
1. INTRODUCTION

Parametric identification methods can be applied to

structures to determine unknown parameters such as

mass, stiffness and damping properties based on the

numerical analysis (non-destructive) of known inputs

and the resulting output measurements of the system.

Such identification can be useful for model updating,

structural health monitoring and damage assessment.

The system is excited with a known force and the output

is measured and both input and output signals are used
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to identify the parameters of the system. Structural

identification methods for linear systems have been

extensively studied and can be classified under various

categories, e.g., frequency, time and modal domains,

parametric and nonparametric, classical and non-classical

methods (Ghanem and Shinozuka 1995; Koh and See

1994). The earlier classical methods of identification

such as the maximum likelihood method, the instrumental

variable method and the extended Kalman Filter method

require a substantial mathematical approach and are



gradient based.  The disadvantages of these methods

have lead to the application of evolutionary algorithms

based on heuristic principles, such as Genetic

Algorithms (Chakraborty et al. 2002; Hao and Xia

2002). In the literature on structural parameter

identification, there are few significant mathematical

studies to show the uniqueness of typical inverse

solutions for large systems (Udwadia 1985; Udvadia

and Sharma 1978; Gladewell 1986). However, when

dealing with larger sizes, the uniqueness and accuracy

of the identification are usually illustrated through

extensive numerical studies. If a sufficiently large

number of measurements are taken either at time steps

or at several spatial locations (or a combination of both),

then accurate identification is possible.

Worden and Tomlinson (2001), describe different

methods for detection, identification and modelling of

non-linear structural dynamic systems. Whereas the

identification of linear dynamic systems has progressed

considerably using several global and substructural

approaches, non-linear dynamic system theory is far less

established with corresponding difficulties in

identification. The modal behaviour of a non-linear

system is significantly different from that of a linear

system.  For example, non-linear systems can have more

than one equilibrium point and the frequency of

oscillations dependent on the amplitudes of motion.

Also unlike linear systems which exhibit resonance only

when the frequency of excitation equals the natural

frequency, non-linear systems can resonate when the

excitation is reasonably near the resonant frequency.

Several methods of non-linear identification such as

linearization, time domain, frequency domain and black

box modelling are discussed in Kerschen et al. (2006).

Rice (1995) presented an approach where the

underlying non-linear differential equation governing

the system may be identified by using a linearization

technique. Pilipchuk and Tan (2005) introduced a direct

method of system identification and parameter

monitoring for a general class of non-linear systems in

the time domain based on the operator Lie

representations and the corresponding Lie series

solutions.

A frequency domain technique, the conditioned

reverse path method (Kerschen et al. 2003), has been

used to identify a continuous non-linear system

consisting of an experimental cantilever beam with a

geometrical non-linearity.  Nayfeh (1985) proposed a

parametric identification technique that exploits non-

linear resonances and comparisons of the behaviour of

the system to be identified with those of known systems.
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A recent approach in this area is black box modelling. In

non-linear black-box modelling, artificial neural

networks have received the most attention in non-linear

structural dynamics (Saadat et al. 2004). The application

of evolutionary algorithms such as binary coded GA to

non-linear identification has also been carried out

(Kristinsson and Dumont 1992; Jiang and Wang 2000).

Chang (2006) obtained better estimates of non-linear

parameters using an improved multi-crossover GA

which used real numbers rather than binary

representation.

The Levenberg-Marquardt (LM) method is particularly

suited to the optimization of non-linear problems. It is an

algorithm combining aspects of both the Steepest-descent

and Gauss-Newton methods. Hanagud et al. (1985)

identified parameters of single DOF non-linear dynamic

system with a stiffness cubic non-linearity using the LM

method. Rakesh and Park (1997) used an LM iterative

direct method to identify parameters for non-linear system

with combined quadratic and cubic stiffness non-

linearities. The combination of LM and GA offers the

advantages of locating the global maxima by GA and

thereafter, accurate gradient climbing by LM. This

approach has been applied to finding the material

properties of a viscoplastic model using a finite element

model (Qu et al. 2005).

The substructural identification technique is used to

identify the parameters only in regions of interest which

results in reducing significantly the number of unknown

parameters to be identified; hence convergence and

accuracy of estimation can be improved. For

substructures, the effect of the input excitation is

expressed in terms of the responses at the interfaces with

the main structure, and substructural identification may

be carried out without measuring the actual input

excitation to the structure. A smaller number of

measurement sensors is required in comparison with full

structure identification. Substructural identification

methods can be applied in the time domain (Koh et al.

1991; Yun and Lee 1997; Koh et al. 2003) using the

interface measurements or in the frequency domain

(Koh and Shankar 2003) using receptances, in which

case the formulation can be modified to use interface or

internal measurements. 

For the worth being presented in this paper, both

global and substructural identification approaches were

used to identify the parameters in order to monitor the

structure's health. For the identification of the full set of

structural parameters real coded Genetic Algorithm

(GA) and GA combined with the Levenberg-Marquardt

method (CGALM) were used. The substructural
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identification was carried out by pure GA. As stated in

Koh et al. (2003) the following factors are often

considered in numerical simulation studies to test an

identification strategy. 

1) The strategy should not require an unreasonably

good initial guess for convergence to occur. In

this paper for both GA and CGALM the initially

guessed values are not required and only search

range is specified. 

2) In practice, a dynamic response is normally

measured using accelerometers. Error is

incurred in obtaining velocity and displacement

signals by integration. Hence, in this work, only

acceleration and velocity signals are used for

identification.

3) While accurate measurements are possible due to

advances in sensor technology, some noise is still

inevitable affecting identification accuracy. The

strategy should thus be tested in the presence of

I/O noise. In this paper each case is identified

while taking account of noise in the responses.

4) Though the more the measurements, the better

the results in general, the strategy should not

assume a complete set of measurements since

this is difficult to achieve in reality. The

substructural identification technique is used in

the work being described to decrease the

number of sensors required for measuring

responses.

Full structure identification (GA and CGALM

methods) satisfies the first 3 factors and the

substructural identification (pure GA) approach satisfies

all 4 factors. 

2.. IDENTIFICATION OF GLOBAL
STRUCTURE USING HYBRID GA

Simple real coded GA was used to identify the

parameters of systems with nonlinearities. Genetic

Algorithms are exploration algorithms based on the

mechanism of natural selection and survival of the

fittest. GA combines the explorative ability of large

search spaces as well as reasonable guided search

(Michalwicz 1994). But GA needs increased population

sizes and a large number of iterations to identify larger

number of parameters, which results in increased

computational effort. The Levenberg-Marquardt

method can also be used to identify the parameters of

nonlinear systems. The Levenberg-Marquardt method

is a gradient based local search method. Initial values

have great importance in updating the parameters in

inverse problems using the LM method. If the initial

guess values are poor, the LM method may converge to

local minima or diverge from the optimum parameter

values. The GA parameters which are used to supply

the initial values for LM play an important role in the

convergence of the hybrid method. If the accuracy of

the GA supplied initial value is insufficient, the LM

may not lead to the global optimum. This is a limitation

of this method.

To avoid the different limitations of real coded GA

and the LM method, a hybrid method which combines

both real coded GA and a gradient based classical

method, Levenberg-Marquardt method, is used. In order

to obtain a good initial guess for the LM parameters, GA

has been coupled with the LM algorithm. GA is superior

in finding global maxima of the objective function and

provides the crucial initial guess values for the LM

method. This paper uses the continuous or real number

version of the GA which does not require binary coding

and decoding and is reportedly superior to binary GA

when dealing with real number problems. The CGALM

procedure is clearly explained in Kishore Kumar et al.

(2007) and its application for the identification of the

parameters of nonlinear systems. 

Inverse problems are solved by numerically

simulating an experiment, with the mathematical model

of a known dynamic system as reference. The

experimental acceleration measurements are “generated”

from this mathematical model of known stiffness and

damping parameters. Noise is added to these

measurements for realism. Now, the identification is

posed as an inverse problem.  The parameters of the

same mathematical model are assumed unknown. They

have to be filtered out from a given search range, in such

a way as to minimize the difference between the

experimentally measured responses and the values

predicted from the mathematical model.

3. SUBSTRUCTURE FORMULATION
Substructural identification is a technique whereby only

the parameters in the regions of interest are identified.

This technique reduces the number of parameters to be

identified, decreasing the computational effort and

improving the convergence. The substructural

formulation shown and used here is the technique used

by Koh et al. (2003). It is valid for one dimensional

systems where two substructures meet at one interface

node. It is briefly explained here with reference to the

system in Figure 1(a). The equations of motion for the

substructure shown in Figure 1(b), are given by,
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Where subscript ‘r’ denotes internal DOFs for the

substructure considered. Subscripts ‘f ’ and ‘g’ denote

interface DOFs of the substructure with the remaining

structure on the two sides top and bottom, respectively.

Subscripts “u” represents DOFs above the upper interface

DOF and subscripts “d” represents DOFs below the lower

interface DOF. Let subscript ‘j’ denote all interface DOFs

(i.e. f and g included) for concise presentation. For the

substructure considered, the equations of motion may be

extracted from the above equations to yield

(2)

Treating interaction effects at the interface ends as

“input”. The above equation system can be re-arranged as

(3)

In the SSI formulation by Koh et al. (2003),

accelerations, velocities and displacements at the

interface DOFs are required as evident in the RHS of

Eqn 3. For practical reasons, acceleration is preferred

over velocity and displacement. To eliminate the

requirement for displacement time signals, the concept

of a “quasi-static displacement” vector was adopted.

The absolute displacements for internal DOFs were split

into “quasi-static” displacements (xr
s) and “relative”

displacements (xr
*), i.e.

(4)

Quasi-static displacements are obtained by solving

Eqn 3 while ignoring the applied force Fr, inertia effect

and damping effect (all time-derivative terms set to

zero). Hence,

(5)

Here ‘R’ is called the influence coefficient matrix

which relates internal DOFs to interface DOFs under the

quasi-static condition. Substituting the above equation

into Eqn 3 leads to

(6)
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The RHS without the Fr term represents forces

induced by motion relating to interface DOFs and may

be referred to as “interface motion forces” for

convenience. In Koh et al. (2003), the forces due to the

damping were neglected to avoid the measurement of

velocity signals at the interface DOFs. But for the

identification of nonlinear systems the velocity

components can not be neglected as these might affect

the identification. Hence both acceleration and velocity

signals are measured at the interface DOFs. If there is no

excitation within the substructure, Fr simply vanishes

and the method can advantageously be used for “output-

only” identification (i.e. no force measurement is

necessary) for the substructure. 

In the substructural identification procedure, the

interface acceleration measurements of the substructure

have to be obtained from experiment. They are the

absolute accelerations ẍj (whereby ẋj is also obtained)

and used in the right hand side of Eqn 6. Acceleration

measurements are also taken at a few interior points r,

for comparison with the values estimated from the

model. The relative interior accelerations ẍ
∗
j are

predicted using Eqn 6 from the model which can be

converted to absolute accelerations using Eqn 4.

These estimated accelerations are compared with the

measured interior accelerations. The objective function,

to be minimized, is a function of the differences in the

two types of acceleration. 

4. GA PARAMETERS
In the global structure identification scheme, real coded

GA is used. Since the number of parameters to be

identified in a global model is greater, larger values of

population size and the number of generations are

necessary, resulting in more computational effort. For

global structure identification, the faster hybrid GA (i.e.

Combined GA and LM method) was also used and

compared with the pure GA solution. In CGALM the GA

parameters (population size and number of generations)

used were small compared to those in the case of pure

GA. This is because the purpose of the first stage (real

coded GA) of CGALM is just to give acceptable initial

guess values to the LM algorithm.  The population size

and number of generations for CGALM were decided

based on the results from Kishore Kumar et al. (2007).

The GA parameters which are used to supply the initial

values for LM play an important role in the convergence

of the hybrid method. If the accuracy of the GA supplied

initial value is insufficient, the LM may not lead to the

global optimum. This is a limitation of this method.

Finally the substructural identification technique was

used to identify structural parameters in the region of

interest around the nonlinearities. Since the number of

parameters to be identified here are small, smaller values

of GA population were used, thus decreasing the

computational effort. In section 6 which present the

numerical results, the Tables gives the GA parameters

(polulation size, iterations) used in each case.

The identification task can be posed as a minimization

problem. For all the approaches a weighted error cost

function has been used and is given in the following

equation (Koh et al. 2003).

(7)

Where,

and

Here ‘M’ is the number of measurement sensors used

and ‘L’ is the number of time steps. Subscripts ‘m’ and

‘e’ are for measured and estimated responses

respectively. Measured responses were simulated

numerically using assumed parameter values and noise

has been added to compensate the measurement errors.

The following is the expression used for adding noise to

the responses. 

(8)

Where ‘r’ is a random number generated between 0

and 1 with uniform probability and ẍnoiseis a signal with

noise, ẍ is a signal without noise. A computer with P4

CPU 3.4 GHz and 1.25 GB RAM was used to carry out

all the numerical simulations and parametric

identification. In the following subsections identification

results for each case for both global and substructure

approaches are presented. In all cases considered in this

paper, in GA algorithm a 40% cross over rate and

uniform mutation with a 12% mutation rate were adopted.

5. MODELS STUDIED
In this section, systems and their substructures adopted for

identification studies are introduced. Lumped mass systems

such as a 10-DOF nonlinear system, a 10-DOF linear

system with nonlinear Tuned Mass Dampers (TMDs) and a

linear plane truss system with nonlinear TMDs were studied

using the methods described earlier, i. e., real coded GA,

CGALM and the substructure method.
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5.1. 10-DOF Nonlinear System
A 10-DOF lumped mass system with two nonlinear

spring-damper pairs was considered. All the masses were

assumed to be unity i.e. 1kg. The spring damper pairs

under 4th and 7th DOFs were taken as nonlinear. Figure 3

shows the full system, substructures considered for

identification and the actual values assumed to simulate

the responses. Cubic nonlinearity (which represents the

well known Duffing equation) in spring and quadratic

nonlinearity in damping were assumed. The following

equation gives the nonlinear relations used.

(9)

Where ‘b’ and ‘e’ are the nonlinear coefficients of the

nonlinear spring force expression, ‘c’ and ‘f’ are the

coefficients of the nonlinear damper force expression,

‘δ4’ and ‘ δ̇ ’ are  the resultant displacements (δ4 = x4 –

x3 and δ 7 = x7 – x6), ‘δ̇4’ and ‘δ̇ 7’ are  the resultant

velocities (δ̇4 = ẋ4 – ẋ3 and δ̇ 7 = ẋ7 – ẋ6).

The different identification cases studied here were

a) Full structure b) Two substructures, i.e.
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way that each substructure includes one nonlinear
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spring-damper pair and c) Substructure 3 which is

chosen to include both the non-linear springs and

ignore the linear springs. The parameters to be

identified were 7 in each of substructure-1 and

substructure-2 whereas in substructure 3, the number

of parameters to be identified was 14. It can be

observed from Figure 3 that for substructure 1, the

second and fifth DOFs are the interface and 3rd and 4th

DOFs are internal. Similarly internal and interface

DOFs for two other substructures can be observed in

Figure 3. Eqn 10 gives the dynamic equation for the

10-DOF nonlinear system with two nonlinear spring-

damper pairs.
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Figure 3. 10-DOF lumped mass system with two nonlinear spring damper pairs
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In substructure 1, the 3rd and 4th DOFs are internal and

the 2nd and 5th DOFs are interface. The responses for

internal DOFs are obtained using the substructure

formulation and the global structure and compared to make

sure that the substructure formulation is valid for nonlinear

systems. Figure 4 shows the comparison between

acceleration responses of the 4th DOF obtained using the

global formulation and the substructure formulation (i.e

the entire structure is divided up into substructures). It can

be observed from Figure 4 that both the global and

substructure responses match closely and hence the

accuracy of the substructure formulation is verified.

The system was excited at the first mass (m1). The

global identification technique was tested for different

impulse magnitudes ranging from 5 to 100 N and it

identified the parameters exactly. Same analysis was

carried out for substructure 1 and the absolute average

percentage errors for different impulse magnitudes are

given in Table1. From Table 1 one can observe that with

an impulse magnitude of 10 N, the substructural approach

identifies the parameters more accurately than for other

magnitudes of impulse load. Therefore an impulse force

of 10 N was applied in the form of initial velocity. The

remaining initial conditions were all set to zero.
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For instance, the governing equations for the

substructure 1 shown in Figure 3 can be written as (with

reference to Eqn 6)
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TMD 1

K11 = 0.279N/m,
a = 0.01,
m11 = 0.5kg  

TMD 2

K12 = 0.459 N/m,
b = 0.01,
m12 = 0.1kg

TMD 3

K13 = 0.667 N/m,
c = 0.01,
m13 = 0.05kg 

SS 2

SS 3

SS 1
TMD 1

TMD 3

TMD 2

With three NL TMDs  With out TMD

K1 = 25, C1 = 0.1

K2 = 25, C2 = 0.1

K3 = 25, C3 = 0.1

K4 = 25, C4 = 0.1

K5 = 25, C5 = 0.1

K6 = 25, C6=0.1

K7 = 25, C7 = 0.1

K8 = 25, C8 = 0.1

K9 = 25, C9 = 0.1

K10 = 25, C10 = 0.1

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

Figure 5. 10-DOF linear system with nonlinear TMDs, substructures considered for identification and assumed parameter values

Table 1. Effect of different magnitudes of impulse

load on identification error for substructure 1 in 

10-DOF system with two nonlinear spring-damper

pairs by GA

Magnitude of impulse
load Avg.% error

5 11.41

10 3.61

30 17.06

50 13.95

100 26.61

Figure 4. Comparison of acceleration response of global and substructure at 4th DOF of 10-DOF system with two spring-damper pairs
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5.2. 10-DOF Linear System with Nonlinear
Tuned Mass Dampers (TMDs)
The system is shown in Figure 5 with a linear primary

system and nonlinear TMDs, along with their

substructures which were considered for identification.

Each substructure includes a non-linear TMD. Tuned

mass dampers (TMDs) are secondary elements consisting

of a spring, mass and damper added to the primary

structure in order to suppress a resonance peak. Usually

TMDs are attached to the structures where maximum

amplitudes of vibration occur. The three TMDs are each

tuned to the first three natural frequencies of the main

linear structure. Figure 5 shows the mass and stiffness of

each TMD.  Here TMDs with nonlinear damper were

considered and the substructural identification

technique was used for identifying the parameters, i.e.,

c(δ, δ̇ ) = a δ̇ (1+δ 2) (12)

Where δ and δ̇are resultant displacement and velocity.

A 10-DOF linear system with three nonlinear TMDs was

considered and the different cases considered are listed

below.

(a) 10-DOF linear system with three nonlinear TMDs

(b) Full structure

(c) Substructure 1

(d) Substructure 2

(e) Substructure 3

The system was excited with an impulse load of 10 N

at the 8th mass. The stiffness values of the 3 TMDs

attached were calculated by tuning them to the first 3

natural frequencies of the main linear structure

respectively viz., 0.7473 rad/sec, 2.2252 rad/sec and

3.6534 rad/sec respectively. The dynamic equations for

the whole system were obtained by applying

D’Alembert’s principle. The total mass of all 3 TMDs

was 6.5% of the whole mass of the structure, where the

first TMD’s mass was of 5%, the second TMD’s mass

was 1% and the third TMD’s mass was 0.5% of the whole

structure’s mass. The nonlinear damping coefficient for

every nonlinear damper was assumed as 0.01. All

stiffness coefficient values are in N/m and damping

coefficient values are in N-s/m. Since the mode shape of

a structure gives the relative motion of the DOFs,

placement of the TMDs was decided based on the mode

shapes of the main structure. 

Figure 6 compares the acceleration response between

the substructure and global responses of the 3rd DOF of

the 10-DOF linear system with three nonlinear TMDs. It

can be observed that the response calculated using the

global approach exactly matches that of the substructure

method, showing the substructure formulation works

well for a system with nonlinear TMDs.

5.3. Linear Plane Truss with Nonlinear TMDs
Next, various cases of a linear plane truss systems with

one, two and three nonlinear TMDs were considered. The

plane truss of 12 members and 6 joints (modelled with 12

linear bar elements) is shown in Figure 7. The truss

equations were obtained from the standard stiffness matrix

for longitudinally vibrating rods and the TMDs with non-

linear dampers were attached to the joints using the force

equilibrium conditions at the nodes. The parameters to be

identified were the Modulus of Elasticity (E) of each truss

element and other TMD parameters. Figures 7 and 8 show

different cases analyzed, the substructures considered and

the assumed parameter values. The length of both horizontal

and vertical bars was taken as 2 meters. Different cases

considered were a) a plane truss system without a TMD b)

a plane truss system with one nonlinear TMD c) a plane

truss system with two nonlinear TMDs d) a plane truss

system with three nonlinear TMDs. In each case global

and substructure identification was carried out. In 

Figure 7, for example, the mass of each TMD is 1% of the

global structural mass. Stiffness coefficients for each

TMD were calculated by tuning to the first 3 natural

frequencies of the primary linear structure. Here the first 3

natural frequencies of the linear plane truss were 219.78

rad/sec, 753.39 rad/sec and 933.53 rad/sec respectively.

The nonlinear damping coefficient for each TMD is

assumed as 4. All the TMDs were constrained to move

only in one direction.

Impulse excitation in the form of initial velocity was

applied to excite the system as shown in Figure 8, the

appropriate value being selected from a range of cases

(see Table 2). It can be observed form Table 2 that with

an initial velocity (impulse excitation) of 10m/s,

parametric identification errors were lower than with

other initial velocities. 

6. NUMERICAL SIMULATION OF THE ABOVE
MODELS – DISCUSSION OF RESULTS

6.1. 10-DOF Nonlinear System
The 10-DOF nonlinear system discussed in section 5.1,

with two nonlinear spring-damper pairs and different

substructures were considered for identification. The

RK 4th order numerical integration method was used to

solve the nonlinear dynamic equations. 

6.1.1. Global identification approach
Global structure parameters were identified using both

simple real coded GA and CGALM. Responses were

measured at all the DOFs. Using fewer responses were

found significantly affect the accuracy of identification.

Table 3 gives the identification results for the global

structure and substructure 1 and Table 4 summarizes

identification results for both global and substructural
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Table 2. Effect of different magnitudes of initial

velocities (impulse loads) on identification error for

plane truss with one nonlinear TMD by CGALM

Magnitude of initial velocities
impulse load) Avg.% error 

5 0.32

10 0.003

20 0.49

25 2.05

Figure 6. Comparison of acceleration response of global and substructure at 3rd DOF of 10-DOF linear system with three nonlinear TMDs

E1 = E2 = E3 = E4 = E5 = E6 = E7 = E8 = E9 = E10 = E11 = E12 = 2.1 × 1011N/m2

Density=8000 kg/m3, Area of cross section of each bar is 25 × 10−4 m2 
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E11

E12
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Ka1y, Ca1y

ma1 = 5.297kg,
Ka1y = 2.5587 × 105N/m,
Ca1y = 4N-s/m 

X

Y
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E3

E4

E5

E6

E7

E8

E9
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Truss with out TMD

F

X

Y

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

Truss with one TMD

F

Figure 7. Plane truss system with and without nonlinear TMD, substructures considered and assumed parameter values
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identification approaches and GA parameters

considered. In CGALM the initial guess values required

for the gradient based LM method were supplied using

GA with a smaller population size and number of

generations. 

Since the population size and the number of

generations were greater when applying global

identification using GA, the solution time longer and the

average absolute percentage error was 4.391% with noise

i. e. the identified results are in well agreement with the

assumed parameter values, whereas in CGALM the

average absolute percentage error was greater with noise

because the second stage (LM method) is sensitive to

initial values. 

6.1.2. Substructural identification approach
Real coded GA has been used in the substructural

identification technique and only responses at the

interface and internal DOFs are required. This results in

fewer sensors. The identification results are shown in

Table 4. The substructural identification approach

requires less time. A time saving of 95% was noted

compared with that to the global identification approach

for substructures 1 and 2. From the point of view of

identification accuracy, substructures 1 and 3 proved

superior to the global method with simple GA and for all

the substructures 1, 2 and 3, the global method with

CGALM proved to be better. Figure 9 shows a typical

convergence plot for the CGALM method for this case.

Table 3. Identification results for 10-DOF nonlinear system with two nonlinear spring-damper pairs

Estimated % error Estimated % error Estimated % error
Parameter Exact (Pure GA) (Pure GA) (CGALM) (CGALM) (Substructure 1) (Substructure 1)

K1 25 24.3450 2.62 25.3450 –1.38

C1 1 1.1240 –12.40 1.0745 –7.45

K2 25 25.2540 –1.02 24.0770 3.69

C2 1 0.9924 0.76 0.7469 25.31

K3 25 25.4560 –1.82 25.6050 –2.42 25.1290 –0.52

C3 1 1.0080 –0.80 1.1638 –16.38 1.0536 –5.36

a 25 25.1660 –0.66 24.9340 0.26 26.0490 –4.20

b 1 0.9862 1.38 1.1366 –13.66 0.9913 0.87

c 1 1.0798 –7.98 1.1045 –10.45 1.0631 –6.31

K5 25 25.3030 –1.21 24.8860 0.46 25.2870 –1.15

C5 1 0.8862 11.38 0.8135 18.65 1.0955 –9.55

K6 25 25.7520 –3.01 25.4570 –1.83

C6 1 0.8251 17.49 1.2267 –22.67

d 25 25.0390 –0.16 24.6920 1.23

e 1 0.9742 2.58 0.9467 5.33

f 1 1.1533 –15.33 0.8349 16.51

K8 25 25.0720 –0.29 25.4290 –1.72

C8 1 1.0334 –3.34 1.1495 –14.95

K9 25 25.8490 –3.40 24.5710 1.72

C9 1 1.0396 –3.96 1.0023 –0.23

K10 25 25.1350 –0.54 25.0790 –0.32

C10 1 1.0447 –4.47 0.9025 9.76

Table 4. Summary of identification results for 10-DOF nonlinear system with two nonlinear spring-damper pairs

without noise with ±5% noise

Sol. time (sec) Avg. % error Max. % error Avg. % error Max. % error GA parameters

Full structure (22 parameters) 

Pure GA 17498 3.2 14.19 4.39 17.49 800, 200

CGALM 773 0 0.002 8.02 25.31 200, 10

Substructure 1 (7 parameters) Time saving compared with full structure 95%

Pure GA 780 3.61 −7.81 3.99 −9.55 200, 20

Substructure 2 (7 parameters) Time saving compared with full structure 95%

Pure GA 776 3.90 6.28 5.27 8.27 200, 20

Substructure 3 (14 parameters) Time saving compared with full structure 61%

Pure GA 6833 2.59 14.21 3.73 8.96 300, 80
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Figure 10 shows the sensitivity analysis for all

parameters of the global structure. Each parameter was

perturbed from the base values by 1%. The difference

between acceleration responses at each DOF for both

the perturbed and assumed parameters was calculated

and then the RMS value of all the differences at each

DOF gives the sensitivity of the parameters. It can be

observed that the sensitivities of the nonlinear stiffness

coefficients (b, e) and all linear and nonlinear damping

coefficients are smaller than those of other parameters.

Hence it is not easy to identify them accurately.

6.2. A 10-DOF Linear System with Nonlinear
Tuned Mass Dampers (TMDs)
The identification of a 10-DOF linear system with

nonlinear TMDs, discussed in section 5.2 is presented

Convergence plot (CGALM) for 10-DOF system with two nonlinear spring-damper pairs

Iteration number

LM iterationsGA iterations
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Figure 9. Convergence plot in CGALM method for 10-DOF system with two nonlinear spring-damper pairs
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Figure 8. Plane truss system with nonlinear TMD, substructures considered, assumed parameter values
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here. Three different cases are considered with one, two

and three nonlinear TMDs and in each case substructures

were chosen which included a TMD. In the following

subsections the results of each is discussed clearly.

6.2.1. 10-DOF linear system with three nonlinear
TMDs at 3rd, 6th and 10th DOFs

As shown in Figure 5 a 10-DOF linear system has 3

nonlinear TMDs attached which were tuned to the first 3

natural frequencies of the main linear structure. Three

substructures were considered for identification purposes

in such a way that each substructure included a nonlinear

TMD. The identification results summary and the GA

parameters (population size and number of generations)

considered are shown in Table 5. The substructure

approach only requires sensors at the interface and

interior, whereas the global approach requires a sensor at

every DOF for accuracy. 

It can be observed from Table 5 that the identification

results for substructures 1 and 2 are better than those for

the full structure as obtained by both CGALM and pure

GA. About a 95% time saving was obtained for all the

substructure cases, in comparison with full structure

identification with pure GA. The reason for the greater

maximum percentage errors is due to the lesser

sensitivity of the substructure parameters.

6.3. Linear Plane Truss with Nonlinear TMDs
The parametric identification of the plane truss with 12

members and 6 joints, discussed in section 5.3, is

presented here. For full structure identification using both

CGALM and GA, the responses at each joint in both X and

Y directions were measured (a total of 12 responses). In

substructure identification by GA only responses at the

interfaces and internal joints both in the X and Y directions

were measured which resulted in decrease in the number

of sensors required for identification. For all the cases

considered the system was excited using an impulse load,

which was given in the form of an initial velocity.

6.3.1. Plane truss without TMD
The full-structure and substructures considered for

identification and their assumed parameter values are

shown in Figure 7. Table 6 gives the identification

Full structure, sensitivity Analysis with 1% perturbation in each
parameter 
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Figure 10. Sensitivity analysis of parameters of full structure, impulse force is applied at first DOF (m1)

Table 5. Summary of identification results of 10-DOF linear system with three nonlinear TMDs at 3rd, 6th

and 10th DOFs

without noise with ±5% noise

Soln. time (Sec) Avg. % error Max. % error Avg. % error Max. % error GA parameters

Full Structure (26 parameters)

CGALM 1602 0.002 0.025 3.83 −24.03 200, 10

Pure GA 15303 5.76 −27.70 5.71 21.09 800, 50

Substructure 1(4 parameters) Time saving compared with full structure 95%

Pure GA 773 5.69 −17.09 2.96 −8.94 50, 30

Substructure 2 (6 parameters) Time saving compared with full structure 94%

Pure GA 920 3.30 8.24 3.47 −7.54 50, 30

Substructure 3 (6 parameters) Time saving compared with full structure 94%

Pure GA 920 4.26 −10.48 6.89 16.02 50, 30
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results obtained by the both global, substructure

approach and the GA parameters assumed. The

CGALM identified global parameters with much lower

errors with out noise but it needed responses at each

DOF (12 sensors). For substructure identification,

(without noise) parameters were identified accurately

and with only a few measurement sensors (8 sensors).

Since the number of parameters to be identified is

greater for full structure identification, the percentage of

error by GA identification is greater. 

6.3.2. Plane truss with one nonlinear TMD
TMD with a nonlinear damper, which was tuned to the

first natural frequency of the main linear structure, was

attached at the free end of the truss and the TMD was

constrained to move in the vertical (y) direction.  The first

TMD mass and stiffness are ma1 and ka1y and are tuned to

the first natural frequency of the truss. Figure 7 shows the

full structure, substructure and assumed parameter values.

The identification results summary for the plane truss

with one nonlinear TMD is tabulated in Table 7.

As shown in Table 7, the average percentage error via

the substructure approach (with noise) is less than that

via the global identification approach, and there is a

78% of time saving as compared with full structure

identification by GA. There is also a reduced requirement

for the number of sensors for the substructure method,

as was the case previously, above.

6.3.3. Plane truss with two nonlinear TMDs
A second TMD, constrained to move in the horizontal

(x) direction was added at the free end of the cantilever

truss model. The second TMD mass and stiffness are

ma2 and ka2x and were tuned to the second natural

frequency of the truss. Figure 8 shows the full structure,

substructure and assumed parameter values. The

identification results summary is tabulated in Table 8,

giving the time saving and identification errors. The

substructure approach performs well compared to that

of the CGALM in the presence of noise. 

6.3.4. Plane truss with three nonlinear TMDs
In this case a third TMD, constrained to move in the

vertical (y) axis was added at the free end. The third

TMD mass and stiffness are ma3 and ka3y and were tuned

to the third natural frequency of the truss. Figure 8

shows the full structure, substructure and assumed

parameter values. The identification results summary

for the plane truss with one nonlinear TMD is tabulated

in Table 9. In this case all 3 approaches with noise (full

structure identification by GA, CGALM and

substructure approach) identified the parameters with

nearly the same degree of accuracy. A time saving of

81% was obtained with the substructure method.

7. CONCLUSIONS
The parametric identification of nonlinear structures in the

time domain has been carried out using both global and

substructural identification approaches for certain specific

numerical examples, ranging from basic lumped mass

systems to complex truss type structures. A review of all

the cases described in this paper shows a time saving of

61% to 95% when using the substructure method, as

opposed to global structure identification with simple GA.

This depends on the relative size of the substructure and

the number of unknown parameters in the substructure.

Table 6. Summary of identification results of plane truss system with out TMD

without noise with ±5% noise

Soln. time (Sec) Avg. % error Max. % error Avg. % error Max. % error GA parameters

Full Structure ( 12 parameters)

CGALM 469 0.29 –0.81 1.99 –6.06 300, 10

Pure GA 1229 4.18 –11.33 4.70 –19.19 300, 50

Substructure  ( 4 parameters) Time saving compared with full structure 75%

Pure GA 301 0.16 –0.47 2.49 3.89 200, 20

Table 7. Summary of identification results of plane truss system with one nonlinear TMD

without noise with ±5% noise

Soln. time (sec) Avg. % error Max. % error Avg. % error Max. % error GA parameters

Full Structure (14 parameters)

CGALM 378 0.003 0.014 3.25 15.11 300, 10

Pure GA 4911 2.45 −7.24 3.83 −11.78 400, 80

Substructure (6 parameters)  Time saving compared with full structure 78%

Pure GA 1054 1.68 −3.39 3.01 10.76 300, 30
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Generally, the substructure identification approach

performs well in the presence of noise and compares well

with the global approach in this respect.  However in all

the cases considered here, the application of the more

sophisticated hybrid-GA, i.e. combined with the LM

algorithm, was able to significantly improve the

computational performance of the global identification

approach.  In this regard it is noted that the presence of

noise can cause significant errors with the CGALM,

because the second stage of the hybrid algorithm (LM

method) is gradient based and is sensitive to the initial

values supplied by the GA. From the practical point of

view, substructural identification could be preferred

because a) fewer of sensors are required when compared

with global identification techniques and b) the ability to

completely ignore structural parameter values outside the

substructure. However, the substructure equations are

rather complex to formulate and acceleration responses at

the substructure interfaces are required.
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