamiltonian
formulation of the dynamics. It results in a class of open
dynamical systems called ‘‘Port-Hamiltonian’’ systems [1] that are
defined using a power conserving interconnection structure called
the Dirac structure, the Hamiltonian and dissipative elements.
Such a generalized Hamiltonian formulation, called the ‘‘Port-
Hamiltonian’’ formulation, has been successfully extended to
classes of distributed parameter systems by introducing an
infinite-dimensional Dirac structure based on Stokes’ theorem.
The key aspect of this formulation is that it allows a non-zero
energy flow into the spatial domain through its boundary using
theDirac structure,whereas the standardHamiltonian formulation
assumes a zero energy flow through the boundary using the
Poisson structure [2]. The Port-Hamiltonian formulation is also
effectively used towards control design by using energy shaping
methods. The technique relies on constructing a Lyapunov function
by using the energy function of the system together with the
conserved quantities called Casimirs [3].

The Port-Hamiltonian formulation [4] can be directly applied
to model infinite-dimensional fluid dynamical systems containing
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all its physical conservation laws such as mass, momentum and
energy (Hamiltonian). But for practical purposes, it is crucial
to approximate these infinite-dimensional systems by a finite-
dimensional system such that it is again a Port-Hamiltonian system
cf., [5]. The finite-dimensional approximation then conservesmost
of the physical quantities of its infinite-dimensional counterpart
and better captures the physics of the fluid dynamical system. To
devise such a numerical scheme based on the finite-dimensional
Port-Hamiltonian formulation, we choose a particular example of
fluid flows, namely open channel flows. Preliminaryworks on such
formulations are found in [6–8].

The one-dimensional shallow water equations governing open
channel flows are the depth averaged approximations of the
two-dimensional Navier–Stokes equations. They are a direct
consequence of the conservation of mass and momentum and
obey the conservation of energy for smooth flows but dissipate
energy for non-smooth flows in the form of bores and hydraulic
jumps. Many numerical methods exist for these equations such
as finite volume methods [9,10] and discontinuous Galerkin
finite element methods [11–13]. These numerical methods follow
mass and momentum laws of balance, but they may not follow
energy balance even in the smooth regions of a flow. Hence,
we propose the use of the framework of Port-Hamiltonian
systems which follows an energy balance law. Such a framework
has implications towards the meteorological and oceanographic
studies on geophysical flows, where the numerical schemes
that conserve the energy are of great importance (for example
following [14–16]).

A new numerical scheme based on a finite-dimensional Port-
Hamiltonian formulation for the dynamics of shallow open
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channel water flow is the aim of the present paper. A shallow
water channel with topography is first modeled as an infinite-
dimensional Port-Hamiltonian system defined with respect to a
Stokes–Dirac structure. Consequently, the system obeys a power
conserving property, which is naturally equivalent to the energy
balance, expressed in terms of power port variables called flows
and efforts of the fluid dynamical system. For shallowwater system,
the flows are the rate of change of water depth and velocity, the
efforts are the discharge and Bernoulli’s function, and the shallow
water equations are a direct consequence of the relation between
flows and efforts captured by the Stokes–Dirac structure.

To model the shallow water canal as a finite-dimensional Port-
Hamiltonian system, we tessellate the spatial domain with finite
elements and approximate the flow variables with cell averages
and effort variables with continuous piecewise linear polynomials.
Such a choice of different approximation spaces for flows and
efforts ensures the compatibility of the flow–effort relation in the
Stokes–Dirac structure which are ordinary differential equations.
Further, the continuity of efforts ensures the conservation of
flow quantities. Consequently, each finite element will be a
finite-dimensional Port-Hamiltonian system satisfying a power
conserving property per finite element. We then enforce a discrete
energy balance in the systemby summing up the power conserving
relation of all the finite elements. This effectively gives rise to
an algebraic relation between the efforts and the corresponding
discrete co-energy variables. Thus, the finite-dimensional Port-
Hamiltonian system for a shallow water channel consists of a
system of differential–algebraic equations.

The ordinary differential equations arising from the Port-
Hamiltonian formulation are further discretized in time using an
implicit mid-point time discretization. This time discretization
is a second-order symplectic method and well-suited for a
Hamiltonian system. After time discretization, the ODEs are
transformed into nonlinear algebraic equations which are then
solved by integrating them in pseudo-time using a five stage
Runge–Kutta scheme until a steady state is reached in pseudo-
time [11]. The numerical scheme is verified against several
idealized exact solutions to show that it is first-order accurate and
accurately conserves the energy.

2. Infinite-dimensional Port-Hamiltonian formulation

The Port-Hamiltonian formulation of fluid dynamical sys-
tems [4,17] is an extension of the Hamiltonian formulation in-
corporating non-zero flow through boundaries. Here, we present
the Port-Hamiltonian formulation for open channel or canal water
flows in one dimension.

2.1. Shallow water model

The dynamics of flow through an open channel of length L is
governed by the shallow water equations which in one dimension
read as

∂th + ∂xQ = 0 and ∂tu + ∂xB = 0 on [0, L] (1)

with h(t, x) the water depth, u(t, x) the depth averaged velocity,
Q = hu the flow discharge, B = u2/2+g(h+b) the Bernoulli func-
tion and b(x) the channel bed height measured from a fixed refer-
ence level. The shallowwater equations (1) are completed together
with the initial conditions h(0, x) = h0(x) and u(0, x) = u0(x), and
inflow, outflow, solidwall or periodic boundary conditions at x = 0
and x = L. The total hydraulic energy (or Hamiltonian) in the open
channel is

H :=

 L

0

1
2


hu2

+ g(h + b)2 − gb2

dx. (2)
2.2. Preliminaries of differential geometry

The Port-Hamiltonian formulation is convenient in a differen-
tial geometric framework. For the one-dimensional shallow water
model, we introduce the differential zero and one forms in one di-
mension. By definition, zero forms are functions that can be eval-
uated at any point on the domain and one forms are objects with
a one-dimensional distribution that cannot be evaluated at a given
point but can be integrated over any one-dimensional path of the
domain. Now, the following operators relate zero and one forms in
one dimension:

1. Exterior derivative. Consider a zero form or function f (x)
∈ R and a one form g defined as g := (∂ f /∂x)dx which in
coordinate-free language is given as g = df , where d(·) is called
the exterior derivative transforming the zero form to one form.

2. Hodge star operator. Consider a function f (x) ∈ R which by it-
self is a zero form and its one form f dx. TheHodge star operator
∗(·) in one dimension is defined as ∗f dx := f and ∗f := f dx
transforming a zero form to a one form and vice versa.

3. Wedge product. Given a zero form f and one form g , the wedge
product f ∧g is defined as f ∧g := fg which is again a one form.

Formore general definitions of these operators in ndimensions,we
refer to [18]. Further,wedenote the set of zero forms asW 0(Ω) and
the set of one forms asW 1(Ω).

2.3. Stokes’ Dirac structure

The Port-Hamiltonian formulation is based on the concept of a
Dirac structure which is a geometric object formalizing the power
conserving interconnections [1].

Definition 1. Let V be a linear space (possibly infinite-dimen-
sional). There exists on V × V ∗ the canonically defined symmetric
bilinear form

⟨⟨(f1, e1), (f2, e2)⟩⟩ := ⟨e1 | f2⟩ + ⟨e2 | f1⟩ (3)

with fi ∈ V , ei ∈ V ∗, i = 1, 2 and ⟨|⟩ denoting the duality product
between V and its dual subspace V ∗. A constant Dirac structure on
V is a linear subspace D ⊂ V × V ∗ such that

D = D⊥, (4)

where ⊥ denotes the orthogonal complement with respect to the
bilinear form ⟨⟨, ⟩⟩.

Let now (f , e) ∈ D = D⊥. Then as an immediate consequence of
(3),

0 = ⟨⟨(f , e), (f , e)⟩⟩ = 2⟨e | f ⟩.

Thus for all (f , e) ∈ D we have ⟨e | f ⟩ = 0, expressing power
conservation with respect to the dual power variables f ∈ V and
e ∈ V ∗.

The Stokes–Dirac structure for the shallow water equations is
defined as follows. The spatial domain Ω ⊂ R is represented by
a one-dimensional manifold with point boundaries. We associate
the energy variables water depth h(t, x) and velocity u(t, x), with
the one forms hdx ∈ V 1(Ω), respectively udx ∈ V 1(Ω); and co-
energy variables, Bernoulli function B and discharge Q , with zero
forms as (B,Q ) ∈ V 0(Ω) in which

V 1(Ω) := W 1(Ω)× W 1(Ω) and

V 0(Ω) := W 0(Ω)× W 0(Ω)
(5)

whereW 0(Ω) andW 1(Ω) are the space of zero and one forms, re-
spectively. Now, the rate of energy variables, i.e., fh := −(∂th)dx
and fu := −(∂tu)dx, are called flows; and the co-energy variables,
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i.e., eh := δhH = B and eu := δuH = Q , are called efforts.
Furthermore, the values of the Bernoulli function B and the dis-
charge Q evaluated at the boundaries would constitute the flow
and effort variables at the boundary as fb = B|∂Ω ∈ W 0(∂Ω) and
eb = −Q |∂Ω ∈ W 0(∂Ω)with W 0(∂Ω) the space of zero forms on
the boundary.

Consider the linear space of flow variables F = V 1(Ω) ×

W 0(∂Ω) and effort variables E = V 0(Ω)×W 0(∂Ω) together with
the bilinear form

f 1h , f
1
u , f

1
b , e

1
h, e

1
u, e

1
b


,

f 2h , f

2
u , f

2
b , e

2
h, e

2
u, e

2
b


:=


Ω


e1h ∧ f 2h + e2h ∧ f 1h + e1u ∧ f 2u + e2u ∧ f 1u


+


∂Ω


e1b ∧ f 2b + e2b ∧ f 1b


, (6)

where fh := −(∂h/∂t) dx, fu := −(∂u/∂t) dx, fb := B|∂Ω , eh :=

B, eu := Q , eb := −Q |∂Ω ,

f ih, f

i
u, f

i
b


∈ F the flows,


eih, e

i
u, e

i
b


∈

E the efforts and i = 1 or 2. It has been shown in [4] that D ⊂

F × E defined as
D := {(f , e) ∈ F × E |fh = deu, fu = deh, fb

= eh|∂Ω , eb = −eu|∂Ω} (7)
is a Stokes–Dirac structure, i.e., D = D⊥, with respect to the
bilinear form


·, ·


defined in (6) and thus defines an infinite-
dimensional Port-Hamiltonian system. The flow-effort relation in
(7) is a direct consequence of the shallow water equations (1).

2.4. Power conserving property and energy balance

The Stokes–Dirac structure is always associated with a power
conserving property stated as
Ω

(eh ∧ fh + eu ∧ fu)+


∂Ω

eb ∧ fb = 0. (8)

Substituting the definitions of fh, fu, fb, eh, eu and eb in (8), we get
Ω


B
∂h
∂t

+ Q
∂u
∂t


dx +


∂Ω

BQ = 0. (9)

Manipulating the first term in (9), the energy balance equation
arises as follows
dH

dt
+ (BQ )|x=L − (BQ )|x=0 = 0. (10)

3. Finite-dimensional Port-Hamiltonian formulation

A finite-dimensional Port-Hamiltonian formulation is obtained
by approximating the flows and efforts such that they are
compatible with the Stokes–Dirac structure and satisfy both the
power conserving property and the energy balance equation.

3.1. Preliminaries

The flow domainΩ := [0, L] is tessellated with finite elements
Kk = [xj, xj+1], where xj and xj+1 are the spatial coordinates of
its nodes as shown in Fig. 1. On each finite element Kk, the one
forms corresponding to the water depth and velocity field are
approximated as

ĥ(t, x) dx = h̄k(t) ψ and û(t, x) dx = ūk(t) ψ; (11)
where ψ := dx is the one form with ∗ψ = 1, h̄k(t) is the mean
water depth and ūk(t) is the mean velocity of the fluid in the finite
element Kk. Subsequently, the approximation of flows is directly
given as

f̂h(t, x) = −∂t h̄k ψ and f̂u(t, x) = −∂t ūk ψ. (12)
As a consequence, the flows are piecewise constant per finite
element Kk and discontinuous across the nodes in the domain.

To satisfy the energy balance andmass conservation, the efforts
eh = B and eu = Q are approximated with linear polynomials per
element Kk such that they are continuous across each node. The
approximation of efforts in each finite elementKk is therefore given
as

êh = B̂(t, x) = B̂j(t)φj(x)+ B̂j+1(t)φj+1(x) and

êu = Q̂ (t, x) = Q̂j(t)φj(x)+ Q̂j+1(t)φj+1(x), (13)

whereφj(x) := (xj+1−x)/(xj+1−xj) andφj+1(x) := (x−xj)/(xj+1−

xj) are shape functions, B̂j(t) and B̂j+1(t) are nodal values of the
Bernoulli function B, and Q̂j(t) and Q̂j+1(t) are nodal values of the
discharge Q . Finally, the approximation of boundary variables fb
and eb on each boundary of the finite element Kk becomes

f̂b = êh|x=xj,j+1 = B̂j,j+1(t) and

êb = êu|x=xj,j+1 = −Q̂j,j+1(t).
(14)

3.2. Discretization of the Stokes–Dirac structure

The discrete Port-Hamiltonian formulation starts by substitut-
ing the approximations of flows (12) and efforts (13) per finite el-
ement Kk in the flow–effort relations of the Stokes–Dirac structure
(7) to get

−∂t h̄kψ = Q̂j dφj + Q̂j+1 dφj+1 and

−∂t ūkψ = B̂j dφj + B̂j+1 dφj+1.
(15)

The choice of approximation of flows with piecewise constants
and efforts with piecewise linear polynomial is made such that the
flow–effort relation (15) is non-degenerate. Integrating (15) over
the finite element Kk, the evolution of flows in terms of efforts per
finite element emerge as

dh̄k

dt
=

1
1xk


Q̂j − Q̂j+1


and

dūk

dt
=

1
1xk


B̂j − B̂j+1


(16)

with1xk = xj+1 − xj. The flow and effort approximations together
with the boundary effort variables (14) automatically satisfy the
power conserving property per finite element as follows

Kk


êh ∧ f̂h + êu ∧ f̂u


+


∂Kk

êb ∧ f̂b

= −
1xk
2


B̂j+1 + B̂j

 dh̄k

dt
−
1xk
2


Q̂j+1 + Q̂j


×

dūk

dt
−


B̂j+1Q̂j+1 − B̂jQ̂j


= 0. (17)

The power conserving property (17) is deduced by using (12)–(14)
in (8) and substituting (16). Having obtained a discretization
for the Stokes–Dirac structure, it now remains to discretize the
Hamiltonian and satisfy energy balance.

The Hamiltonian (or energy) is discretized in each finite
element Kk as

H̄k :=


Kk

1
2


ĥû2

+ g(ĥ + b̂)2 − gb̂2

dx

=
1xk
2


h̄kū2

k/2 + g(h̄k + b̄k)2 − gb̄2k

; (18)

where b̂(x) := b̄k ∗ ψ is the approximated bed height. The
co-energy variables of the discretized Hamiltonian H̄k are then
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Fig. 1. Mesh stencil showing the numbering of elements and nodes with index k and j, respectively. Note that j = k for k = 1, . . . ,N .
defined as

B̄k :=
∂H̄k

∂ h̄k

=


1
2
ū2
k + g(h̄k + b̄k)


1xk and

Q̄k :=
∂H̄k

∂ ūk
= (h̄kūk)1xk.

(19)

We now enforce the following energy balance
N

k=j=1


dH̄k

dt
+ B̂j+1Q̂j+1 − B̂jQ̂j


= 0 (20)

by equating the discretized effort variables to the co-energy
variables at the interior nodes as
(B̂j, Q̂j) = (αjB̄k−1 + βjB̄k, βjQ̄k−1 + αjQ̄k)

for j = 2, . . . ,N; (21)
and at the boundary nodes as

(B̂1, Q̂1) = (B̄1, Q̄0) and (B̂N+1, Q̂N+1) = (B̄N , Q̄L) (22)
withαj+βj = 1, αj ∈ R an arbitrary value for any j = 2, . . . ,N, Q̄0

and Q̄L are the given inflow or outflow discharges at x = 0 and
x = L, respectively. For a solidwall boundary, the inflow or outflow
discharge is simply set to zero and for periodic boundaries, the
boundary efforts are determined by making the two boundary
nodes as a single interior node to obtain

B̂1 = B̂N+1 = α1B̄1 + β1B̄N and

Q̂1 = Q̂N+1 = β1Q̄1 + α1Q̄N

(23)

with α1 + β1 = 1 and α1 an arbitrary value. The flow–effort re-
lations (16) together with Eqs. (21)–(23) constitute the discretized
dynamics of the shallow water equations.

Remark 1. To determine the efforts at each node j using (21), there
exist several choices for αj or βj and can be arbitrarily chosen. In all
the test cases, we made a simple choice of αj = βj = 1/2.

3.3. Discrete conservation properties

Proposition 1. The Port-Hamiltonian discretization (16), (21) and
(23) satisfy the mass and energy balance as follows

dM
dt

+ Q̂N+1 − Q̂1 = 0 and
dE
dt

+ B̂N+1Q̂N+1 − B̂1Q̂1 = 0 (24)

where M :=
N

k=1 h̄k1xk is the total mass and E :=
N

k=1 H̄k the
total energy.

Proof. The proof of mass balance is straightforward; evaluating
the time derivative on total massM using (16):

dM
dt

=

N
k=1

dh̄k

dt
1xk =

N
k=j=1


Q̂j − Q̂j+1


= −(Q̂N+1 − Q̂1). (25)

To prove the energy balance, we first evaluate the time
derivative on total energy E using (16) to find

dE
dt

=

N
k=1

dH̄k

dt
=

N
k=1


B̄k

dh̄k

dt
+ Q̄k

dūk

dt


1xk

=

N
k=j=1


B̄k


Q̂j − Q̂j+1


+ Q̄k


B̂j − B̂j+1


. (26)
Rearranging the summation over elements in (26) into a sum-
mation over nodes and substituting the efforts determined in
(21)–(23), we further find

dE
dt

= (B̄1Q̂1 + Q̄1B̂1)− (B̄N Q̂N+1 + Q̄N B̂N+1)

+

N
k=j=2


B̄k − B̄k−1


Q̂j +


Q̄k − Q̄k−1


B̂j


= (B̄1Q̄0 + Q̄1B̄1)− (B̄N Q̄L + Q̄N B̂N+1)

+

N
k=2


B̄kQ̄k − B̄k−1Q̄k−1


= (B̄1Q̄0 − B̄N Q̄L) = (B̂1Q̂1 − B̂N+1Q̂N+1) (27)

for a given inflow or outflow boundary conditions. For periodic and
solid wall boundaries, we find that dE/dt = 0. �

3.4. Time discretization

The Port-Hamiltonian discretization (16) and (21)–(23) takes
the following form:

dy
dt

= F(t, y); (28)

with y = (h̄1, ū1, . . . , h̄N , ūN)
T the unknown flow variables and

F(t, y) the nonlinear right hand side obtained after substituting
efforts (21)–(23) and co-energy variables (19) into the RHS of (16).
To integrate the ordinary differential equations (28) in time, we
employ an implicit mid-point time discretization to get

L(tn, yn, tn−1, yn−1)

:= yn − yn−1
−1t F


(tn + tn−1)/2, (yn + yn−1)/2


= 0, (29)

where L(tn, yn, tn−1, yn−1) represents the nonlinear algebraic
equations. The implicit mid-point scheme is a second-order
symplectic method [19] that is well-suited for Hamiltonian
systems and leads to a stable numerical integration in time. The
nonlinear equations (29) are solved by augmenting them with
pseudo-time derivatives as

1x ·
dy
dτ

=
−1
1t

L(tn, y, tn−1, yn−1) (30)

with 1x = (1x1,1x1, . . . ,1xN ,1xN)T , 1t = tn − tn−1

the time step and integrating in pseudo-time using a five-stage
Runge–Kutta integration scheme [11] until it reaches the steady
state in pseudo-time. The five-stage Runge–Kutta scheme is

(1 + αs)ys = y0 + αsλ(ys−1
− L(tn, ys−1, tn−1, yn−1)); (31)

where s = 1–5 are the Runge–Kutta stages, αs = (0.0791451,
0.163551, 0.283663, 0.5, 1.0) the Runge–Kutta coefficients, and
λ = 1τ/1t and 1τ the local pseudo-time step. The time step
1t = CFL1t max


1xk/(|ūk| +


gh̄k)


is chosen globally for all

k = 1, . . . ,N , the pseudo-time step1τ = CFL1τ1xk/(|ūk|+


gh̄k)

is chosen locally for each k, and CFL1t = 1.0 and CFL1τ = 0.9
are the Courant–Friedrichs–Lewy (CFL) numbers for 1t and 1τ ,
respectively.
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4. Numerical examples

4.1. Burgers’ equation

On a flat bed, the one-dimensional nonlinear shallow water
equations take the form of Burgers’ equation ∂tq+q∂xq = 0, when
one of its Riemann invariants is taken constant as u + 2

√
gh =

c with q(x, t) = c − 3
√
gh. An implicit exact solution is then

constructed as

h(x, t) = (q(x, t)− c)2/(9g) and
u(x, t) = (c − 2q(x, t))/3

(32)

with q(x, t) = q0(x′) and x = x′
+ q0(x′)t , where q(x, 0) = q0(x)

is the initial condition. Now for any given initial condition q0(x)
with dq0/dx < 0 somewhere, wave breaking occurs at time tb =

−1/min(dq0/dx).
We choose the initial condition as q0(x) = sin(πx) with x ∈

[0, 2], g = 1, c = 3 and use periodic boundary conditions as given
in (23). In our numerical simulation, this smooth initial condition
develops into a discontinuity at time tb = 1/π as in the case of
exact solution, see Fig. 2(a). Fig. 2(b) shows that the total discrete
energy is conserved in time demonstrating the advantage of the
Port-Hamiltonian based numerical scheme. We then compute the
numerical errors in L2 and L∞ norms and the respective orders of
accuracy forwater depth h and velocity u at various instants of time
on differentmesh sizes, presented in Table 1. The order of accuracy
in Table 1 clearly suggests that the numerical scheme is first-order
accurate.

4.2. Flow over a bump

Analytical solutions for steady subcritical and supercritical
flows over a given parabolic bump are given by Houghton and
Kashara [20]. The parabolic bump is taken as

b(x) =


1
2


1 −


x − 5
2

2


if |x − 5| ≤ 2,

0 if |x − 5| > 2
(33)

in a channel from x = 0 to x = 10. The steady subcritical solution
is obtained by solving the following equation for h and u at any
x = [0, 10],

hu = Qc and u2/2 + g(h + b) = Bc (34)

with Qc = 1, Bc = 25.5 and g = 25 such that the Froude number
F = u/

√
gh < 1. We initialize this steady exact solution in our

numerical scheme and simulate until a steady state is numerically
achieved with inflow (h̄0, ū0) = (h̄1, 1/h̄1) and outflow (h̄L, ūL) =

(h̄N , ūN) boundary conditions (see Fig. 3). At steady state, the errors
and order of accuracy of water depth h and velocity u presented in
Table 2 again shows that the scheme is first-order accurate.

4.3. Linear harmonic waves

The one-dimensional linear shallow water equations are

∂tη + ∂x(Hu) = 0 and ∂tu + ∂x(gη) = 0, x ∈ [0, L] (35)

with η the free surface wave elevation measured from the water
surface at rest, H the water depth at rest and H :=

 L
0 (Hu

2
+

gη2)/2dx the Hamiltonian. They satisfy a harmonic wave solution,

η(x, t) = A sin(kx + ωt), and

u(x, t) =


−Agk
ω


sin(kx + ωt)

(36)
with A the amplitude, k = 2πm/L the wavenumber, ω the fre-
quency, T = 2π/ω the time period, L the length of the domain,
ω2

= k2gH the dispersion relation, m any integer, and periodic
boundary conditions. The Port-Hamiltonian scheme for linear shal-
lowwater equations is easily derivedby treatingh asη anddefining
B := gη and Q := Hu.

We first initialized the exact solution (36) in the numerical
scheme for linear shallow water equations setting A = 0.01, L =

1,m = 1, g = 1 and H = 1; and used periodic boundary
conditions as given in (23). Linear harmonic waves are then
simulated for 50 time periods on grids of size 20, 40, 80 and
160 elements with time step 1t = T/32, T/64, T/128 and
T/256, respectively. Subsequently, we display the plots of free
surface perturbation η(t, x) at time t = 50T and the discrete
energy w.r.t. time in Fig. 4. It is clearly observed that the discrete
energy is conserved and consequently there is no dissipation in
the amplitude of the waves even after 50 time periods. However,
the numerical scheme displays a dispersion error in the simulated
waves which decreases from coarse to fine grids. Further, to show
that the scheme is first-order accurate, we present numerical
errors and orders of accuracy in Table 3 at various time instants.

Second, we initialized harmonic waves (36) in the Port-
Hamiltonian scheme for nonlinear shallow water equations with
h(t, x) := H + η(t, x) and simulated until the smooth initial linear
waves break because of the nonlinearity. The effects of nonlinearity
are demonstrated by comparing the space–time evolution of
harmonic waves using linear and nonlinear schemes in Fig. 5.

4.4. Standing waves

The one-dimensional linear shallow water equations (35) also
satisfy a standing wave solution,

η(x, t) = A cos(kx) cos(ωt) and

u(x, t) =


Agk
ω


sin(kx) sin(ωt)

(37)

with solid wall boundary conditions at x = 0 and x = L. The
standing wave solution (37) is initialized in the numerical scheme
for linear shallow water equations setting A = 0.01, L = 1,m =

1, g = 1 and H = 1, and simulated by applying solid wall
boundary conditions as (h̄0, ū0) = (h̄1,−ū1) and (h̄L, ūL) =

(h̄N ,−ūN). Comparison of the numerical solution of the standing
wave against its exact solution after one time period and the
discrete energy conservation in time is shown in Fig. 6(a) and
(b). Numerical errors and the corresponding orders of accuracy
tabulated in Table 4 infers that the scheme is first-order accurate.

4.5. Linearized wave maker

A linearized wave maker, applying a kinematic boundary
condition u(x = 0, t) = Agk sin(kL) cos(ωt)/ω at one end of a
wave basin x = 0 and a solid wall boundary condition at the other
end x = L, generates the following gravity wave field

η(x, t) = A cos(k(L − x)) sin(ωt) and

u(x, t) =


Agk
ω


sin(k(L − x)) cos(ωt)

(38)

satisfying the one-dimensional linear shallowwater equations (35)
with the dispersion relation ω2

= gHk2 and k = (2m + 1)π/2.
We initialize the exact solution (38) in our numerical scheme

for the linear shallow water equations setting A = 0.01, L =

1,m = 2, g = 1 and H = 1; and numerically generate
the waves by applying the time varying boundary conditions
(η̄0, ū0) = (0, Agk sin(kL) cos(ωt)/ω) at the wave maker and solid



R. Pasumarthy et al. / Systems & Control Letters 61 (2012) 950–958 955
Table 1
Errors in L2 and L∞ norms for water depth h and velocity u of Burgers’ solution at various time levels.

Grid Water depth (h) Velocity (u)
L2 error Order L∞ error Order L2 error Order L∞ error Order

At t = 0.09

20 6.3336e−02 – 1.1885e−01 – 6.2561e−02 – 1.1267e−01 –
40 3.1625e−02 1.00 5.9098e−02 1.01 3.1214e−02 1.00 5.6714e−02 0.99
80 1.5806e−02 1.00 2.9473e−02 1.00 1.5597e−02 1.00 2.8326e−02 1.00

160 7.9021e−03 1.00 1.4702e−02 1.00 7.7970e−03 1.00 1.4150e−02 1.00

At t = 0.18

20 7.1909e−02 – 1.9581e−01 – 7.1569e−02 – 1.8398e−01 –
40 3.5534e−02 1.02 9.8725e−02 0.99 3.5189e−02 1.02 9.6160e−02 0.94
80 1.7677e−02 1.01 4.8670e−02 1.02 1.7472e−02 1.01 4.7542e−02 1.02

160 8.8255e−03 1.00 2.4119e−02 1.01 8.7184e−03 1.00 2.3531e−02 1.01

At t = 0.27

20 9.2282e−02 – 3.1072e−01 – 9.2944e−02 – 2.8366e−01 –
40 4.9107e−02 0.91 2.2354e−01 0.48 4.9128e−02 0.92 2.1033e−01 0.43
80 2.4568e−02 1.00 1.3433e−01 0.73 2.4451e−02 1.01 1.3040e−01 0.69

160 1.2112e−02 1.02 6.9783e−02 0.94 1.2016e−02 1.02 6.9165e−02 0.91
Fig. 2. Comparison of numerical solution of harmonic waves at t = 6T using Port-Hamiltonian numerical scheme for linear (left) and nonlinear (right) shallow water
equations on a grid of 80 elements. Observe the wave breaking phenomena due to nonlinearity. Exact and numerical solutions are marked with ‘‘∗ − ∗’’ and ‘‘◦ − ◦’’,
respectively.
(a) Water depth (h). (b) Velocity (u).

Fig. 3. Comparison of numerical solution (‘‘–’’) of steady subcritical flow over bump against steady exact solution (‘‘◦’’) on a mesh stencil with 40 elements.
Table 2
Errors in L2 and L∞ norms for water depth h and velocity u of subcritical flow over bump at steady state.

Grid Water depth (h) Velocity (u)
L2 error Order L∞ error Order L2 error Order L∞ error Order

20 9.5631e−02 – 9.1603e−02 – 2.3890e−01 – 2.0586e−01 –
40 4.7945e−02 1.00 4.8336e−02 0.92 1.1895e−01 1.01 1.0469e−01 0.98
80 2.3993e−02 1.00 2.4670e−02 0.97 5.9490e−02 1.00 5.1709e−02 1.02

160 1.1999e−02 1.00 1.2467e−02 0.98 2.9757e−02 1.00 2.5698e−02 1.01
wall boundary conditions (η̄L, ūL) = (η̄N ,−ūN) at the opposite
end. The numerical simulations are carried out for 5 time periods
on grids of size 20, 40, 80 and 160 elements with time step
1t = T/16, T/32, T/64 and T/128, respectively. In Table 5, the
numerical errors and the corresponding orders of accuracy are
tabulated.

We also simulate these waves in our nonlinear numerical
scheme by initializing the exact solution in (38) with h(t, x) =
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Table 3
Errors in L2 and L∞ norms for free surface perturbation and velocity of harmonic waves at various time levels.

Grid Free surface perturbation (η) Velocity (u)
L2 error Order L∞ error Order L2 error Order L∞ error Order

At t = 10T

20 3.355203e−03 – 5.741420e−03 – 3.139811e−03 – 5.526638e−03 –
40 8.750548e−04 1.94 1.755125e−03 1.71 8.682840e−04 1.85 1.746101e−03 1.66
80 2.589677e−04 1.76 5.914289e−04 1.57 2.587888e−04 1.75 5.912680e−04 1.56

160 9.494629e−05 1.45 2.240127e−04 1.40 9.494265e−05 1.45 2.240233e−04 1.40

At t = 30T

20 9.584440e−03 – 1.435877e−02 – 8.219201e−03 – 1.257490e−02 –
40 2.473886e−03 1.95 4.058127e−03 1.82 2.410303e−03 1.77 3.983402e−03 1.66
80 6.313784e−04 1.97 1.166671e−03 1.80 6.293884e−04 1.94 1.164016e−03 1.77

160 1.724456e−04 1.87 3.679616e−04 1.66 1.723894e−04 1.87 3.678919e−04 1.66

At t = 50T

20 1.355490e−02 – 1.962116e−02 – 1.203636e−02 – 1.751711e−02 –
40 4.096750e−03 1.73 6.331122e−03 1.63 3.926849e−03 1.62 6.122858e−03 1.52
80 1.030933e−03 1.99 1.741978e−03 1.86 1.025298e−03 1.94 1.735949e−03 1.82

160 2.668249e−04 1.95 5.119071e−04 1.77 2.666554e−04 1.94 5.116759e−04 1.76
Fig. 4. Left: comparison of exact and numerical solution of free surface perturbation η(t, x) at time t = 50T . Exact solution is marked with ‘‘∗’’ and numerical solution for
20 elements marked as ‘‘◦ − ◦’’, 40 elements as ‘‘� − �’’, 80 elements as ‘‘� − �’’ and 160 elements as ‘‘−’’. Right: total discrete energy in the computational domain with a
grid of 20 ‘‘..’’, 40 ‘‘-.-’’, 80 ‘‘- -’’ and 160 ‘‘−’’ elements.
(a) t = 4T . (b) t = 4T . (c) t = 6T .

(d) t = 6T . (e) t = 8T . (f) t = 8T .

Fig. 5. Numerical solution of harmonic waves using Port-Hamiltonian numerical scheme for linear (left) and nonlinear (right) shallow water equations on a grid of 80
elements. Exact and numerical solutions are marked as ‘‘∗ − ∗’’ and ‘‘◦ − ◦’’, respectively. Observe on the left, numerical harmonic waves are in good agreement with the
exact solution and on the right side, the wave steepens due to nonlinearity.
H + η(t, x) and applying the boundary conditions as (h̄0, ū0) =

(h̄1, Agk sin(kL) cos(ωt)/ω) at the wave maker and (h̄L, ūL) =

(h̄N ,−ūN). The evolution of thewaveprofile generated by thewave
maker are compared against the exact solution at various time
levels using both linear and nonlinear schemes are shown in Fig. 7.
Both schemes capture the generated wave profiles and compare
well with the exact solutions.
5. Conclusions

A finite-dimensional Port-Hamiltonian formulation for the
nonlinear shallow water equations defined with respect to
a Stokes–Dirac structure is presented. The key advantage of
this formulation is that the physical properties of the infinite-
dimensional model, such as mass and energy conservation, are
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Table 4
Errors in L2 and L∞ norms for free surface perturbation and velocity of standing waves at various time levels.

Grid Free surface perturbation (η) Velocity (u)
L2 error Order L∞ error Order L2 error Order L∞ error Order

At t = T

20 6.4055e−04 – 1.1994e−03 – 5.3547e−04 – 7.5727e−04 –
40 3.2051e−04 1.00 6.0662e−04 0.98 1.3625e−04 1.97 1.9268e−04 1.97
80 1.6030e−04 1.00 3.0398e−04 1.00 3.4210e−05 1.99 4.8380e−05 1.99

160 8.0157e−05 1.00 1.5207e−04 1.00 8.5635e−06 2.00 1.2111e−05 2.00
Fig. 6. Left: comparison of exact and numerical solution of free surface perturbation η(t, x) at time t = T . Exact solution is marked with ‘‘*’’ and numerical solution for 20
elements marked as ‘‘◦ − ◦’’, 40 elements as ‘‘� − �’’, 80 elements as ‘‘� − �’’ and 160 elements as ‘‘−’’. Right: total discrete energy in the computational domain with a grid
of 20 ‘‘..’’, 40 ‘‘-.-’’, 80 ‘‘- -’’ and 160 ‘‘−’’ elements.
Table 5
Errors in L2 and L∞ norms for free surface perturbation and velocity of linearwaves generated by thewavemaker
at various time levels.

Grid Free surface perturbation (η) Velocity (u)
L2 error Order L∞ error Order L2 error Order L∞ error Order

At t = 4.5T

20 6.9151e−03 – 1.1046e−02 – 1.7536e−03 – 4.3527e−03 –
40 3.4870e−03 0.99 5.2555e−03 1.07 9.8505e−04 0.83 2.3221e−03 0.91
80 1.7487e−03 1.00 2.5999e−03 1.02 4.9660e−04 0.99 1.1769e−03 0.98

160 8.7532e−04 1.00 1.2942e−03 1.01 2.4932e−04 0.99 5.9336e−04 0.99

At t = 5T

20 7.7623e−03 – 8.3400e−03 – 9.2686e−04 – 2.1405e−03 –
40 3.9154e−03 0.99 4.0551e−03 1.04 4.0376e−04 1.20 8.0402e−04 1.41
80 1.9620e−03 1.00 1.9938e−03 1.02 2.0052e−04 1.01 3.8678e−04 1.06

160 9.8155e−04 1.00 9.8971e−04 1.01 1.0020e−04 1.00 1.9164e−04 1.01
(a) t = 3T/4. (b) t = 3T/4. (c) t = 7T/4.

(d) t = 7T/4. (e) t = 11T/4. (f) t = 11T/4.

Fig. 7. Numerical solution of harmonic waves generated by a linear wave maker using Port-Hamiltonian numerical scheme for linear (left) and nonlinear (right) shallow
water equations on a grid of 80 elements. Exact and numerical solutions are marked as ‘‘−’’ and ‘‘•’’, respectively. Observe that the numerically generated wave profiles are
in good agreement with the exact solutions.
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directly translated into the finite-dimensional model. Thus, the
finite-dimensional model of shallow water equations preserves
discrete mass and energy in time. It is useful to extend the present
formulation to the shallowwater equations in two dimensions and
capture its important physical properties such as the conservation
of potential vorticity and enstrophy that are of great interest in
oceanographic and meteorological studies.

The Port-Hamiltonian based numerical scheme for the shallow
water equations is developed and verified against exact solutions.
It makes use of a symplectic time integration scheme stemming
from implicit mid-point time discretization. This gave the advan-
tage of preserving the discrete energy in time and resulted in a
stable numerical scheme that is first-order accurate for the lead-
ing order approximation of flow variables in space. However, the
scheme is valid only for smooth open channel flows as the underly-
ing governing equations are in the primitive form. For non-smooth
flows, the conservative formof shallowwater equations is required
as they satisfy the jump conditions at the bores or hydraulic jumps
with the correct energy dissipating conditions. This was beyond
the scope of our present work.
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