
POPULAR MATCHINGS: STRUCTURE AND STRATEGIC ISSUES ∗

MEGHANA NASRE †

Abstract. We consider the strategic issues of the popular matchings problem. Let G = (A ∪
P, E) be a bipartite graph where A denotes a set of agents, P denotes a set of posts and the edges
in E are ranked. Each agent ranks a subset of posts in an order of preference, possibly involving
ties. A matching M is popular if there exists no matching M ′ such that the number of agents that
prefer M ′ to M exceeds the number of agents that prefer M to M ′. Consider a centralized market
where agents submit their preferences and a central authority matches agents to posts according to
the notion of popularity. Since a popular matching need not be unique, we assume that the central
authority chooses an arbitrary popular matching. Let a1 be the sole manipulative agent who is aware
of the true preference lists of all other agents. The goal of a1 is to falsify her preference list to get
better always, that is, in the falsified instance (i) every popular matching matches a1 to a post that
is at least as good as the most-preferred post that she gets when she was truthful, and (ii) some
popular matching matches a1 to a post better than the most-preferred post p that she gets when
she was truthful, assuming that p is not one of a1’s (true) most-preferred posts. We show that the
optimal cheating strategy for a manipulative agent to get better always can be computed in O(m+n)
time when preference lists are all strict and in O(

√
nm) time when preference lists are allowed to

contain ties. Here n = |A|+ |P| and m = |E|.
To compute the cheating strategies, we develop a switching graph characterization of the popular

matchings problem involving ties. The switching graph characterization was studied for the case of
strict lists by McDermid and Irving (J. Comb. Optim. 2011) and was open for the case of ties.
We show an O(

√
nm) time algorithm to compute the set of popular pairs using the switching graph.

These results are of independent interest and answer a part of the open questions posed by McDermid
and Irving.

1. Introduction. We consider the strategic issues of the popular matchings
problem. Let G = (A ∪ P, E) be a bipartite graph where A denotes a set of agents,
P denotes a set of posts, and the edges in E are ranked. Each agent ranks a subset
of posts in an order of preference, possibly involving ties. This ranking of posts by
an agent is called the preference list of the agent. An agent a prefers post pi to post
pj if the rank of post pi is smaller than the rank of post pj in a’s preference list.
An agent a is indifferent between posts pi and pj if they have the same rank on a’s
preference list. When agents can be indifferent between posts, the preference lists are
said to contain ties, otherwise the preference lists are strict. A matching M of G is
a subset of edges, no two of which share an end point. For a matched vertex u, let
M(u) denote its partner in the matching M . An agent a prefers a matching M to
another matching M ′ if (i) a is matched in M but unmatched in M ′, or (ii) a prefers
M(a) to M ′(a).

Definition 1.1. A matching M is more popular than M ′ if the number of agents
that prefer M to M ′ is greater than the number of agents that prefer M ′ to M . A
matching M is popular if there is no matching M ′ that is more popular than M .

There exist simple instances that do not admit any popular matching – however,
when an instance admits a popular matching, there may be more than one popular
matching. Abraham et al. [1] characterized the instances that admit popular match-
ings and gave efficient algorithms to compute a popular matching if one exists.

Our problem. Consider a centralized matching market where each agent a ∈ A
submits a preference over a subset of posts and a central authority matches agents

∗A preliminary version of this work appeared in STACS 2013 [14]. This work was supported in
part by CSE/14-15/824/NFIG/MEGA.

†Department of Computer Science and Engineering, Indian Institute of Technology, Madras, India,
600036 (meghana@cse.iitm.ac.in).

1

to posts using the criteria of popularity. Since an instance may admit more than one
popular matching, we assume that the central authority chooses an arbitrary popular
matching. Note that in distinct popular matchings of an instance, an agent may get
matched to different posts. Let a1 be the sole manipulative agent who is aware of
the true preference lists of all other agents and the preference lists of a ∈ A \ {a1}
remain fixed throughout. The goal of a1 is clear: she wishes to falsify her preference
list so as to improve the post that she gets matched to as compared to the post she
got when she was truthful. Let G = (A ∪ P, E) denote the instance where ranks
on the edges represent true preferences of all the agents. Let H denote the instance
obtained by falsifying the preference list of a1 alone. We assume that G admits a
popular matching and a1 falsifies in order to create an instance H which also admits
a popular matching.

Let PG(a1) = {q1, q2, . . . , qk} denote the set of posts that a1 gets matched to in
distinct popular matchings of G. Let PH(a1) = {q′1, q′2, . . . , q′t} denote the set of posts
that a1 gets matched to in distinct popular matchings of H. In addition, assume that
the posts in these sets are ordered with respect to a1’s preference. That is, for each
1 ≤ i ≤ k − 1, agent a1 prefers qi at least as much as qi+1, denoted by qi �a1

qi+1.
Similarly, assume for 1 ≤ j ≤ t − 1, we have q′j �a1

q′j+1. Agent a1 wishes to falsify
her preference list to ensure that (i) Every popular matching of H matches her to a
post that she prefers at least as much as q1. That is, for 1 ≤ j ≤ t, q′j �a1

q1 and, (ii)
Assuming that q1 is not a1’s top choice post, there exists some popular matching in
H that matches her to a post which she strictly prefers to q1. That is, ∃q′j ∈ PH(a1)
such that q′j ≻a1

q1. We term this strategy of a1 as ‘better always’ strategy.
Note that it may be possible for a1 to falsify her preference list such that H

does not admit any popular matching. But we do not consider such a falsification.
We remark that in order to develop the better always strategy, we need to efficiently
compute for an agent a, all the posts that she can get matched to in distinct popu-
lar matchings of a given instance. One of our contributions involves computing the
popular pairs in an instance.

1.1. Our contributions.

• Let a1 be the sole manipulative agent who wishes to get better always. The
optimal strategy for a1 can be computed in O(m+ n) time when preference
lists are all strict and in O(

√
nm) time when preference lists are allowed to

contain ties.
• To compute the cheating strategies, we develop a switching graph characteri-

zation of the popular matchings problem involving ties. The switching graph
characterization was studied for the case of strict lists by McDermid and
Irving [13] and such a characterization was not known for the case of ties.
The switching graph characterization is of independent interest and answers
a part of the open questions in [13]. Using the switching graph, we show
an O(

√
nm) time algorithm to compute the set of popular pairs. An edge

(a, p) ∈ E is a popular pair if there exists a popular matching M in G such
that (a, p) ∈ M .

• We also show that counting the total number of popular matchings in an
instance with ties is #P-Complete. This is in contrast to the case when
preferences are strict, where McDermid and Irving [13] gave a linear time
algorithm for the same problem.

1.2. Related work. The work in this paper is motivated by the work of Teo et al. [17]
where they study the strategic issues of the stable marriage problem [3]. The stable

2

marriage problem is a generalization of our problem where both the sides of the bi-
partition (usually referred to as men and women) rank members of the opposite side
in order of their preference. Teo et al. [17] study the strategic issues of the stable
marriage problem where women are required to give complete preference lists and
there is a sole manipulative woman. Moreover, she is aware of the true preference
lists of all the other women. Teo et al. [17] compute an optimal cheating strategy
for a single woman under this model. Huang [5] studies the strategic issues of the
stable room-mates problem [3] under a similar model. In the same spirit, we study
the strategic issues of the popular matchings problem.

The notion of popular matchings was introduced by Gärdenfors [4] in the context
of the stable marriage [3]. Abraham et al. [1] studied the problem for one-sided pref-
erence lists and gave a characterization of instances which admit a popular matching.
Subsequent to this result, the popular matchings problem has received a lot of atten-
tion [6, 8, 9, 11, 12]. However, to the best of our knowledge none of them is motivated
by the strategic issues of the popular matchings problem.

Organization of the paper: The rest of the paper is organized as follows. In Section 2
we review the background of the popular matchings problem. In Section 3 we develop
the switching graph characterization for the popular matchings problem with ties. In
Section 4 we give some intuition and prove useful lemmas for computing our cheating
strategies. In Section 5 we formulate the cheating strategies for a manipulative agent.
We conclude the paper with some open questions in Section 6.

2. Background. We first review the following well known properties of maxi-
mum matchings in bipartite graphs. Let G = (A∪P, E) be a bipartite graph and let
M be a maximum matching in G. The matching M defines a partition of the vertex
set A∪P into three disjoint sets: a vertex v ∈ A∪P is even (resp. odd) if there is an
even (resp. odd) length alternating path in G with respect to M from an unmatched
vertex to v. A vertex v is unreachable if there is no alternating path from an un-
matched vertex to v. Denote by E , O, and U the sets of even, odd, and unreachable
vertices, respectively, in G. The following lemma is well known in matching theory;
its proof can be found in [15] or [7].

Lemma 2.1 ([15]). Let E, O, and U be the sets of vertices defined by a maximum
matching M in G. Then,

(a) E, O, and U are pairwise disjoint, and independent of the maximum matching
M in G.

(b) In any maximum matching of G, every vertex in O is matched with a vertex
in E, and every vertex in U is matched with another vertex in U . The size of
a maximum matching is |O|+ |U|/2.

(c) No maximum matching of G contains an edge between a vertex in O and a
vertex in O∪U . Also, G contains no edge between a vertex in E and a vertex
in E ∪ U .

We now review the characterization of the popular matchings problem from [1].
As was done in [1], we create a unique last-resort post ℓ(a) for each agent a. In this
way, we can assume that every agent is matched, since any unmatched agent a can
be paired with ℓ(a). For an agent a, let f(a) be the set of rank-1 posts for a. To
define s(a), let us consider the graph G1 = (A ∪ P, E1) on rank-1 edges in G and let
M1 be any maximum matching in G1. Let O1, E1,U1 define the partition of vertices
A ∪ P with respect to M1 in G1. For any agent a, let s(a) denote the set of most
preferred posts which belong to E1 by the above partition. Abraham et al. [1] proved
the following theorem.

3

Theorem 2.2 ([1]). A matching M is popular in G iff

(1) M ∩ E1 is a maximum matching of G1 = (A ∪ P, E1), and

(2) for each agent a, M(a) ∈ f(a) ∪ s(a).

The algorithm for solving the popular matching problem is as follows: each a ∈ A
determines the sets f(a) and s(a). An A-complete matching (a matching that matches
all agents) that is maximum in G1 and that matches each a to a post in f(a) ∪ s(a)
needs to be determined. If no such matching exists, then G does not admit a popular
matching. Abraham et al. [1] gave an O(

√
nm) time algorithm to compute a popular

matching in G which is presented as Algorithm 2.1. Steps 7–11 are added by us and
will be used to define the switching graph in the next section. Abraham et al. [1]
also showed a simpler characterization for the popular matchings in case of strict lists
which gives an O(m+ n) time algorithm to return a popular matching if one exists.

We now elaborate on the graphs G′ and G′′ constructed during the execution of
Algorithm 2.1. Let G′ = (A ∪ P, E′) denote the graph in which every agent a has
edges incident to f(a) ∪ s(a). Step 4 of Algorithm 2.1 deletes edges from G′ between
a node in O1 and a node in O1 ∪ U1. We use the following notation for the sake of
brevity to refer to edges that have end points lying in particular partitions. We refer
to an edge as an O1U1 edge if the edge has one end point in O1 and another end
point in U1. Note that the O1O1 edges and the O1U1 edges deleted in Step 4 cannot
be present in any maximum matching of G1 (by Lemma 2.1(c)). In addition, observe
that the edges deleted in Step 4 are only rank-1 edges, since posts in O1 ∪ U1 have
only rank-1 edges incident on them.

Our idea is to extend this and delete the edges from G′ that cannot be present in
any popular matching of G. For this, let us partition the vertex set A ∪ P as O2, E2
and U2 with respect to a popular matching M in G′. Since any popular matching M
is a maximum matching in G′, it is easy to see that M cannot contain edges of the
form O2O2 and O2U2 (by Lemma 2.1(c)). However, note that since M matches every
agent, it implies that A ∩ E2 = ∅ and P ∩ O2 = ∅. Thus, there are no O2O2 edges
in the graph G′. Therefore, in Step 9 of Algorithm 2.1 we delete from G′ any edge
between a node in O2 and a node in U2. Let G

′′ denote the resulting graph.

To illustrate these definitions, we use an example instance. We use it as a running
example throughout the paper.

Example 2.3. Consider an instance G where A = {a1, . . . , a7} and P =
{p1, . . . , p9}. The preference lists of the agents are shown in Figure 2.1(a). The
preference lists can be read as follows: agent a1 ranks posts p1, p2, p3 as her rank-1,
rank-2 and rank-3 posts respectively and the two posts p6 and p7 are tied as her rank-4
posts. We omit explicitly listing ℓ(a) at the end of each agent a’s preference list. For
every agent a, the posts which are bold denote the set f(a), whereas the posts which
are underlined denote the set s(a). The graph G1 on rank-1 edges of the instance
along with a maximum matchingM1 = {(a1, p1), (a4, p2), (a5, p3), (a7, p4)} is as shown
in Figure 2.1(b). Finally, Figure 2.1(c) shows the graph G′ and a popular matching
M = {(a1, p6), (a2, p1), (a3, p8), (a4, p2), (a5, p3), (a6, p9), (a7, p4)} in G. We note that
the edges (a4, p3) and (a1, p1) get deleted in Step 4 and Step 9 of Algorithm 2.1,
respectively. The graph G′′ thus formed is shown in Figure 3.1(a) which will be used
to construct the switching graph in the next section.

Using the following simple observations we state Claim 2.4.
(i) Step 4 of Algorithm 2.1 deletes O1O1 and O1U1 edges,
(ii) Step 9 of Algorithm 2.1 deletes O2U2 edges, and
(iii) P ∩ O2 = ∅.

4

a1 : p1 p2 p3 (p6, p7)

a2 : p1 p2 p8

a3 : p1 p8

a4 : (p2,p3) p1 p8

a5 : p3 (p2, p4)

a6 : p3 p9 p1

a7 : (p4,p5) p1

(a)

p1

p2
p3

p4
p5

p6
p7
p8

p9

a1
a2
a3
a4
a5
a6
a7

G1

(b)

p1

p2
p3

p4
p5

p6
p7
p8

p9

a1
a2
a3
a4
a5
a6
a7

G′

(c)

Fig. 2.1. (a) Preference lists of agents {a1, . . . , a7}. The posts which are bold denote f(a) and
the posts which are underlined denote s(a). (b) The graph G1 with bold edges denoting matching
M1. (c) The graph G′ with bold edges denoting a popular matching M .

Claim 2.4. Let a be an agent such that a ∈ U2. Then, in Step 9 of Algorithm 2.1,
no edge incident on a gets deleted. Let a be an agent such that a ∈ E1. Then, in Step 4
of Algorithm 2.1, no edge incident on a gets deleted.

Algorithm 2.1 An O(
√
nm)-time algorithm for the popular matching problem

from [1] (Steps 7–11 are added by us).

Input: G = (A ∪ P, E).
1: Construct G1 = (A ∪ P, E1). Let M1 be a maximum matching in G1.
2: Partition A ∪ P as O1, E1,U1 with respect to M1 in G1.
3: Construct G′ = (A ∪ P, E′), where E′ = {(a, p) : a ∈ A and p ∈ f(a) ∪ s(a)}.
4: Remove any edge in G′ between a node in O1 and a node in O1 ∪ U1.
5: Determine a maximum matching M in G′ by augmenting M1.
6: If M is A-complete then M is popular in G, else return “no popular matching”.
7: if G admits a popular matching then

8: Partition A ∪ P as O2, E2,U2 with respect to M in G′.
9: Remove any edge in G′ between a node in O2 and a node in U2.

10: Denote the resulting graph as G′′ = (A ∪ P, E′′).
11: end if

Definition 2.5. For an agent a, let choices(a) be the set of posts p such that
(a, p) is an edge in G′′.

It is easy to see that for any a ∈ A, choices(a) ⊆ f(a) ∪ s(a). Using the above
definition and the fact in Step 9 of Algorithm 2.1 we delete only those edges that do
not belong to any popular matching in G, we make the following claim.

Claim 2.6. Let M be any popular matching in G and a be any agent. The
matching M is contained in G′′ and M(a) ∈ choices(a).

We now show using the following lemma that the cardinality of choices(a) for
any agent a is no less than two. This fact will be used by the switching graph defined
in the next section.

Lemma 2.7. For any agent a ∈ A, |choices(a)| ≥ 2.
Proof. We first show that every agent has degree at least 2 in the graph G′

constructed in Step 3 of Algorithm 2.1. Recall that G′ denotes the graph in which
every agent a has edges to f(a) ∪ s(a). Let a ∈ A. If |f(a)| ≥ 2, we are done. Else

5

let f(a) contain exactly one post and let f(a) = {p}. In this case, it is easy to see
that p ∈ O1 ∪ U1. Thus, by the definition of s(a), we conclude that s(a) ∩ f(a) = ∅.
Moreover, for every agent a, s(a) is well-defined due to the introduction of ℓ(a). This
shows that, even when |f(a)| = 1, agent a has at least two edges incident on it in the
graph G′, one edge to p ∈ f(a) and, one or more edges to posts in s(a).

Next, observe that the graph G′′ differs from G′ because edges may get deleted
in Step 4 and Step 9 of Algorithm 2.1. We now show that even after the deletions,
every agent continues to have degree at least 2 in the resultant graph G′′. This will
prove that for any a ∈ A, choices(a) ≥ 2. Let M1 be a maximum matching in G1

and M be a popular matching in G.

Consider the edges deleted in Step 4. Recall that we never delete matched edges,
since they are either of the form OE or UU . We consider three cases depending on
the partition in which a belongs when vertices are partitioned as O1, E1,U1.

• Let a ∈ E1: By Claim 2.4, no edge incident on a gets deleted in Step 4, so we
are done.

• Let a ∈ O1: This implies that a is matched in M1 and let M1(a) = p. In addi-
tion, there exists an odd length alternating path T = 〈p0, a1, p1, . . . , ak, pk, a〉
w.r.t. M1 starting at an unmatched post p0 leading to the agent a. The path
T is incident on a with an unmatched edge (pk, a). Note that this unmatched
edge (pk, a) is of the form E1O1 and hence does not get deleted. Thus, the
two neighbors pk and p of the agent a ensure that the degree of a is at least
2 even after some edges incident on a may get deleted in Step 4.

• Finally, let a ∈ U1: This implies that a is matched in M1 and let M1(a) = p.
Since a ∈ U1, it implies that every post p′ ∈ f(a) is such that p′ ∈ O1 ∪ U1.
Since s(a) is the set of most preferred posts belonging to E1, we conclude that
in this case, all posts in s(a) are at rank greater than or equal to 2. Moreover,
since Step 4 only deletes rank-1 edges, none of the edges from a to posts in
s(a) can get deleted in this step. Thus, counting the edge to p and one or
more edges to posts in s(a), we ensure that a has degree at least 2, even after
some edges incident on a may get deleted in Step 4.

We now consider edges deleted in Step 9. Recall that A ∩ E2 = ∅. Consider
a ∈ O2, then using the same argument as we used for a ∈ O1, we can prove that even
after edges incident on a get deleted, degree of a remains at least 2. Finally, if a ∈ U2,
then by Claim 2.4, no edge incident on a gets deleted in Step 9.

Thus, we have proved that in the graph G′′, the degree of every agent is at least
2, which implies that choices(a) ≥ 2, for every a ∈ A.

3. The switching graph characterization. In this section we develop the
switching graph for the popular matchings problem with ties. In case of strict lists,
McDermid and Irving [13] defined a switching graph GM = (P, EM) as a directed
graph on the posts of G and the edge set EM is determined by a popular matching M
in G. In fact, a similar graph was defined even before that by Mahdian [11] (again for
strict lists) to study the existence of popular matchings in random instances. McDer-
mid and Irving showed that given a popular matching M in G, the switching graph
GM can be used to efficiently construct any other popular matching M ′ in G. They
also exploited the switching graph to develop efficient algorithms for several problems
such as computing popular pairs, and counting the number of popular matchings, to
name a few. We use the notation and terminology from [13] to define the switching
graph in case of ties.

Let G be an instance of the popular matchings problem with ties and let M be a

6

popular matching in G. The switching graph GM = (P, EM) is a directed weighted
graph on the posts P of G and is defined with respect to M in G. The edge set
EM is defined using the pruned graph G′′ = (A ∪ P, E′′) constructed in Step 10 of
Algorithm 2.1. There exists an edge from pi to pj (with pi 6= pj) in EM iff for some
a ∈ A, pi = M(a) and (a, pj) ∈ E′′. The weight of an edge w(M(a), pj) is defined as:

w(M(a), pj) = 0 if a is indifferent between M(a) and pj

= −1 if a prefers M(a) to pj

= +1 if a prefers pj to M(a).

It is easy to see that the graph GM = (P, EM) can be constructed in O(
√
nm) time

using Algorithm 2.1.
Consider a vertex p in GM . Call p a sink vertex in GM if the out-degree of p is zero

in GM . We will prove subsequently that sink vertices are posts that are unmatched
in M . Let X be a connected component in the underlying undirected graph of GM .
Call X a sink component if X contains one or more sink vertices; otherwise call X a
non-sink component.

For a path T (resp. cycle C) in GM , the weight of the path w(T) (resp. w(C))
is the sum of the weights on the edges in T (resp. C). (Whenever we refer to paths
and cycles in GM we imply directed paths and directed cycles respectively.) A path
T = 〈p0, p1 . . . , pk−1〉 in GM is called a switching path if T ends in a sink vertex
and w(T) = 0. Similarly, a cycle C = 〈p0, . . . , pk−1, p0〉 in GM is called a switching
cycle if w(C) = 0. Let AT = {ai : M(pi) = ai, for i = 0 . . . k − 2 } and denote by
M ′ = M · T the matching obtained by applying the switching path to M , that is,
for ai ∈ AT , M

′(ai) = pi+1 whereas for a /∈ AT , M
′(a) = M(a). Similarly, for a

switching cycle C, define AC = {ai : M(pi) = ai, for i = 0 . . . k − 1 } and denote by
M ′ = M ·C the matching obtained by applying the switching cycle to M , that is, for
ai ∈ AC , M

′(ai) = p(i+1) mod k whereas for a /∈ AC , M
′(a) = M(a). Before we prove

the structural properties of the switching graph, let us construct the switching graph
for our example instance.

Example 3.1. Recall the instance in Figure 2.1(a) and the graphG′′ constructed
by Step 10 of Algorithm 2.1. Figure 3.1(a) shows the graph G′′ for the instance with
a popular matchingM = {(a1, p6), (a2, p1), (a3, p8), (a4, p2), (a5, p3), (a6, p9), (a7, p4)}.
Figure 3.1(b) shows the switching graph GM with respect to M . Consider the switch-
ing path T = 〈p9, p3, p4, p5〉 in GM . By applying T to M we get M ′ = M · T where
M ′ = {(a1, p6), (a2, p1), (a3, p8), (a4, p2), (a5, p4), (a6, p3), (a7, p5)}. It is easy to verify
that M ′ is also a popular matching in G.

3.1. Structural properties. In this section we prove some useful structural
properties of the switching graph GM . Recall that the vertices A∪P are partitioned
as O1, E1,U1 w.r.t. a maximum matching M1 in G1 (see Step 2 of Algorithm 2.1).
We show that this partition of vertices determines the weights on the edges of the
switching graph. Additionally, the vertices A∪P are partitioned as O2, E2,U2 w.r.t. a
popular matching M in G′ (see Step 8 of Algorithm 2.1). We show that this partition
determines whether a post belongs to a sink component or a non-sink component.

Property 3.2. A vertex p is a sink vertex of GM iff p is unmatched in M .
Furthermore, every sink vertex of GM belongs to the set E1.

Proof. We note that by the definition of the graph GM , an unmatched post p
does not have any out-going edge and hence is a sink vertex of GM . To show that a
sink vertex p is unmatched in M , it suffices to observe that for any a ∈ A, we have

7

p1

p2
p3

p4
p5

p6
p7
p8

p9

a1
a2
a3
a4
a5
a6
a7

G′′

(a)

p1

p2

p3 p4

p5

p6 p7

p8

p9

−1

−1

−1

+1

+1

0

0

(b)

Fig. 3.1. (a) The graph G′′ with a popular matching M . (b) Switching graph GM with respect
to M in G.

|choices(a)| ≥ 2, by Lemma 2.7. Thus, every matched post will have out-degree at
least one in GM and hence only an unmatched post can be a sink vertex.

We now prove that every sink vertex belongs to E1. Assume for the sake of
contradiction that a sink vertex p in GM belongs to O1 ∪ U1. Since p is a sink,
it implies that p is unmatched in M . Moreover, since M is a popular matching,
it implies that M is a maximum matching on rank-1 edges in G. However, every
maximum matching on rank-1 edges of G matches every vertex in O1 ∪ U1. Thus, if
p is unmatched in M and p ∈ O1 ∪U1, it implies that M is not a maximum matching
on rank-1 edges of G, a contradiction.

Property 3.3. A post p belongs to a sink component of GM iff p ∈ E2. A post p
belongs to a non-sink component of GM iff p ∈ U2. Additionally, every post belonging
to a sink component has a path to some sink vertex in GM .

Proof. We show that it suffices to prove the first statement. Let p be a post such
that p ∈ E2. Then p is either unmatched in M or p has an even length alternating path
starting at an unmatched vertex p′ with respect to M in G′. If p is unmatched, then p
is a sink vertex in GM and hence we are done. Else let 〈p = p1, a1, . . . , pk, ak, pk+1 =
p′〉 denote the alternating path and for every 1 ≤ i ≤ k, we have M(pi) = ai. Note
that every unmatched edge (ai, pi+1) is of the form O2E2 and hence none of these
unmatched edges get deleted in Step 9 of Algorithm 2.1. Therefore, it is easy to see
that the path 〈p = p1, p2, . . . , pk+1 = p′〉 is present in GM and hence p belongs to the
sink component that contains p′. This also implies that every p ∈ E2 has a directed
path to some sink vertex in GM .

To prove the other direction let X be a sink component in GM and p′ be a sink
in X . For the sake of contradiction let p ∈ X and p ∈ U2. Recall that O2 ∩ P = ∅.
Now since p and p′ lie in the same component, there is an (undirected) path between
p and p′ in the underlying undirected component of X . Let 〈p = p1, p2, . . . , pk = p′〉
denote this undirected path. Since p1 ∈ U2 and pk ∈ E2, it implies that there exists an
1 ≤ i ≤ k − 1 such that pi ∈ U2 and pi+1 ∈ E2. Consider the two possible directions
for the edge between pi and pi+1 in GM : (i) If the edge is directed from pi to pi+1 in
GM , then we show that pi has a directed path to some sink of X . As proved earlier,
pi+1 has a directed path T to some sink in X . We now prefix the edge (pi, pi+1) to
the path T to get a directed path from pi to some sink. Such a directed path to a
sink implies an even length alternating path with respect to M in G′ from the sink
to pi. This contradicts the fact that pi ∈ U2. (ii) Finally, if the edge is directed from
pi+1 to pi in GM , then it implies that pi+1 is matched in M and let M(pi+1) = ai+1.

8

Since pi+1 ∈ E2 this implies that ai+1 ∈ O2. Thus the presence of the edge (pi+1, pi)
in GM implies that there is an O2U2 edge (ai+1, pi) in the graph G′′. However, such
an O2U2 edge should have been deleted by Step 9 of Algorithm 2.1. Hence such an
edge cannot be present in GM contradicting the fact that p ∈ U2. Thus, every post p
belonging to a sink component belongs to the set E2.

The above proof immediately implies that a post p belongs to a non-sink compo-
nent iff p ∈ U2. This finishes the proof of Property 3.3.

Property 3.4. For an edge (pi, pj) in GM , the weight w(pi, pj) is determined by
which partition pi and pj belong to when vertices are partitioned as O1, E1,U1. That
is, w(pi, pj) can be determined using Table 3.1.

❍
❍
❍

❍
❍

pi

pj O1 E1 U1

O1 0 −1 ×
E1 +1 0 ×
U1 × −1 0

Table 3.1
Table shows w(pi, pj) for an edge (pi, pj) in GM . The weight is determined by the partition of

vertices as O1, E1,U1. The × denotes that such an edge is not present in GM .

Proof. To prove Property 3.4 we justify the entries in Table 3.1. Let (pi, pj) be
an edge in GM and let M(pi) = a. The weight on the edge (pi, pj) is determined by
the relative ranks of pi and pj in a’s preference list. We note that a post p ∈ O1 ∪ U1

has only rank-1 edges incident on it in the graph G′. Hence if pi ∈ O1 ∪ U1, then a
treats pi as her rank-1 post.

• pi ∈ O1: a treats pi as her rank-1 post and since posts in O1 remain matched
to agents in E1, it implies that a ∈ E1.

– pj ∈ O1: a treats pj as her rank-1 post, thus, w(pi, pj) = 0.
– pj ∈ E1: We show that a treats pj as her non-rank-1 post and hence

w(pi, pj) = −1. Assume for the sake of contradiction that a treats pj as
a rank-1 post. It implies that there is an E1E1 edge in the graph G1, a
contradiction (by part (c) Lemma 2.1).

– pj ∈ U1: We show that such an edge cannot exist in GM . Recall that
posts in U1 have only rank-1 edges incident on them, hence a treats pj
as her rank-1 post. This implies that there is an E1U1 edge in G1, a
contradiction (by part (c) of Lemma 2.1).

• pi ∈ E1: Here we consider two cases:
(i) a treats pi as her rank-1 post: In this case, we note that s(a) ⊆ f(a) and
hence a has only rank-1 edges incident on it in the graph G′ and all these
edges are incident on posts which belong to E1. Thus the only case possible
is, pj ∈ E1 and w(pi, pj) = 0.
(ii) a treats pi as her non-rank-1 post: We first note that a ∈ E1 because agents
in O1 ∪ U1 remain matched along rank-1 edges in every popular matching.
Consider the three different cases for pj .

– pj ∈ O1: a treats pj as her rank-1 post and hence w(pi, pj) = +1.
– pj ∈ E1: We show that a treats pj as her non-rank-1 post and hence

w(pi, pj) = 0. Assume for the sake of contradiction that a treats pj as
her rank-1 post. Then there exists an E1E1 edge in G1 a contradiction
(by part (c) of Lemma 2.1).

9

– pj ∈ U1: We show that such an edge cannot exist in GM . If such an
edge exists there is an E1U1 edge in G1 a contradiction (by part (c) of
Lemma 2.1).

• pi ∈ U1: a treats pi as her rank-1 post and since posts in U1 remain matched
along agents in U1, it implies that a ∈ U1.

– pj ∈ O1: a treats pj as her rank-1 post however such an edge gets deleted
as an O1U1 edge in Step 4 of Algorithm 2.1. Thus such an edge cannot
be present in GM .

– pj ∈ E1: We show that a treats pj as her non-rank-1 post and hence
w(pi, pj) = −1. Assume for the sake of contradiction that a treats pj as
a rank-1 post then, it implies that there is a U1E1 edge in the graph G1,
a contradiction (by part (c) of Lemma 2.1).

– pj ∈ U1: a treats pj as her rank-1 post and therefore w(pi, pj) = 0.

This justifies all the entries of Table 3.1.

Property 3.5. Every path T in GM has w(T) ∈ {−1, 0,+1}. Every cycle C
in GM has w(C) = 0. There exists no path T in GM ending in a sink vertex with
w(T) = +1.

Proof. It is easy to observe that if the edges have weights according to Table 3.1,
then every path in GM has weight belonging to {−1, 0,+1}. Furthermore, every cycle
has to have weight 0. It remains to argue that in GM there exists no path T of weight
+1 which ends in a sink. For contradiction, assume that such a path exists in GM

and consider applying the path T to M to obtain the matching M ′ = M · T . The
number of agents that prefer M ′ to M is exactly one more than the number of agents
that prefer M to M ′. Thus M ′ is more popular than M , contradicting the fact that
M was a popular matching.

Property 3.6. For any switching path T (or switching cycle C) in GM , the
matching M ′ = M ·T (M ′ = M ·C resp.) is a popular matching in G. Every popular
matching M ′ in G can be obtained from M by applying to M zero or more vertex
disjoint switching paths and switching cycles in each of the of sink components of GM

together with zero or more vertex disjoint switching cycles in each of the non-sink
components of GM .

Proof. We first show that for any switching path T , the matching obtained by
applying T to M is popular in G. Let T = 〈p0, p2, . . . , pk−1〉 be a switching path
in GM with pk−1 unmatched in M and let M ′ = M · T . Let AT = {ai : M(pi) =
ai, for i = 0 . . . k − 2 }. We observe that for every ai ∈ AT , M

′(ai) ∈ f(ai) ∪ s(ai)
because edges of GM are derived from a subset of graph G′ = (A ∪ P, E′) (refer to
Algorithm 2.1). Furthermore, for any a /∈ AT , M

′(a) = M(a). Finally, note that since
w(T) = 0, for every agent that got demoted from her rank-1 post there exists a unique
agent who got promoted to her rank-1 post in M ′. Thus, M ′ is a maximum matching
on rank-1 edges of G. It is therefore clear that M ′ satisfies both the properties defined
by Theorem 2.2 and hence M ′ is a popular matching in G. A similar argument proves
that for any switching cycle C, the matching M · C is also a popular matching in G.

Now consider any popular matching M ′ in G. We show that M ′ can be obtained
from M by applying a set of vertex disjoint switching paths and switching cycles of
GM . Consider M ⊕ M ′ which is a collection of vertex disjoint paths and cycles in
G. Since G is bipartite, it is clear that the cycles are of even length. To see that the
paths are of even length, we recall that the addition of ℓ(a) at the end of each agent
a’s preference list ensures that |M | = |M ′|. Let TG = 〈p1, a1, . . . , pk, ak, pk+1〉 be any
even length path in M ⊕ M ′ with pk+1 unmatched in M and p1 unmatched in M ′.

10

For every 1 ≤ i ≤ k, let M(pi) = ai. Now, using Claim 2.6, we know that both M
and M ′ are contained in G′′, therefore the path TG is contained in G′′. Thus, it is
easy to see that the path T = 〈p = p1, p2, . . . , pk+1 = p′〉 is present in GM and it ends
in a sink. Note that w(T) cannot be strictly positive since M is a popular matching.
Similarly, w(T) cannot be strictly negative. This is because since both M and M ′

are popular, w(T) ≤ −1 implies that there exists another path T ′

G (or a cycle C ′

G) in
M⊕M ′, whose corresponding path T ′ (resp. cycle C ′) in the graph GM has a positive
weight. However, this again contradicts the fact that M is a popular matching. Thus,
the path T has weight 0 and ends in a sink and hence is a switching path. A similar
argument shows that every cycle in M ⊕M ′ has a corresponding switching cycle in
GM . Applying these switching paths and cycles to M gives us the desired matching
M ′, thus completing the proof.

Recall the definition of choices(a) for an agent as given by Definition 2.5. We
now define the notion of a tight-pair, that is, a set of agents A1 and a set of posts
P1 with |A1| = |P1|. In addition, for every a ∈ A1 we have choices(a) ⊆ P1. The
concept of a tight-pair will be used in the next section where we define the cheating
strategy. We show that a tight-pair exists whenever there is a non-sink component in
the switching graph GM .

Lemma 3.7. Let Y be a non-sink component in GM and q ∈ Y. Let
Pq = {q} ∪ {p : q has a path to p in GM }

Then there exists a set of agents Aq such that (i) |Aq| = |Pq|, and (ii) for every
a ∈ Aq, choices(a) ⊆ Pq.

Proof. Let Aq = {M(p) : p ∈ Pq}. Since every p ∈ Pq is matched, we note
that |Aq| = |Pq|. Consider any agent a ∈ Aq; then M(a) ∈ Pq and note that
M(a) ∈ choices(a). Moreover, note that, for every p′ ∈ choices(a) \ {M(a)}, we have
an edge (M(a), p′) in GM . Thus, every such p′ also belongs to Pq. This proves that
for every a ∈ Aq, choices(a) ⊆ Pq.

3.2. Generating popular pairs and counting popular matchings. Let
G = (A ∪ P, E) be an instance of the popular matchings problem. Define

PopPairs = {(a, p) ∈ E : M is a popular matching in G and M(a) = p}. (3.1)

We show that the set PopPairs can be computed efficiently using our switching graph.
In particular, we prove the following theorem.

Theorem 3.8. The set of popular pairs for an instance G = (A ∪ P, E) of the
popular matchings problem with ties can be computed in O(

√
nm) time.

Proof. Let GM be the switching graph with respect to a popular matching M in
G. From Property 3.6 we can conclude that an edge e = (a, p) is a popular pair if and
only if (i) e ∈ M or, (ii) the edge (M(a), p) belongs to some switching path in GM or,
(iii) the edge (M(a), p) belongs to some switching cycle in GM . We show how each of
these conditions can be efficiently verified.

• The condition (i) can be checked in O(
√
nm) time by running Algorithm 2.1

and obtaining a popular matching M .
• In order to check condition (iii), recall that every cycle in GM has weight 0

and is therefore a switching cycle. This implies that every edge belonging to a
strongly connected component of GM is a popular pair. We can therefore use
the linear time algorithm of Tarjan [16] to find strongly connected components
of GM and mark edges that satisfy condition (iii).

• In order to check condition (ii), recall that a switching path is a path which
has weight 0 and ends in a sink. Therefore such paths can be found only

11

in sink components of GM or equivalently paths beginning at vertices in E2.
Furthermore, any sink vertex in GM has to be a vertex in E1 according to
the partition on rank-1 edges of G. Using the weights on the edges given
by Table 3.1, it is easy to see that any 0 weight path ending in a sink has
to begin at a vertex p ∈ E1. Thus, a simple depth-first search beginning at
vertices in E1 ∩ E2 and marking all edges that we encounter as popular pairs
takes care of condition (ii). It is easy to see that this procedure also takes
time linear in the size of GM .

This completes the proof of the theorem.
We now consider the problem of counting the number of popular matchings in an

instance with ties. McDermid and Irving [13] showed that when preference lists are
all strict, the problem of counting the number of popular matchings admits a linear
time algorithm. In contrast, we show that the problem turns to be #P-Complete
when ties are allowed.

Theorem 3.9. Given an instance G = (A∪P, E) of the popular matchings prob-
lem with ties, counting the total number of popular matchings in G is #P-Complete.

Proof. In order to prove the completeness result, we reduce from the problem of
counting the number of perfect matchings in 3-regular bipartite graphs. This problem
was shown to be #P-Complete by Dagum and Luby [2]. Let H = (A ∪ P, E) be a
3-regular bipartite graph. We construct an instance G = H of the popular matching
problem by assigning all the edges in E as rank-1 edges. It is well-known that a
k-regular bipartite graph admits a perfect matching and it is easy to see that every
perfect matching in H is a popular matching in G and vice versa. Thus, the theorem
statement follows.

4. Cheating strategies – preliminaries. In this section we set up the notation
useful in formulating our cheating strategies. We begin by partitioning the set of
agents A depending on the posts that a particular agent gets matched to when each
agent is truthful, that is, in the instance G.

Af = {a : every popular matching in G matches a to one of her rank-1 posts}
As = {a : every popular matching in G matches a to one of her non-rank-1 posts}
Af/s = A \ (Af ∪ As).

The set Af/s denotes the set of agents a such that a gets matched to one of her rank-1
posts in some popular matching in G, whereas to one of her non-rank-1 posts in some
other popular matching in G. It is easy to see that the above partition can be readily
obtained once we have the set of popular pairs PopPairs (defined by Equation (3.1)).

Let a1 be the sole manipulative agent who is aware of the true preference lists
of all other agents. Let L = P1, P2, . . . , Pt, . . . , Pl denote the true preference list of
a1 where Pi denotes the set of i-th ranked posts of a1. Since we will be working
with another instance H obtained by falsifying the preference list of a1, we use the
following notation throughout. For an agent a, let fG(a) and sG(a) denote sets f(a)
and s(a) respectively for agent a in G. We use a similar notation for the partition
of vertices with respect to the instance under consideration. For instance, let (O1)G
denote the set of vertices that belong to O1 in G.

We note that fG(a1) = P1. Assume that sG(a1) ⊆ Pt is the set of t-th ranked
posts of a1. Recall the strategy – better always defined for a single manipulative agent.
If agent a1 ∈ Af , then she does not have any incentive to manipulate her preference
list. Thus, in this case we are done and L is her optimal strategy. We therefore focus

12

on a1 ∈ As ∪ Af/s. Let H denote the instance obtained by falsifying the preference
list of a1 alone.

• If a1 ∈ As, then in order to get better always her goal is to force at least some
popular matching in H to match her to a post which she strictly prefers to
her t-th ranked post (that is, posts in sG(a1)). Note that t > 1.

• If a1 ∈ Af/s, then in order to get better always her goal is to force every
popular matching in H to match her to one of her true rank-1 posts.

Denote by H ≻a1
G if agent a1 is better always in H. It is instructive to consider

examples in order to develop intuition regarding the cheating strategies.
Example 4.1. Consider the instance G as shown in Figure 2.1(a) and let a5

be the manipulative agent. It can be seen that a5 ∈ Af/s in G. Now consider the
instance H where a5 alone falsifies her preference list such that p3 is her rank-1 post
and p8 as her rank-2 post.

a5 : p3 p8
It is easy to verify that every popular matching in H matches a5 to p3 which is her
true rank-1 post. The idea for an Af/s agent a is to choose a single post p (in this case
p8) that will belong to sH(a) such that a can never be matched to p in any popular
matching of H.

Example 4.2. Consider the instance G shown in Figure 2.1(a) and let a1 be
the manipulative agent. Every popular matching in G matches a1 to either p6 or p7
and therefore a1 ∈ As. Let H denote the instance where a1 submits the preference
list as follows: p3 is her rank-1 post whereas p8 is her rank-2 post.

a1 : p3 p8
It can be verified that every popular matching in H matches a1 to p3. The intuition
here is that, a post to which a1 wishes to get matched (here p3), should have a path
to an unmatched post or should belong to a sink component of GM . We also choose
a post in sH(a1) (in this case p8) to which a1 can never get matched in any popular
matching in H. However, in this example, this is not the best that a1 can get by
falsifying. Let a1 falsify her preference list as below and let H denote the falsified
instance.

a1 : p2 p8
Consider the matchingM ′′ = {(a1, p2), (a2, p1), (a3, p8), (a4, p3), (a5, p4), (a6, p9), (a7, p5)}
in H. It can be verified that M ′′ is popular in H and in fact every popular matching
in H matches a1 to p2. However, our intuition that p2 should belong to a sink com-
ponent does not hold. This is because the edge (a4, p3) which got deleted in Step 4 of
Algorithm 2.1 is being used after a1 falsifies her preference list. In order to deal with
such cases we will work with a slightly modified instance as defined in Section 4.3.

In the rest of this section, we establish some facts crucial for developing the
optimal cheating strategy. In Section 4.1 we establish that when a1 manipulates to
get better always, the set of s-posts of other agents remains unaffected. This gives us
a useful handle on the modified instance obtained after manipulation. In Section 4.2
we show that if a1 did not get matched to her rank-1 post in any popular matching
by being truthful, then she cannot get matched to her rank-1 post even by falsifying
her preferences. Finally, in Section 4.3 we formally define the modified instance G̃.

4.1. s(a) for other agents remains unchanged. Let H denote the instance
obtained by falsifying the preference list of a1 alone. Since the rest of the agents are
truthful, for every agent a ∈ A \ {a1}, we have fH(a) = fG(a). However, since sH(a)
depends on the rank-1 posts of the rest of the agents, it may be the case that when
a1 falsifies her preference list, sH(a) 6= sG(a) for an agent a ∈ A \ {a1}. We claim

13

that if a1 falsifies her preference list only to improve the rank of the post that she
gets matched to, then s(a) for any other agent a remains unchanged. Recall that by
definition, sH(a) is the set of most preferred posts of a which are even in the graph
H1 (the graph H on rank-1 edges). Theorem 4.6 establishes that the set of even posts
in G1 and H1 are the same. We need the following lemmas to prove the theorem.

We first show that if agent a1 gets matched to her non-rank-1 post in some popular
matching in G, then all the rank-1 posts of a1 are odd in G1. Intuitively, the set of
rank-1 posts of a1 are highly in demand.

Lemma 4.3. Let a1 ∈ As ∪ Af/s when she is truthful. Then, fG(a1) ⊆ (O1)G.

Proof. Since a1 ∈ As ∪ Af/s, it implies that at least one popular matching
in G matches a1 to her non-rank-1 post. We show that if fG(a1) 6⊆ (O1)G, then
every popular matching in G matches a1 to her rank-1 post. Assume for the sake
of contradiction that fG(a1) 6⊆ (O1)G. Let q ∈ fG(a1) such that, q ∈ (E1 ∪ U1)G.
This implies that a1 ∈ (O1 ∪ U1)G. Consider the case when a1 ∈ (O1)G. Then,
sG(a1) ⊆ fG(a1) and therefore a1 has no non-rank-1 edges incident on it in the graph
G′. Thus, a1 remains matched along her rank-1 edge in every popular matching of G.
Now consider the case when a1 ∈ (U1)G. If a1 gets matched to a non-rank-1 post in a
popular matchingM , thenM is not a maximum matching on rank-1 edges of G. Thus,
in this case also, a1 remains matched along a rank-1 edge in every popular matching
in G. This contradicts the fact that a1 ∈ As ∪ Af/s. Therefore, fG(a1) ⊆ (O1)G.

We now argue that in any instance H ≻a1
G, the set of rank-1 posts of a1 in H

must be posts which are odd or unreachable in G1. Again, this intuitively implies
that the set of rank-1 posts of a1 in H are posts that are in demand in G.

Lemma 4.4. Let H be such that H ≻a1
G. Then fH(a1) ⊆ (O1 ∪ U1)G.

Proof. We first show that if fH(a1) ∩ (E1)G 6= ∅, then the size of the maximum
matching on rank-1 edges of H is strictly larger than the size of the maximum match-
ing on rank-1 edges of G. Let G1 be the graph on rank-1 edges of G and let M1 be a
maximum matching in G1 that leaves a1 unmatched. Note that such a matching exists
because by Lemma 4.3, fG(a1) ⊆ (O1)G which implies that a1 ∈ (E1)G. Consider the
graph H1, that is, the graph on rank-1 edges of H. Note that M1 is a matching in H1

as no other agent changes her preference list. Since each qi ∈ (E1)G and a1 ∈ (E1)G,
the addition of the edge (a1, qi) creates an augmenting path with respect to M1 in
the graph H1. Note that if qi is unmatched in M1, then this augmenting path is of
length 1 containing the unmatched edge (a1, qi). Thus, we get another matching M2

in H1 obtained by augmenting M1, such that |M2| = |M1|+ 1.

Assume for contradiction that there exists an instance H ≻a1
G and let fH(a1)∩

(E1)G = {q1, . . . , qk}. Recall that by assumption, sG(a1) is a set of t-th ranked posts
for a1. Additionally, by definition, sG(a1) denotes the set of most preferred posts on
a1’s preference list that belong to (E1)G. This implies that the rank of each qi in a1’s
preference list is t or worse. We show that if fH(a1) ∩ (E1)G 6= ∅, then every popular
matching in H matches a1 to one of {q1, . . . , qk}. Thus, the rank of the most preferred
post that a1 gets in H is t or worse, a contradiction to H ≻a1

G.

Now if every popular matching in H matches a1 to one of {q1, . . . , qk} then
this contradicts the fact that H ≻a1

G and we are done. Otherwise assume that
there exists a popular matching M ′ in H which matches a1 to some post other than
{q1, . . . , qk}. Let M ′

1 denote the matching M ′ restricted to rank-1 edges of H. Since
M ′ is a maximum matching on rank-1 edges of H, it is clear that |M ′

1| = |M2|.
Moreover, since M ′(a1) ∈ fH(a1) ∪ sH(a1) let us consider the following cases:

• M ′(a1) is a true rank-1 post of a1: In this case M ′

1 is a maximum matching

14

in G1 and note that |M ′

1| = |M2| = |M1| + 1. This contradicts the fact that
M1 is a maximum matching in G1.

• M ′(a1) is a non rank-1 post of a1: This implies that M ′

1 leaves a1 unmatched.
Thus, M ′

1 is also a matching in G1 since no other agents changed their pref-
erences. However, |M ′

1| = |M1|+ 1 which contradicts the fact that M1 was a
maximum matching in G1.

Thus, we have established that in any instance H ≻a1
G, the rank-1 posts of a1 in H

are posts which are odd or unreachable in G1. This finishes the proof of the lemma.

Using the above lemma we now show that the sizes of maximum matching in G1

and H1 are indeed the same.

Lemma 4.5. Let M1 be a maximum matching in G1 such that M1 leaves a1
unmatched. Then, in any instance H such that H ≻a1

G, M1 is a maximum matching
in H1.

Proof. We first note that such a maximum matching M1 in G1 which leaves a1
unmatched exists, because fG(a1) ⊆ (O1)G, hence a1 ∈ (E1)G. Assume that M1 is not
a maximum matching inH1. Then there exists an augmenting path 〈a1, p1, . . . , ak, pk〉
in H1 with respect to M1 where both a1 and pk are unmatched. However, using the
path 〈pk, ak, . . . , p1〉, we have an even length alternating path from pk to p1 which
implies that p1 ∈ (E1)G1

. However, note that p1 ∈ fH(a1) and the fact that p1 ∈ (E1)G
contradicts Lemma 4.4. Thus M1 is a maximum matching in H1.

Finally, using Lemma 4.5 we are ready to prove the main theorem of this subsec-
tion. We first show that the set of posts which are even in G1 is the same as the set
of posts which are even in H1. This immediately implies that s(a) for other agents
remains unchanged. We also prove a useful fact that the set of odd agents in G1 is
the same as the set of odd agents in H1.

Theorem 4.6. Let H be an instance such that H ≻a1
G. Then, (i) (E1)G ∩P =

(E1)H ∩P and therefore sH(a) = sG(a) for every a ∈ A \ {a1} and, (ii) (O1)G ∩A =
(O1)H ∩ A.

Proof. The case when fH(a1) = fG(a1) is easy, since H1 = G1 and both (i) and
(ii) are trivially true. Consider the case when fH(a1) 6= fG(a1) and let M1 be a
maximum matching in G1 such that M1 leaves a1 unmatched. By Lemma 4.5, M1

is also a maximum matching in H1. To prove (E1)G ∩ P = (E1)H ∩ P, consider the
following two cases:

• p ∈ (O1 ∪ U1)G ∩ P: Assume for contradiction that p ∈ (E1)H ∩ P. This
implies that there exists an even length alternating path T with respect to
M1 in H1 from an unmatched post to p in H1. The path T cannot contain
a1, since a1 is unmatched in M1. Hence T is also present in G1 contradicting
the fact that p ∈ (O1 ∪ U1)G ∩ P.

• p ∈ (E1)G∩P: Let T denote the even length alternating path w.r.t. M1 in G1

starting from an unmatched post in M1. The path T again cannot contain
a1 and hence exists in H1 thus proving that p ∈ (E1)H ∩ P.

Now, since the preference lists of the agents a ∈ A\{a1} remain unchanged, it is clear
that sH(a) = sG(a).

To prove that (O1)G ∩ A = (O1)H ∩ A, we again consider two cases:

• a ∈ (O1)G∩A: Let T denote the odd length alternating path w.r.t. M1 in G1

starting from an unmatched post in M1. The path T again cannot contain
a1 and hence exists in H1 thus proving that p ∈ (O1)H ∩ P.

• a ∈ (E1 ∪ U1)G ∩ A: Assume for contradiction that a ∈ (O1)H ∩ A. This
implies that there exists an odd length alternating path T with respect to M1

15

in H1 from an unmatched post to a in H1. This path again cannot contain a1,
and hence is present in G1. This contradicts the fact that a ∈ (E1∪U1)G∩A.

This finishes the proof of the theorem.

4.2. An As agent cannot get one of her true rank-1 posts. In this section
we show that if a1 ∈ As, then by falsifying her preference list alone, she cannot get
matched to one of her true rank-1 posts in any popular matching in H. We prove
it using Theorem 4.10 which requires the following lemmas. Using Lemma 4.7 we
establish that every true rank-1 post q of a1 belongs to a non-sink component of
GM . We then construct a tight-pair Aq,Pq corresponding to each rank-1 post q and
establish that the agent a1 does not lie in Aq. We further establish that for every agent
a ∈ Aq, the set choicesH(a) ∈ Pq. We emphasize that the claim is for choicesH(a)
which need not be the same as choicesG(a). Lemma 4.8 and Lemma 4.9 prove these
facts. Using these facts a simple argument based on pigeon-hole principle allows us
to establish the main result which is stated in Theorem 4.10.

Lemma 4.7. Let a1 ∈ As, and let q ∈ fG(a1). Then, q belongs to a non-sink
component of GM and the edge (M(a1), q) is not contained in a cycle in GM .

Proof. We first show that the edge (M(a1), q) is not contained in a cycle in GM .
Observe that the edge (a1, q) may get deleted from G′ in either Step 4 or Step 9 of
Algorithm 2.1. In such a case, we are already done since the edge (M(a1), q) does not
exist in the graph GM . Now consider the case when the edge (a1, q) is not deleted in
either of the steps. Moreover, for the sake of contradiction assume that there exists
a cycle C in GM which contains the edge (M(a1), q). Since every cycle in GM has a
weight 0, the cycle C is a switching cycle and hence we get another popular matching
M ′ = M · C in which a1 gets matched to q. Since q ∈ fG(a1), this contradicts the
fact that a1 ∈ As.

We now show that every q ∈ fG(a1) belongs to a non-sink component of GM .
Assume for the sake of contradiction that there exist some q ∈ fG(a1) such that q
belongs to a sink component, say X of GM . In this case we show that there exists a
switching path T beginning at M(a1) which uses the edge (M(a1), q). Using T , we
construct another popular matching M ′ = M · T where a1 gets matched to q. Thus,
we get the desired contradiction as a1 ∈ As.

It remains to prove that the switching path T exists. We first show that the edge
(M(a1), q) exists in the graph GM or equivalently, the edge (a1, q) does not get deleted
from G′ in either Step 4 or Step 9 of Algorithm 2.1. Note that since a1 ∈ As implies
that a1 ∈ (E1)G. Thus, by Claim 2.4, no edge incident on a1 gets deleted on Step 4.
Also since q belongs to a sink component, q ∈ (E2)G and hence no edge incident
on q gets deleted in Step 9. Thus the edge (a1, q) exists in G′′ and hence the edge
(M(a1), q) exists in GM . Finally note that, w(M(a1), q) = +1 since M(a1) ∈ sG(a1)
and q ∈ fG(a1). We will use the edge (M(a1), q) as the first edge of our path T .

Observe that since q belongs to a sink component X , by Property 3.3, q has a
path to some sink vertex q′ in X . From Lemma 4.3, we know that q ∈ O1 and by
Property 3.2, it is clear that q′ ∈ E1. Using Table 3.1 of edge weights, we conclude
that the path T1 starting a vertex in O1 and ending in a vertex in E1 has weight
w(T1) = −1. Thus, we obtain the switching path T = 〈M(a1), q, T1〉 which ends in
the sink q′ and has w(T) = 0. This completes the proof of the lemma.

Lemma 4.8. Let a1 ∈ As and let q ∈ fG(a1). Let Pq be defined as

Pq = {q} ∪ {q′ : there is a path from q to q′ in GM}
Let Aq = {M(q′) : q′ ∈ Pq}. Then, a1 /∈ Aq.

16

Proof. Note that since a1 ∈ As and q ∈ fG(a1), by Lemma 4.7, q belongs to a
non-sink component, say Y, of GM . If M(a1) does not belong to Y, then it is clear
that M(a1) /∈ Pq and therefore a1 /∈ Aq.

Otherwise, assume for the sake of contradiction that M(a1) belongs to Y and
there exists a path from q to M(a1) in GM . In this case, we show that the path from
q to M(a1) along with the edge (M(a1), q) creates a cycle in GM containing the edge
(M(a1), q) which is a contradiction by Lemma 4.7. Thus, we need to show that the
edge (M(a1), q) does not get deleted in either Step 4 or Step 9 of Algorithm 2.1. Since
M(a1) belongs to a non-sink component, therefore by Property 3.3, M(a1) ∈ (U2)G.
This implies that a1 ∈ (U2)G. Furthermore, since q ∈ fG(a1), by Lemma 4.3, we know
that q ∈ (O1)G. This implies that a1 ∈ (E1)G. Thus, from Claim 2.4, it is clear that no
edge incident on a1 gets deleted in either Step 9 or Step 4 of Algorithm 2.1. Therefore,
the edge M((a1), q) exists in GM and along with the path from q to M(a1) creates
a cycle in GM containing the edge (M(a1), q). This gives the desired contradiction
establishing that a1 /∈ Aq.

Lemma 4.9. Let a1 ∈ As and let q ∈ fG(a1). Then, there exist sets Aq and Pq

such that |Aq| = |Pq| and for every a ∈ Aq we have choicesH(a) ⊆ Pq.

Proof. Since a1 ∈ As and q ∈ fG(a1), from Lemma 4.7, we know that q belongs
to a non-sink component, say Y, of GM . Therefore, using Lemma 3.7, we know that
there exists a tight-pair Aq and Pq such that |Aq| = |Pq| and for each a ∈ Aq, we
have choicesG(a) ⊆ Pq. To prove the lemma it suffices to show that for every a ∈ Aq,
choicesH(a) ⊆ choicesG(a). By Lemma 4.8, a1 /∈ Aq and therefore, we know that
fG(a) ∪ sG(a) = fH(a) ∪ sH(a), for all a ∈ Aq. If no edges had got deleted in Step 4
and Step 9 of Algorithm 2.1 then we would be done since choicesG(a) would have
been fG(a)∪sG(a). Therefore we consider edges that get deleted in Step 4 and Step 9
of the algorithm. Observe that since every q′ ∈ Pq belongs to a non-sink component
of GM , therefore by Property 3.3, q′ ∈ (U2)G. This implies that every a ∈ Aq is such
that a ∈ (U2)G. Thus, by Claim 2.4 no edge incident on a gets deleted in Step 9 of
Algorithm 2.1 when executed on G.

It remains to show that if a′ ∈ Aq and edge (a′, q′) gets deleted in Step 4 of
Algorithm 2.1 when executed on G, then (a′, q′) also gets deleted in Step 4 of Algo-
rithm 2.1 when executed on H. We first show that if a ∈ Aq then a ∈ (E1 ∪O1)G. To
see this, observe by Lemma 4.3, the post q ∈ (O1)G. Now consider any post q′ ∈ Pq.
From the Table 3.1, it is easy to see that q′ ∈ (O1 ∪E1)G, since posts in (U1)G cannot
be reached starting at a post in (O1)G. Now since in any popular matching, posts in
(O1 ∪ E1) remain matched to agents in (O1 ∪ E1), we conclude that if a ∈ Aq then
a ∈ (E1 ∪ O1)G.

If a ∈ (E1)G, by Claim 2.4 no edge incident on a gets deleted in Step 4 of Algo-
rithm 2.1 when executed on G. Finally, let a ∈ (O1)G. If the edge (a, q

′) got deleted in
Step 4, then q′ ∈ (O1 ∪U1)G. Thus, by Theorem 4.6, a ∈ (O1)H and q′ ∈ (O1 ∪U1)H ,
thus the edge (a′, q′) continues to get deleted in Step 4 of Algorithm 2.1 when executed
on H. This completes the proof of the lemma.

Using the above lemmas we prove the following theorem.

Theorem 4.10. Let a1 ∈ As. Then by falsifying her preference list alone, she
cannot get matched to a post q ∈ fG(a1) in any popular matching in the falsified
instance.

Proof. For contradiction assume that there exists a falsified instance H such that
in a popular matching M ′ of H, agent a1 gets matched to q ∈ fG(a1). By Lemma 4.7,
the post q belongs to a non-sink component of GM . Furthermore, by Lemma 4.9,

17

there exists a set of agents Aq and a set of posts Pq such that |Aq| = |Pq|, a1 /∈ Aq

and for every a ∈ Aq, we have choicesH(a) ⊆ Pq. Thus, if a1 gets matched to q in
M ′, then there is at least one agent a′ ∈ Aq which does not have a post to be matched
in choicesH(a′). This contradicts the fact that M ′ is a popular matching in H.

4.3. The modified instance G̃. As mentioned earlier, we need to define a mod-
ified instance, call it G̃ to develop our cheating strategies. Recall from Example 4.2
that a rank-1 edge which gets deleted from the graph G′ in Algorithm 2.1, can be used
in a popular matching in a falsified instance. Thus, we define G̃ from the instance
G which has the following properties: (i) every popular matching in G corresponds
to a popular matching in G̃ and, (ii) any edge (a, p) that gets deleted in Step 4 of
Algorithm 2.1 when executed on G̃ also gets deleted in Step 4 when Algorithm 2.1 is
executed on H such that H ≻a1

G. However, the definition of G̃ is independent of
the agent a1.

The graph G̃ is defined as follows: Let G1 be the graph on rank-1 edges of G
and let M1 be a maximum matching in G1. Let {q1, . . . , qk} be the set of unreachable
posts with respect to M1 in G1. Let us add to the instance G, a dummy agent b
whose preference list is of length 1 and has all the unreachable posts in G1 tied as her
rank-1 posts. That is, the preference list of b can be written as (q1, . . . , qk). The set
of posts as well as the preference lists of all the agents a ∈ A remain the same as in
G. Formally, G̃ = (Ã ∪ P, Ẽ) where Ã = A ∪ {b}, Ẽ = E ∪ {(b, q1), . . . , (b, qk)} and
each (b, qi) is a rank-1 edge. We recall that for each agent, including the agent b, we
add a unique last-resort post at the end of the agent’s preference list. By the choice
of preference list of b, we note that fG̃(b) = {q1, . . . , qk} and sG̃(b) = ℓ(b), the unique
last-resort post for agent b.

We note that even after the addition of agent b, a maximum matching M1 in G1

continues to be maximum matching in G̃1. However, with respect to the partition of
vertices on rank-1 edges in G̃, every vertex is either odd or even in G̃1. We show that
the addition of b leaves the set s(a) unchanged for every agent a ∈ A.

Lemma 4.11. Let G̃ be the graph as defined above. Then, (E1)G̃∩P = (E1)G∩P.
Therefore, for every a ∈ A, we have sG̃(a) = sG(a).

Proof. Let M1 be a maximum matching in G1. Since M1 is also a maximum
matching in G̃1, let us partition the vertices of Ã ∪ P w.r.t. M1 in G̃1. Note that
the addition of agent b makes every post that was unreachable in G1 as odd in G̃1.
Now, the set of even posts in G1 and G̃1 is same and the preferences of the agents are
unchanged. This implies that for every a ∈ A, we have sG̃(a) = sG(a).

LetM be a popular matching in G, then let M̃ denote the corresponding matching
in G̃ such that for every a ∈ A we have M̃(a) = M(a) and M̃(b) = ℓ(b), the unique
last-resort post of b. Note that M̃ is a maximum matching on rank-1 edges in G̃
and for every a ∈ A, we have M̃(a) ∈ fG̃(a) ∪ sG̃(a). Finally M̃(b) ∈ sG̃(b) since

sG̃(b) = {ℓ(b)}. It is clear that M̃ satisfied both the properties of Theorem 2.2 and

therefore is a popular matching in G̃. We can now construct the switching graph
G̃M̃ w.r.t. M̃ in G̃. Having made these definitions, we can now prove the following
lemmas.

Lemma 4.12. Let (a, p) be an edge which gets deleted in Step 4 of Algorithm 2.1
when it is executed on G̃. Then (a, p) gets deleted in Step 4 when Algorithm 2.1 is
executed on any instance H such that H ≻a1

G.
Proof. As mentioned earlier, all vertices in G̃1 are either odd or even, hence if an

edge (a, p) got deleted in Step 4 of Algorithm 2.1, then it implies that {a, p} ∈ (O1)G̃.
To prove the lemma statement, we show that such an edge gets deleted either as an

18

O1O1 edge, or as an O1U1 edge in H1. To this end we establish the following two
claims.

1. Any agent that is odd in G̃1 is also odd in H1. That is, (O1)G̃∩A = (O1)H∩A:

Consider a maximum matching M1 in G̃1 which leaves a1 and b unmatched.
As argued earlier, this is a maximum matching in G1 and hence a maximum
matching in H1. We consider two cases:

• a ∈ (O1)G̃ ∩A: Let T denote the odd length alternating path w.r.t. M1

in G̃1 starting at an unmatched post in M1 to the agent a. The path T
cannot contain a1 since a1 is unmatched in M1. This implies the path
T exists in H1 thus proving that a ∈ (O1)H ∩ P.

• a ∈ (E1 ∪U1)G̃ ∩A: Assume for contradiction that a ∈ (O1)H ∩A. This
implies that there exists an odd length alternating path T with respect
to M1 in H1 from an unmatched post to a in H1. This path again cannot
contain a1, and hence is present in G̃1. This contradicts the fact that
a ∈ (E1 ∪ U1)G̃ ∩ A.

2. Any post that is odd in G̃1 is either odd or unreachable in H1. That is,
(O1)G̃∩P = (O1∪U1)H∩P: Note that, using Lemma 4.11 and Theorem 4.6(i)
we can conclude that (E1)G̃ ∩P = (E1)H ∩P. This implies that (O1)G̃ ∩P =
(O1 ∪ U1)H ∩ P. (Recall that (U1)G̃ = ∅.)

Thus, using (1) and (2) above we conclude that any O1O1 edge deleted in Step 4 of
Algorithm 2.1 when executed on G̃ is also deleted in Step 4 when the same algorithm
is executed on any H ≻a1

G.
At this moment, we recall Example 4.2 and the instance H which was obtained

by falsifying the preference list of a1 to p2, p8. This example motivated us to define
the instance G̃. We now emphasize that we could not work directly with the instance
G, because for every agent a ∈ A \ {a1} we cannot guarantee that choicesH(a) ⊆
choicesG(a). In fact, the above example shows that choicesG(a4) = {p2, p8} whereas
choicesH(a4) = {p2, p3, p8}. Our next lemma shows that the careful definition of G̃
ensures that for an agent a in a non-sink component of G̃M̃ we have choicesH(a) ⊆
choicesG̃(a). This lemma along with the tight-pair defined earlier will be a useful tool
for proving our results in the next section.

Lemma 4.13. Let a ∈ A \ {a1} such that M̃(a) belongs to a non-sink component
of G̃M̃ . Let H be an instance such that H ≻a1

G. Then choicesH(a) ⊆ choicesG̃(a).
Proof. Recall that for any a ∈ A \ {a1}, fG̃(a) = fG(a) = fH(a) and sG̃(a) =

sG(a) = sH(a). We also know that, in any instance, for an agent a, choices(a) ⊆
f(a) ∪ s(a). Thus, for an agent a ∈ A \ {a1}, if it were the case that choicesG̃(a) =
fG̃(a) ∪ sG̃(a), then the lemma statement holds trivially. However due to deletion of

edges in Step 4 and Step 9 of Algorithm 2.1 when executed on G̃, it may be the case
that choicesG̃(a) ⊂ fG̃(a) ∪ sG̃(a). We note that since M(a) belongs to a non-sink
component it implies that both {a,M(a)} ∈ (U2)G̃. Therefore, by Claim 2.4, no edge
incident on a gets deleted in Step 9. Moreover, by Lemma 4.12, it is clear that if an
edge (a, p) gets deleted in Step 4 of Algorithm 2.1 run in G̃, then the same edge gets
deleted in Step 4 when executed on H. This proves that, for any a ∈ A \ {a1}, such
that, a belongs to a non-sink component, we have choicesH(a) ⊆ choicesG̃(a).

Armed with these observations we now develop the cheating strategies for the
manipulative agent a1.

5. Cheating strategies. In this section we develop a characterization of the
conditions under which a1 can falsify her preference list. We formulate the strategy
of a1 depending on whether a1 ∈ As or a1 ∈ Af/s. Throughout, we assume that the

19

true preference list of a1 is denoted by L = P1, . . . , Pt, . . . , Pl where Pi denotes the
set of i-th ranked posts of a1. Thus, fG(a1) = P1 and sG(a1) ⊆ Pt. We will use the
modified instance G̃ to formulate our strategies.

5.1. As agent. Let a1 ∈ As and let M be any popular matching in G and M̃ =
M ∪ {(b, ℓ(b))}. It follows from the definition of As that, M(a1) = M̃(a1) ∈ sG(a1)
and therefore M(a1) ∈ Pt. We first characterize whether a1 can get better always
using the graph G̃ and the switching graph G̃M̃ .

Our cheating strategy for a1 (as shown in Figure 5.1) is simple: it checks if any of
a1’s i-th ranked posts p ∈ Pi where i = 2 . . . t− 1, either belongs to a sink component
in G̃M̃ , or has a path to M̃(a1) in G̃M̃ . If there exists such a post p, our strategy
ensures that every popular matching in the falsified instance H matches a1 to p. We
denote by Lf the falsified preference list of a1.

1. For i = 2 . . . t− 1 check if there exists a post p ∈ Pi in a1’s preference list
such that
(a) p belongs to a sink component in G̃M̃ or,

(b) p has a path to M̃(a1) in G̃M̃ .
2. If no post satisfies (a) or (b) above, then true preference list L is optimal

for a1.
3. Else let p denote one of the most preferred post of a1 satisfying one of

the above two properties. Set post p as a1’s rank-1 post in the falsified
preference list.

4. To obtain the rank-2 post for a1, let q be some post in fG(a1). Let
a2 = M̃(q) and p′ ∈ sG(a2). Set p′ as the rank-2 post of a1 in the
falsified instance.

5. Lf = p, p′.

Fig. 5.1. Cheating strategy for a1 ∈ As.

We first show that the post p′ chosen as a rank-2 post for a1 is valid, that is, p′

is not one of the dummy last-resort posts that we introduce.
Lemma 5.1. The post p′ chosen in Step 4 of Figure 5.1 is matched in M̃ and

p′ 6= ℓ(a2). Furthermore, p′ is a non-rank-1 post for a2.
Proof. We note that post p′ is chosen in Step 4 of Figure 5.1 as follows: Let q

be some post such that q ∈ fG(a1) and let a2 = M̃(q). Then post p′ is such that
p′ ∈ sG(a2). Also recall that the popular matching M̃ in G̃ is obtained from a popular
matching M in G. Therefore, to show that p′ is matched in M̃ , it suffices to show
that p′ is matched in M . Assume for contradiction, p′ is not matched in M . Then,
we can obtain another matching M ′ in G by demoting a2 to p′ and promoting a1 to q
and leaving rest of the agents matched as it is. It is easy to see that M ′ is popular in
G and M ′(a1) ∈ fG(a1). This contradicts the fact that a1 ∈ As. Thus, p

′ is matched
in M and therefore matched in M̃ . Finally, if p′ = ℓ(a2), then it is clear that p′

has to be unmatched in M since a2 is the only agent that has an edge to ℓ(a2) and
M̃(a2) = M(a2) = q.

To show that p′ is a non-rank-1 post for a2, note that by assumption, p′ ∈ sG(a).
Assume for contradiction that p′ is a rank-1 post for a2. This implies that a2 ∈ (O1)G.
Also as q ∈ fG(a1), by Lemma 4.3, we know that q ∈ (O1)G. Thus, the edge (a2, q)
should have been deleted as on O1O1 edge. However, since M(a2) = q, this edge did
not get deleted. This gives us the desired contradiction and proves that p′ is in fact

20

a non-rank-1 post for a2.

This completes the proof of the lemma.

The following two lemmas establish the correctness of our strategy.

Lemma 5.2. Let H denote the instance obtained when a1 submits Lf = p, p′ as
computed by the algorithm in Figure 5.1. Then, there exists a popular matching in H
that matches a1 to p.

Proof. We begin by noting that sH(a1) = {p′}. This is because p′ ∈ sG(a2)
and hence p′ ∈ (E1)G, therefore by Theorem 4.6 (i), we conclude that p′ ∈ (E1)H .
We now construct a popular matching M ′ in H such that M ′(a1) = p. Consider
a popular matching M in G and the corresponding matching M̃ in G̃. Let N =
M̃ \ {(a1, M̃(a1)), (b, M̃(b))}. This leaves the post M̃(a1) unmatched in N . We now
consider the switching graph G̃M̃ . Recall the choice of rank-1 post p of a1 from the

algorithm in Figure 5.1. If p has a path to M̃(a1) in G̃M̃ , then let T denote a path

from p to M̃(a1) in the graph G̃M̃ . Else if p belongs to a sink component X of G̃M̃ ,
then let T denote a path from p to a sink in X . (Recall from Property 3.3 that every
post belonging to a sink component has a path to a sink.) We note that the path T
does not contain M̃(b) since M̃(b) = ℓ(b) and ℓ(b) does not have any incoming edges.
Now, consider the matching N ′ = (N · T)∪ {(a1, p)}. We prove that N ′ is popular in
H. This has two parts:

• We claim that for every a ∈ A, N ′(a) ∈ fH(a) ∪ sH(a). Note that for
every a ∈ A \ {a1}, we have N ′(a) ∈ fG̃(a) ∪ sG̃(a) which implies that
N ′(a) ∈ fH(a) ∪ sH(a). Also, N ′(a1) = p and note that fH(a1) = {p}.

• Finally, it remains to show that N ′ is a maximum matching on rank-1 edges
of H. Recall that the size of a maximum matching in G̃1 is the same as the
size of a maximum matching in H1. Thus, to show that N ′ is a maximum
matching on rank-1 edges of H, we show that the number of rank-1 edges in
N ′ is equal to the number of rank-1 edges in M̃ . Now, recall the definition
of path T from above and the way N ′ was obtained from M̃ . It is easy to
note that the number of rank-1 edges in M̃ and N is the same. Furthermore,
since N ′ = (N · T) ∪ {(a1, p)}, we conclude that the difference between the
number of rank-1 edges in N ′ and N is exactly equal to w(T) + 1. Note that
the edge (a1, p) is a rank-1 edge in H. Thus to show that N ′ is a maximum
matching in H1, or equivalently, the number of rank-1 edges in N ′ and M̃ is
equal, it suffices to show that w(T) = −1.
We now establish that w(T) = −1. For this, we examine the end points of
T , namely the source which is post p and the target which is either a sink
in G̃M̃ or the post M̃(a). Since p is a post ranked 2, . . . , t − 1 in a1’s true
preference list, and the rank of posts in sG(a1) is exactly t, it implies that
p ∈ (O1∪U1)G. Therefore we can conclude that that p ∈ (O1)G̃. Moreover, if
the target is a sink, by Property 3.2 it belongs to (E1)G̃. Finally, if the target
is M̃(a1), by the assumption that a1 ∈ As, it implies that M̃(a1) ∈ (E1)G̃.
Therefore using Table 3.1 we conclude that w(T) = −1. This finishes our
argument that M ′ is a maximum matching on rank-1 edges of H.

This completes the proof of the lemma.

Lemma 5.3. Let H denote the instance obtained when a1 submits Lf = p, p′ as
computed by the algorithm in Figure 5.1. Then, every popular matching in H matches
a1 to p.

Proof. We have already shown using Lemma 5.2 that there exists some popular
matching in H that matches a1 to p. For the purpose of proving that every popular

21

matching in H matches a1 to p, we will work with the graph G and the switching
graph GM corresponding to a popular matching M in G. For contradiction assume
that there exists a popular matching M ′′ in H such that M ′′(a1) = p′. Note that the
rank-2 post p′ of a1 is chosen as follows. Let q be some post such that q ∈ fG(a1) and
let a2 = M̃(q). Then the post p′ is such that p′ ∈ sG(a2). Recall that M̃ is a popular
matching in G̃ which is obtained from a popular matching M in G. Note that since
q ∈ fG(a1), by Lemma 4.7, q belongs to a non-sink component in GM . Moreover, by
Lemma 4.9, there exists sets Aq and Pq such that |Aq| = |Pq|, a1 /∈ Aq and for every
a ∈ Aq, we have choicesH(a) ⊆ Aq. We show that the post p′ also belongs to Pq and
therefore if M ′′(a1) matches a1 to p′ then there exists at least one agent a ∈ Aq who
does not have a post to be matched in choicesH(a). Thus, M ′′ cannot be a popular
matching in H.

It remains to prove that p′ ∈ Pq. Note that q = M(a2) ∈ fG(a2) and p′ ∈ sG(a2).
If GM contains the edge (q, p′), then we are done; since by definition of Pq, it is clear
that p′ ∈ Pq. The edge (q, p′) can be missing in GM only if it gets deleted either in
Step 4 or in Step 9 of Algorithm 2.1. By Lemma 5.1, we know that a2 treats p′ as
her non-rank-1 post. Thus, the edge (a2, p

′) cannot get deleted in Step 4 since only
rank-1 edges get deleted in Step 4. Since q belongs to a non-sink component in GM ,
by Property 3.3 it implies that q ∈ (U2)G. Therefore M(q) = a2 also belongs to (U2)G.
Thus by Claim 2.4, the edge (a2, p

′) does not get deleted in Step 9 of Algorithm 2.1
and hence p′ ∈ Pq. This completes the proof of the lemma.

The following lemma establishes the optimality of our strategy.

Lemma 5.4. The strategy output by the algorithm in Figure 5.1 is the optimal
strategy for a1 to get better always, when a1 ∈ As.

Proof. To prove that our strategy in Figure 5.1 is optimal, we note that when
a1 was truthful, she got matched to her t-th ranked post in every popular matching
in G. Using our strategy she either gets matched to her k-th ranked post in every
popular matching in H where k < t or we declare that true preference list is optimal
in which case she remains matched to her t-th ranked post where k = t. Then there
exists no instance H such that a popular matching in H matches a1 to a post q′ which
a1 strictly prefers to her k-th ranked post.

For the sake of contradiction assume that there exists such an instanceH obtained
by falsifying the preference list of a1 alone. Let M ′ be some popular matching of H
such that M ′(a1) = q and a1 strictly prefers q to her k-th ranked post. Since our
strategy in Figure 5.1 did not find q, the post q belongs to a non-sink component Y
in G̃M̃ and moreover there exists no path from q to M̃(a1) in G̃M̃ . Now consider the
two sets Pq and Aq as defined by Lemma 3.7. We know that |Aq| = |Pq|. Moreover,
for every a ∈ Aq, we have {choicesG̃(a)} ⊆ Pq. Note that, a1 /∈ Aq, otherwise

M̃(a1) ∈ Pq which implies that there exists a path from q to M̃(a1), a contradiction.
Furthermore, note that ℓ(b) /∈ Pq and therefore, b /∈ Aq. By Lemma 4.13, we know
that for every a ∈ Aq, choicesH(a) ⊆ choicesG̃(a), which implies choicesH(a) ⊆ Pq.
Therefore, if M ′ matches a1 to q, there exists at least one agent a ∈ Aq who does not
have a post to be matched in choicesH(a) and hence M ′ is not a popular matching
in H. This completes the proof of the lemma.

Using Lemma 5.3 and Lemma 5.4 we conclude the following theorem.

Theorem 5.5. Let a ∈ As. Then there exists a cheating strategy for a1 to get
better always if and only if there exists a post p ranked 2 . . . t − 1 on a1’s preference
list satisfying either

(a) p belongs to a sink component in G̃M̃ or,

22

(b) p has a path to M̃(a1) in G̃M̃ .

5.2. Af/s agent. Let a1 ∈ Af/s when she submits her true preference list. In
order to get better always, the goal of a1 is to falsify her preference list such that every
popular matching in the falsified instance H matches a1 to posts in P1.

Let M be a popular matching in G such that M(a1) = p and p ∈ fG(a1). Let M̃
denote the corresponding popular matching in G̃ which matches b to ℓ(b). Consider
the switching graph G̃M̃ . Our strategy for a1 to get better always (as described
in Figure 5.2) is to search for an even post p′ in G1 which belongs to a non-sink
component of G̃M̃ . In addition the post p′ does not have a path T to M̃(a1) in G̃M̃ .

1. For every p′ ∈ (E1)G ∩ P check if
(a) p′ belongs to a non-sink component, say Y1, of G̃M̃ and,

(b) p′ does not have a path T to M̃(a1) in G̃M̃ .
2. If no post satisfies both properties, declare true preference list L is opti-

mal for a1.
3. Else set M(a1) = p and p′ as the rank-1 and rank-2 posts respectively in

the falsified preference list of a1.
4. Lf = p, p′.

Fig. 5.2. Cheating strategy for a1 ∈ Af/s to get better always.

We prove the correctness and optimality of our strategy using the following two
lemmas.

Lemma 5.6. Let H denote the instance obtained when a1 submits Lf = p, p′ as
computed by the algorithm in Figure 5.2. Then, every popular matching in H matches
a1 to p.

Proof. We first show that a popular matching M in G which matches a1 to her
rank-1 post is in fact a popular matching in H. This follows from the fact that M is a
maximum matching on rank-1 edges of G, and it continues to be a maximum matching
on rank-1 edges ofH. In addition, for every a ∈ A\{a1}, we haveM(a) ∈ fG(a)∪sG(a)
which implies that M(a) ∈ fH(a) ∪ sH(a). Thus, M is a popular matching in H.

We now show that every popular matching of H matches a1 to p. Assume not.
Then let M ′ be a popular matching in H such that M ′(a1) ∈ sH(a1). It is easy to
see that sH(a1) = {p′}. This is because by choice, p′ ∈ (E1)G ∩ P and therefore by
Theorem 4.6, we have p′ ∈ (E1)H ∩P. Thus, p′ is the most preferred even post in H1

for agent a1 and therefore sH(a1) = {p′}.
We know that p′ belongs to a non-sink component Y1 of G̃M̃ and p′ does not have

a path to M̃(a1) = p. Let us define tight-pair Pp′ and Ap′ as in Lemma 3.7. Thus,
we have |Pp′ | = |Ap′ | and every a ∈ Ap′ satisfies choicesG̃(a) ⊆ Pp′ . Since p′ does

not have a path to M̃(a1) in G̃M̃ , it is clear that M̃(a1) /∈ Pp′ . Therefore a1 /∈ Ap′ .

Furthermore, M̃(b) /∈ Pp′ since M̃(b) = ℓ(b) does not have any incoming edges. Since

every a ∈ Ap′ belongs to a non-sink component of G̃M̃ , using Lemma 4.13 we know
that choicesH(a) ⊆ choicesG̃(a). Thus, for every a ∈ Ap′ , we have choicesH(a) ⊆ Pp′ .
Now if M ′(a1) = p′ then there exists at least one agent a ∈ Ap′ which does not have
a post to be matched in choicesH(a). Thus, M ′ cannot be a popular matching in H.

Lemma 5.7. Let a1 ∈ Af/s when she is truthful. Then the strategy output by the
algorithm in Figure 5.2 is the optimal strategy for a1 to get better always.

23

Proof. To prove the lemma statement, assume that no post satisfies the two
properties in Step 1 of Figure 5.2. And for the sake of contradiction assume that
there exists an instance H where every popular matching in H matches a1 to a post
in fG(a1). Let q

′ ∈ sH(a1), then by the definition of s(a), we know that q′ ∈ (E1)H∩P.
We first claim that q′ is not a true rank-1 post for a1, that is, q′ /∈ fG(a1). This is
because, if q′ ∈ fG(a1), then Lemma 4.3 implies that q′ ∈ (O1)G. Moreover, by
Theorem 4.6(i), we can conclude that q′ ∈ (O1 ∪U1)H ∩P, which contradicts the fact
that q′ ∈ (E1)H ∩ P. Now, since our algorithm in Figure 5.2 did not find q′, either:

1. q′ belongs to a sink component in G̃M̃ , or

2. q′ belongs to a non-sink component of G̃M̃ and q′ has a path T to M̃(a1).
In each of the above two cases we will construct a popular matching in H that matches
a1 to q′. This will give us the desired contradiction. We now split the two cases
mentioned above depending on whether the post q′ has a path to M̃(a1) in G̃M̃ .

• q′ does not have a path to M̃(a1): Since q
′ was not found by our algorithm in

Figure 5.2, and q′ does not have a path to M̃(a1), it implies that q′ belongs
to a sink component, say Xi of G̃M̃ . Our intermediate goal is to obtain a

popular matching N in G̃ in which the post q′ is unmatched. If q′ is a sink
vertex in G̃M̃ , then it is unmatched and in this case N = M̃ . Otherwise since

q′ belongs to a sink component Xi of G̃M̃ , there exists a path T1 starting at

q′ which ends in a sink in Xi. Let AT1
= {a : p ∈ T and M̃(p) = a} denote

the set of agents matched to posts in T1. Since q′ does not have a directed
path to M̃(a1), the agent a1 /∈ AT1

. Moreover, b /∈ AT1
since M̃(b) = ℓ(b)

does not have any incoming edges. In this case, let N = M · T1 which leaves
the post q′ unmatched. To see that N is indeed popular in G̃, it suffices to
show that w(T1) = 0. Consider the two end-points of T1 – the source q′ and
the destination which is a sink vertex in G̃M̃ . Note that q′ ∈ sH(a1) implies
q′ ∈ (E1)H ∩P = (E1)G̃ ∩P and the end point of the path T1 is a sink vertex

in G̃M̃ which again belongs to (E1)G̃∩P. Therefore from Table 3.1, it is clear

that w(T) = 0. Thus, we have obtained a matching N which is popular in G̃
and leaves the post q′ unmatched.
Now consider the popular matching N in G̃. We note that since a1 ∈ Af/s,
there exists a post say q ∈ sG(a1) = sG̃(a1) such that (a1, q) is a popular pair

in both G and G̃. (Recall that by the definition of G̃, every popular matching
in G corresponds to a popular matching in G̃.) Now, consider the switching
graph G̃N . Since (a1, q) is a popular pair in G̃ and N(a1) 6= q, we know that
the edge (a1, q) belongs to either a switching path, say T2, or a switching
cycle say C2 of G̃N . Let us denote the path T2 or the cycle C2 by T . We first
note that w(T) = 0, since T is either a switching path or a switching cycle.
Now consider the matching N ′ = N · T in which a1 is matched to q. Next
consider the matching N ′′ = N ′\{(a1, q), (b, ℓ(b))}∪{(a1, q′)}. We now argue
that N ′′ is a popular matching in H. First note that for every a ∈ A \ {a1},
we have N ′′(a) ∈ fG̃(a) ∪ sG̃(a) which implies that N ′′(a) ∈ fH(a) ∪ sH(a).
For agent a1, N

′′(a) ∈ sH(a1) by the assumption that q′ ∈ sH(a1). Next,
observe that the number of rank-1 edges in M̃ , N and N ′ is the same since
they are obtained by applying switching paths or cycles. Finally, the number
of rank-1 edges of N ′′ is the same as N ′ since a1 is matched to a non-rank-1
post in both the matchings. This completes the proof that N ′′ is a popular
matching in H which matches a1 to q′. Thus, we get the desired contradiction
that every popular matching in H matches a1 to one of her rank-1 posts.

24

• q′ has a path to M̃(a1): In this case, q′ may belong to a sink component or
a non-sink component of G̃M . In either case, let T denote the path from q′

to M̃(a1). Since q′ ∈ (E1)G̃ and M̃(a1) ∈ (O1)G̃, using Table 3.1, it is clear
that w(T) = +1.
We obtain N ′′ as follows: let N = M̃ \ {(a1, M̃(a1)), (b, M̃(b))}. This leaves
the post M̃(a1) unmatched in N . Let N ′ = N · T and finally let N ′′ =
N ′ ∪ {(a1, q′)}. Using the same arguments as above it is possible to show
that for every a ∈ A, M ′(a) ∈ fH(a)∪ sH(a). We note that since w(T) = +1
and a1 no longer remains matched to one of her rank-1 posts, the number of
rank-1 edges in M ′ and M̃ is the same. Thus, N ′′ is a maximum matching
on rank-1 edges in H. Therefore, N ′′ is popular in H and N ′′(a1) ∈ sH(a1)
which gives us the required contradiction.

This finishes the proof of the lemma.
Using Lemma 5.6 and Lemma 5.7, we conclude the following theorem.
Theorem 5.8. Let a1 ∈ Af/s. There exists a cheating strategy for a1 to get

better always if and only if there exists a post p′ in (E1)G satisfying the following two
properties

(a) p′ belongs to a non-sink component, say Y1, of G̃M̃ , and

(b) there exists no path from p′ to M̃(a1) in G̃M̃ .
Time complexity: We now discuss the time complexity of computing the optimal
cheating strategy using Theorem 5.9.

Theorem 5.9. The optimal falsified preference list for a manipulative agent to
get better always can be computed in O(

√
nm) time if preference lists contain ties and

in time O(m+ n) time if preference lists are all strict.
Proof. The main steps of our strategy are:
1. Construct the switching graph.
2. Compute the set of popular pairs.
3. Run the algorithm given by Figure 5.1 or Figure 5.2 as appropriate for the

manipulative agent.
We note that we use the modified graph G̃ for computing our strategies and let ñ
and m̃ denote the vertices and edges in G̃ respectively. Clearly, ñ = n + 1 and
m̃ < m + n = O(m). Once the switching graph is constructed, we observe that
the algorithms in Figure 5.1 and Figure 5.2 have checks which can be done in time
which is linear in the size of the switching graph. Thus the steps (1) and (2) defined
above decide the complexity of our cheating strategy. In case of ties, we have shown
that both steps can be computed in O(

√
nm) time. In case of strict lists, using the

switching graph given by McDermid and Irving [13], both steps can be computed in
O(m+ n) time. Thus we have the desired result.
Remark: In each case we constructed a falsified preference list for the manipulative
agent which is strict and of length exactly two. However, by appending the rest of
the posts in P at the end of a1’s preference list, there is no change in the popular
matchings that the instance H admits. Thus, we conclude that, if an agent can
manipulate to get better always she can achieve the same when preference lists are
required to be complete.

6. Conclusion. In this paper we presented cheating strategies for a manipula-
tive agent to get better always. It would be interesting to study how two or more
agents co-operate and falsify their preference lists in order to get better always. We
leave this as an open problem. Another contribution of the paper is the switching
graph characterization of the popular matchings problem with ties. McDermid and

25

Irving [13] have used their characterization in case of strict lists to give efficient al-
gorithms for the optimal popular matchings problem [10, 13]. It would be useful
to exploit the characterization developed here and design efficient algorithms for the
optimal popular matchings problem with ties allowed. We leave that as another open
question.
Acknowledgment: The author would like to thank Prof. Vijaya Ramachandran for
several useful discussions on the problem and also to the anonymous reviewers for the
detailed comments which improved the presentation considerably.

REFERENCES

[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM Journal
on Computing, 37(4):1030–1045, 2007.

[2] P. Dagum and M. Luby. Approximating the permanent of graphs with large factors. Theor.
Comput. Sci., 102(2):283–305, 1992.

[3] D. Gale and L. Shapley. College admissions and the stability of marriage. American Mathe-
matical Monthly, 69:9–14, 1962.

[4] P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Sci-
ences, 20:166–173, 1975.

[5] C.-C. Huang. Cheating to get better roommates in a random stable matching. In Proceedings
of 24th Annual Symposium on Theoretical Aspects of Computer Science, pages 453–464,
2007.

[6] C.-C. Huang and T. Kavitha. Near-popular matchings in the roommates problem. In Proceed-
ings of the 19th Annual European Symposium on Algorithms, pages 167–179, 2011.

[7] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal matchings.
ACM Transactions on Algorithms, 2(4):602–610, 2006.

[8] T. Kavitha. Popularity vs maximum cardinality in the stable marriage setting. In Proceedings
of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pages 123–134, 2012.

[9] T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer Science,
412(24):2679–2690, 2011.

[10] T. Kavitha and M. Nasre. Note: Optimal popular matchings. Discrete Applied Mathematics,
157(14):3181–3186, 2009.

[11] M. Mahdian. Random popular matchings. In Proceedings of 7th ACM Conference on Electronic
Commerce, pages 238–242, 2006.

[12] R. M. McCutchen. The least-unpopularity-factor and least-unpopularity-margin criteria for
matching problems with one-sided preferences. In Proceedings of the 15th Latin American
Symposium on Theoretical Informatics, pages 593–604, 2008.

[13] E. McDermid and R. W. Irving. Popular matchings: structure and algorithms. Journal of
Combinatorial Optimization, 22(3):339–358, 2011.

[14] M. Nasre. Popular Matchings: Structure and Cheating Strategies. In Proceedings of 30th
Annual Symposium on Theoretical Aspects of Computer Science, pages 412–423, 2013.

[15] W. R. Pulleyblank. Handbook of Combinatorics (Vol. 1), chapter Matchings and Extensions,
pages 179–232. MIT Press, Cambridge, MA, USA, 1995.

[16] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,
1972.

[17] C.-P. Teo, J. Sethuraman, and W.-P. Tan. Gale-shapley stable marriage problem revisited:
Strategic issues and applications. Management Science, 47(9):1252–1267, 2001.

26

