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Efficient palladium catalyzed aerobic oxidative cyclizationmifio-vinylanilines with isocyanides have been
achieved for the synthesis of 2-aminoquinolines in good to excellent yield. Characteristic features of the
method are tolerance to various functional groups, use of catalytic amount of [Pd]/basg tedn@st
sustainable oxidant, gram scale synthesis and high step and fitien@f Control experiments suggested

the formation of carbodiimide followed by electrocyclization and [1, 7]-H shift as possible patbitiigy

of the developed method was further demonstrated through synthesis of anti-depressant agent.
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Introduction al., 2014\Vlaaret al, 2012;Vlaaret al, 2013;Wang

i . . et al, 2014;Wolstenhulmeet al., 2014) in line with
Isocyanides are a ver_satlle bu_|Id|ng h.aYe four]dthe reactivity of isoelectronic carbon monoxide with
preva!ent appllcatloq 'n organic, medicinal and palladium catalysts [known as carbonylative reactions
combinatorial chemistry (Nenajdenko, 2012). (Brennfuhrer et a).2009:Wu et al, 201L; Wu et al.
Traditional reactions that utilize isocyanides include 2013)]. Most of t’hese r’eactié)ns utili,ze
multlt_:omponent _reactlons such as _Passerlnl and Ug\orefunctionalized coupling partner and nucleophiles
reactions, (Domlmg_, 2006) synthesis of hetero_cycles[amines and alcohols], but transformations involving
(Lygln_and de Meijere, 2010)_an_d_ cycloadd!nons functionalization of C-H bond in unactivated coupling
(Gulevichetal, 2010). Rece_r!tlyslgnlflcant attennon partner via oxidative isocyanide insertion are rather
has been devoted to transition metals, (Boyarskiy etlimited.(Chen et al., 2015; Liu et al., 2014; Peng et
al,, 2015; Qiuet al, 2013) specifically palladium " 551%. Sharma et al. ,201Wang’et al. 201
(Lang, 2013; Vlaaet al, 2013), catalyzed isocyanide Ya{ng and Huang, 2015;,Zheng et al.. 20’15; Zhu
insertion r_ea}ctions_for the synthesi_s of heterocycles,al_, 2014). Hence, development of a new method that
S0 called |m|doylat_|ve reactions, (Jl_ang et a1, incorporates C-H functionalization through oxidative
Jlanget al, 2014; Jiangt al, 2_014; Liuetal, 2013; isocyanide insertion, particularly employing molecular
Nanjo et al., 2013; Odabachian et al., 2013; Vigar oxygen as sole oxidant, is highly desirable.

* Author for Correspondence: E-mail: anbarasansp@iitm.ac.in


http://orcid.org/0000-0001-6049-5023

1272 Angula Chandra Shekar Reddy and Pazhamalai Anbarasan

2-Aminoquinolines are privileged structures Yadagiri andAnbarasan, 2014Yadagiri and
present in various natural products, pharmaceuticallyAnbarasan, 2015) we herein disclose the palladium
important synthetic molecules, which were known to catalyzed oxidative isocyanide insertion reaction with
exhibit diverse bioactivities such as anti-skin cancer ortho-vinylanilines for the elegant synthesis of 2-
enzyme inhibitarantagonist of hormone, etc. (Cheng aminoquinoline derivatives employing molecular
et al, 2011; Cinelli et al, 2014; Clarket al, 2004; oxygen as the sole oxidant (Scheme 1).
Walteret al, 2013) Particularlythe introduction of _
aryl substituent at 4-position of 2-aminoquinolines was Materials and Methods
shown to increase anti-depressant and anti-
hypothermia activity(Alhaideret al, 1985; Hinoet
al., 1980). Because of their potent bioactivitymber
of methods for the synthesis of 2-aminoquinolines hasSubstituted 2-vinyl anilineg (0.3 mmol, 1 equiv),
been developedypical synthesis of 2-aminoquinolines Pd(OAc)Z(O.OOQ mmol, 3 mol%), KCO, (0.09 mmol,
that utilize ortho-amino- or nitro-benzaldehyde 30 mol%) and toluene (1.5 mL) were added under
derivatives and quinoline derivatives requires either argon atmosphere to an oven dried 10 mL reaction
more than a one-step sequence or harsh reactiofube equipped with stir baBuccessivelysocyanide
conditions. (Marco-Contellest al, 2009;Tomioka 2 (0.6 mmol, 2 equiv) was introduced and the reaction
et al, 2012;Wang et al, 2012). Similarly ortho- tube was sealed with rubber septum and kept at 100
vinylanilines were also cyclized in multistep sequence °C in pre-heated oil bath. Based on the TLC analysis,
via either generation of corresponding afterthe completion of reaction, the reaction mixture
iminophosphoranes (Molinat al, 1992) or urea  was cooled to room temperature. Evaporation of
derivatives (Viggall and Richardson, 1995) at an solvent followed by purified by column

General procedure for the synthesis of 2-
aminoguinolines 3

elevated temperature. chromatography using hexane/ethyl acetate mixture
as eluent afforded 2-aminoquinoline derivatigeés
R R high yield and purity
(j\)wm © o PAOA), NN o
Ry Wt Nega Ko, T R N Hz0 3a (Wanget al, 2015)73 mg, 90% yield; light orange
2 05, 100 °C Rs liquid; FT-IR (Neat): 3423, 2958, 2213, 1607, 1512,
s i aan & aom o 761, 695 cim *H NWIR (400 Mz, DG 24°C)0
70, a8 solo oxidant  _ gram soale Y 7.69-7.65 (m, 1H), 7.50-7.39 (m, 5H), 7.24-7.16 (m,
1H), 7.02-6.96 (m, 1H), 6.51 (s, 1H), 4.52 (s, 1H),
Scheme 1: Palladium catalyzed aerobic oxidative 3.70 (s, 3H), 1.53 (s, 9HYC{'H} NMR (100 MHz,
cyclization CDCl,, 24 °C):5 155.1, 154.8, 148.0, 144.2, 139.0,

129.2,128.5,128.4,128.1, 122.2012 11.3.3, 105.4,
55.5, 51.4, 29.7; MS1§2): 306.2 (M), 291.1, 250.1

These methods were recently replaced with the(lOO%), 235.1.190.0, 57.1.

transition metal catalyzed amination of
prefunctionalized quinolines such as 2-haloquinolines 3b: (Wanget al, 2015) 70 mg, 83% yield; orange
and quinolineN-oxide. However most of these  solid; Mp: 118-110°C; FTIR (KBr): 3433, 3055, 2922,
methods suffer from limited availability and high cost 1606, 1445, 865, 695 cf 'H NMR (400 MHz,

of functionalized quinolines. Most recentienget CDCl,, 24 °C):6 7.73 (d, 1HJ = 8.2 Hz), 7.58 (d,
al. reported the palladium catalyzed synthesis of 2-1H, J = 8.1 Hz), 7.52-7.39 (m, 6H), 7.14-7.08 (m,
aminoquinolines from isocyanides and 2-vinylanilines 1H), 6.51 (s, 1H), 4.61 (s, 1H), 1.55 (s, 9HE{1H}
using 1.2-equivalents of ahg,CO,, expensive  NMR (100 MHz, CDC, 24 °C):6 156.2, 148.9, 148.8,
oxidant.(Wang et al, 2015) In continuation of our  138.8,129.4,129.2, 128.5,128.1, 127.1, 125.60122
ongoing interest in the synthesis heterocycles  121.9, 13.0,51.6, 29.6; MS{2): 276.1 (M), 261.2,
through functionalization of divalent carbon 220.1 (100%), 207.1, 96.0.

compounds and C-H bonds,(Ghorai @&mbarasan, _

2015; Rajasekar akhbarasan, 2014; Saravanan and 3¢ (Wanget al, 2015) 74 mg, 89% yield; colorless
Anbarasan, 2014yadagiri andAnbarasan, 2013: liquid; FTIR (Neat): 3098, 2921, 2852, 2213, 1466,
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797, 761, 695 cn; 'H NMR (400 MHz, CDC, 24
°C): 6 7.63 (d, 1H,J = 8.2 Hz), 7.51-7.40 (m, 5H),

3h: 35 mg, 42% yield; grey solid; Mp: 194-195°C;
FTIR (KBr): 3428, 3067, 2863, 2868, 1606, 1228, 867

7.35-7.31 (M, 2H), 6.49 (s, 1H), 4.57 (s, 1H), 2.33 (s, cnm; *H NMR (400 MHz, CDC, 24°C):6 7.63 (d,

3H), 1.53 (s, 9H)3C{1H} NMR (100 MHz, CDCl,

2H,J = 8.9 Hz), 7.47-7.41(m, 5H), 7.15 (dd, 1H5

24 °C): 155.8, 148.4, 147.0, 139.0, 131.3, 131.1, 2.7, 8.9 Hz), 6.99 (d, 1H, = 2.7 Hz), 6.58 (s, 1H),

129.4,128.4,128.0, 126.8, 124.6, 12112.9, 51.4,
20.7,21.4: MSi{¥2): 290.1 (M), 275.1, 234.1 (100%),
207.

3d: 65 mg, 82% yield; colorless solid; Mp: 108-109°C;

1.50 (s, 9H)¥3C{'H} NMR (100 MHz, CDCl, 24°C):
§161.8,154.9, 151.9, 138.6, 129.1, 128.4(6), 128.4(2),
128.0,127.7,122.420.4, 12.9, 108.4, 51.3, 29.7.

3i: 73 mg, 88% yield; green liquid; FTIR (Neat): 3436,

FTIR (KBr): 3429, 3056, 2959, 1727, 1506, 1228, 895 2965, 1407, 105, 908, 733 cm; *H NMR (400 MHz,

cnt!; 'H NMR (400 MHz, CDCJ, 24°C):5 7.60 (dd,

1H,J=8.1, 1.1 Hz), 7.55-7.46 (m, 2H), 7.55-7.30 (m,

CDCl,, 24°C):5 7.69 (dd, 1HJ = 8.7, 5.4 Hz), 7.50-
7.38 (m, 5H), 7.29-7.20 (m, 2H), 6.52 (s, 1H), 4.58 (s,

5H), 6.42 (s, 1H), 4.49 (s, 1H), 1.44 (s, 9H), 1.18 (s, 1H), 1.54 (s, 9H)3C{'H} NMR (100 MHz, CDCl,

9H); B3C{*H} NMR (100 MHz, CDCl, 24°C):§

24°C):5 158.1 ( = 239.8 Hz), 155.7, 148.3, 145.6,

156.0, 148.9, 147.0, 144.5, 139.0, 129.4, 128.4, 128.0138.3, 129.2, 128.89 € 8.6 Hz), 128.6, 128.3, 122.2

127.7,126.6,121.3,120.8,3.0, 51.5, 34.6, 31.4, 29.6;
MS (W2): 332.2 (M), 317.1, 276.1, 261.1, 57.0
(100%).

3e 53 mg, 65% yield; orange oil; FTIR (Neat): 3428,

3036, 2963, 2868, 1506, 1228, 862-&mMH NMR
(400 MHz, CDC}, 24°C):6 7.47-7.38 (m, 5H), 7.24-

(J=9.1 Hz), 18.4 0 = 24.9 Hz), 13.8, 109.4] =
23.0 Hz), 51.6, 29.5; MS1(2): 294.1(M), 279.1,
238.0 (100%), 237.0, 57.0.

3j: 51 mg, 65% yield; colorless solid; Mp: 147-149
°C; FTIR (KBr): 3429, 2972, 1407, 1705, 1024, 738
cnt?; 'H NMR (400 MHz, CDCJ, 24°C):6 8.29 (d,

7.17 (m, 2H), 6.38 (s, 1H), 4.39 (s, 1H), 2.67 (s, 3H), 1H,J = 1.72 Hz), 8.03 (dd, 1H,= 8.7, 1.8 Hz), 7.63

2.29 6, 3H), 1.57 (s, 9H}SC{*H} NMR (100 MHz,

CDCl,, 24°C):5 154.5, 148.6, 145.8, 139.4, 134.5,

131.5,130.6, 129.4, 128.3, 127.8, 122.6, 1213,0]
51.5,29.2, 21.4, 18.7; MS(2): 304.4 (M), 289.1,
248.1 (100%), 233.1, 57.0.

3f: 64 mg, 78% yield; colorless semi solid; FTIR (KBr):
3432, 3051, 2963, 2868, 1506, 1444, 1228, 862;,cm
H NMR (400 MHz, CDC/, 24°C):6 7.35 (s, 1H),

(d, 1H,J = 8.8 Hz), 7.44-7.36 (m, 5H), 6.45 (s, 1H),
4.74 (s, 1H), 4.25 (q, 2H,= 7.1 Hz), 1.49 (s, 9H),
1.27 (t, 3H,J = 7.1 Hz);*3C{*H} NMR (100 MHz,
CDCL,, 24°C):5 167.0, 157.3, 151.6, 149.9, 138.1,
129.4,129.3,128.9,128.7, 128.5,126.9, 123.6, 121.2,
113.7, 60.8, 51.9, 29, 14.4; MS i{vV2): 348.4 (M),
334.1,214.1,191.1, 91.1, 57.1 (100%).

3k: 56 mg, 68% yield; colorless solid; Mp: 106-107

7.29-7.26 (m, 3H), 7.21-7.17 (m, 2H), 6.67 (s, 1H), °C; FTIR (KBr): 3408, 2927, 1407, 1705, 1204, 738
6.23 (s, 1H), 4.41 (s, 1H), 2.31 (s, 3H), 1.75 (s, 3H), cnT; *H NMR (400 MHz, CDCJ, 24°C): § 7.56-

1.43 (s, 9H)3C{'H} NMR (100 MHz, CDCl, 24°C):

7.36 (m, 5H), 7.21 (dd, 1H,= 8.3, 1.2 Hz), 7.03 (t,

6155.2,150.0,149.2, 143.3,138.7, 135.0,128.7, 127.81H,J = 8.2 Hz), 6.94 (dd, 1H, = 7.6, 1.1 Hz), 6.77

127.7,127.4,125.419.2, 114.1, 51.4, 29.6, 24.2, 21.4;
MS (/2): 304.4(M), 289.1, 248.1 (100%), 233.0,
57.0.

30. 61 mg, 76% yield; colorless liquid; FTIR (Neat):
3432, 3054, 2923, 1590, 1258, 1038, 862, 736.cm
'H NMR (400 MHz, CDC/, 24°C):6 7.47-7.38 (m,

(s, 1H), 5.18 (s, 1H), 4.02 (s, 3H), 1.50 (s, 9H);
13C{*H} NMR (100 MHz, CDCL, 24°C):5 155.9,
153.6, 149.5, 140.5, 139.2, 129.4, 128.4, 128.0, 122.8,
121.2,18.0, 111.6, 108.6, 56,30.9, 29.9; MSity2):
306.1 (M), 291.1, 275.1, 249.1, 220.9, 152.0, 57.0
(100%).

5H), 7.10 (s, 1H), 6.91 (s, 1H), 6.42 (s, 1H), 5.94 (s, 3I: 59 mg, 74% yield; red semi solid; FTIR (KBr):

2H), 4.53 (s, 1H), 1.51 (s, 9HFC{*H} NMR (100

MHz, CDCL, 24°C):§ 155.6, 150.0, 148.3, 14.
144.5,139.3,129.2, 128.5, 128.072, 1.0.4, 104.6,
101.9, 101.1, 51.3, 29.7; MBW): 320.1(M), 305.1,
264.1, 205.0, 151.0, 57.0 (100%).

3430, 2968, 1595, 1705, 1371, 817 ¢mH NMR
(400 MHz, CDC}, 24°C):69.11 (d, 1HJ=7.9 Hz),
7.69 (d, 1H)=7.1Hz), 7.55-7.45 (m, 3H), 7.41-7.30
(m, 6H), 6.43 (s, 1H), 4.53 (s, 1H), 1.56 (s, 9H);
13C{'H} NMR (100 MHz, CDC, 24°C):6 155.9,
149.3,146.4,139.1, 134.1, 131.3, 129.5, 128.5, 128.0,
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127.5,127.4,125.9,125.2,123.4,12212,.9, 112.2, 3r: 31 mg, 37% vyield; colorless semi solid; FTIR
51.7,29.4; MmV2): 324.5 (M), 291.4, 207.7 152.2,  (KBr): 3429, 2959, 1727, 1604, 1436, 1018, 895'cm
133.8, 51.0 (100%). IH NMR (400 MHz, CDCl, 24°C):67.73 (d, 1HJ =

8.1 Hz), 7.61 (dd, 1HI = 8.2, 1.0 Hz), 7.55-7.46 (m,
6H), 7.14 (td, 1HJ=8.1, 1.0 Hz), 6.57 (s, 1H), 4.86
(s, 1H), 3.52-3.46 (m, 2H), 1.71-1.61 (m, 2H), 1.50-
1.43 (m, 2H), 0.97 (t, 3H,= 7.3 Hz)13C{!H} NMR

(100 MHz, CDCl, 24°C):6 156.8, 149.9, 148.6, 138.7,
129.6,129.4,128.5,128.2, 126.4,125.8, 122.4, 122.0,

3m: 65 mg, 81% yield; colorless liquid; FTIR (Neat):
3429, 3049, 2964, 1608, 1355, 829¢mMH NMR
(400 MHz, CDC}, 24°C):56 7.56 (d, 2H,) = 9.0 Hz),
7.24 (s, 1H), 7.17 (d, 2K,= 7.52 Hz), 7.09 (dd, 1H,
J=8.8, 2.3 Hz), 6.93 (d, 1H,= 2.19 Hz), 6.41 (s,

1H), 4.44 (s, 1H), 3.61 (s, 3H), 2.32 (s, 3H), 1.42.(S, 115 g 10,9, 41.7, 32.0, 20.3, 14.0: M&Vg): 276.1
OH); B*C{*H} NMR (100 MHz, CDCL, 24 °C):d  \1+y 9471 233.1, 220.0 (100%), 204.061.
155.2, 154.7, 148.0, 144.2, 137.8, 136.0, 129.2, 129.1,
128.3,122.3,120.218.2, 105.555.5, 51.4, 29.7, 21.3;  3s 14 mg, 15% yield; orange liquid; FTIR (Neat):
MS (m2): 320.1 (M), 305.1, 264.1, 249.0, 57.0 3440, 2975, 2857, 1602104, 908 cm¥;, H NMR
(100%). (400 MHz, CDC}, 24°C):6 7.78 (dd, 1H) = 8.3, 1.6
Hz), 7.64 (dd, 1H] = 8.2, 1.2 Hz), 7.58-7.53 (m,
1H), 7.50-7.42 (m, 6H), 7.38-7.28 (m, 5H), 7.19-7.16
(M, 1H), 6.58 (s, 1H), 5.06 (s, 1H), 4.76 (d, 2H
5.4 Hz);3C{'H} NMR (100 MHz, CDCl, 24°C):6
156.4, 149.9, 148.7, 139.5, 138.6, 129.6, 129.4, 128.7,
128.5,128.3,127.9, 127.4, 126.8, 125.8, 122.7, 122.3,
8.5 Hz), 6.99 (ddd, 1H|=8.1, 6.8, 1.2 HZ), 6.41 (s,

1H), 4.54 (s, 1H), 1.27 (s, 9H), 1.21 (s, 9K {H} 111.4,46.0.

NMR (100 MHz, CDCl, 24 °C):6 155.2, 154.7,148.0,  3x: 32 mg, 32% yield; red liquid; FTIR (Neat): 3432,
144.2,13.8,136.0,129.2,129.1, 128.3, 122.3, 120.2, 2857, 1599, 1502, 1263,1035, 762 ¢rtH NMR (400
113.2, 105.5, 55.5, 51.4, 29.7, 21.3; Mi$27): 332.1 MHz, CDCL, 24°C).5 7.81-7.75 (m, 1H), 7.67 (dd,
(M%), 317.1, 276.1 (100 %), 261.1,.5, 57.0. 1H,J=8.3,1.7 Hz), 7.61-7.55 (m, 1H), 7.48-7.39 (m,
6H), 7.24-7.18 (m, 1H), 7.08 (s, 1H), 7.03 (d, 1,
8.01 Hz), 6.73 (s, 1H), 6.62 (s, 1H), 2.32 (s, 3H), 2.29
(s, 3H);3C{'H} NMR (100 MHz, CDCL, 24°C):%

3n: 65 mg, 82% yield; colorless liquid; FTIR (Neat):
3433, 2961, 3049, 2964, 1677, 1355, 910'¢cAH
NMR (400 MHz, CDCl, 24°C):6 7.77 (d, 2HJ =
9.0 Hz), 7.60 (dd, 1H] = 8.4, 0.7 Hz), 7.53 (dd, 2H,
J=8.4, 1.3 Hz), 7.40-7.32 (m, 6H), 7.27 (d, 2H

30: 64 mg, 80% yield; orange liquid; FTIR (Neat):
3437,2978, 1594, 1259, 135411, 910 cm’; 1H NMR

(400 MHz, CDC}, 24°C):67.68 (d, IH)=9.2H2z), 1555150 4 1486, 1385, 135.3, 135.1, 132.6, 131.9,

7.50-7.37 (m, 2H), 7.25-7.10 (m, 3H), 6.93 (d, IH, 1598 129 4 1285 128.3 127.6, 126.6, 125.9, 124.7,
= 2.8 Hz), 650 (5, 1H), 453 (5, 1H), 3.73 (5, 3H), 1530 1228 10.3. 210, 16.9.

1.54 (s, 9H)23C{!H} NMR (100 MHz, CDC}, 24

°C):5162.7 (= 247.2 Hz), 155.0, 154.9, 146.9, 144.2, 4 36 mg, 42% yield: light green solid: Mp: 80-82 °C;
134.9, 130.91= 8.1 Hz), 128.5, 122.2, 120.386  FTIR (KBr): 3036, 2863, 2021, 1506, 1228, 862-m
(3=21.4 Hz), 13.4, 105.2, 55.6, 51.5, 29.6; M&(  H NMR (400 MHz, CDC}, 24°C):6 7.64-7.60 (m,

2): 324.3 (M), 309.1, 281.1, 268.1, 207.1 (100%).  1H), 7.60-7.51 (m, 3H), 7.38-7.30 (M, 2H), 7.28-7.20
(M, 1H), 7.20-7.14 (m, 2H), 7.12-7.03 (M, 2H), 1.40
(s, 9H);13C{*H} NMR (100 MHz, CDC, 24°C):6
14 138.8, 137.8, 135.5, 131.5, 189128.7, 128.4, 127.7,
*H NMR (400 MHz, CDCJ, 24°C):5 7.64-7.61 (M, 156 ' 196 0 124.8, 124.7, 124.2, 57.4, 31.8: MSS (

1H), 7.20-7.16 (m, 1H), 7.13-7.12 (m, 1H), 6.40 (d, ;). 576 1 (M), 219.1(100%), 207.1, 193.1, 165.0.
1H,J=1.7 Hz), 5.81-5.80 (M, 1H), 4.47 (s, 1H), 3.85

(s, 3H), 2.37-2.31 (m, 2H), 2.26-2.24 (m, 2H), 1.84- 5: 58 mg, 56% yield; green semi solid; FTIR (KBr):
1.76 (m, 4H), 1.52 (s, 9H)3C{*H} NMR (100 MHz, 3444, 2959, 1727, 1604, 1436, 1018, 895'cAH
CDCl,, 24°C):5 155.4, 154.4144.0, 136.3, 128.3, NMR (400 MHz, CDCl, 24°C):58.08-8.02 (m, 2H),
127.6,122.1,19.5, 11.4, 105.6, 55.6, 51.3, 30.1, 29.7, 7.51 (d, 1HJ = 8.7 Hz), 7.31 (d, 2H] = 9.0 Hz),
25.4,23.1,22.2; M*f2): 310.1 (M), 295.1, 254.1  7.25-7.22 (m, 4H), 6.93-6.87 (m, 2H), 6.62-6.59 (m,
(100%), 223.1, 57.0. 1H), 6.32 (bs, 1H), 5.74 (s, 1H), 5.29 (s, 1H), 4.42
(bs, 1H), 3.82 (s, 3H}C{H} NMR (100 MHz,

3p: 71 mg, 88% vyield; colorless solid; Mp: 85-86 °C;
FTIR (KBr): 3440, 2935, 1600, 1457114, 766 cm;
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CDCI3, 24°C):6 157.7, 152.7146.6, 145.0, 142.4, of butanol/DCM to furnish thB-(4-phenylquinolin-
139.5,128.8,128.4,127.3,126.5, 126.4,1238.11 2-yl) piperazine3. 84 mg, 64% vyield; colorless liquid;
117.0,116.3,114.21B.5, 55.7. FTIR (Neat): 3431, 2933, 1461, 1343, 1029, 862 cm
. _ o . 1 1H NMR (400 MHz, CDCJ, 24°C):6 7.91 (d, 1H,
Synthesisof Substituted 4-phenylquinolin-2-amine J=8.3Hz), 7.76 (dd, 1H,= 8.0, 0.7 Hz), 7.66-7.58
(6 and 7) (m, 1H), 7.55-7.45 (m, 5H), 7.35-7.27 (m, 1H), 6.86

N-(tert-Butyl)-4-phenylquinolin-2-amine derivatives  (S+ 1H), 4.52 (t, 2H) = 6.6 H2), 1'9P?'1'Zg (m, 2H),
(3) (60 mg/800 mg, 0.195 mmol/1.92 mmol) was 1-60-1.49 (M, 2H), 1.05-0.98 (m, 3HHC{*H} NMR

heated at 70°C for 2 h in trifluoroacetic acid (0.5 mL/ (100 MHz, CDCl, 24°C):5162.1,151.1,147.4,138.2,
1.5 mL). The reaction mixture was cooled to room 129.4(9), 129.4(6), 128.5, 128.4, 127.7,125.8, 124.1,

temperature, concentrated under reduced pressurél.zgi'g’ 13.2,65.8, 31.3, 19.5, 14.0; M&/g): 289.4
The resulting mixture was basified with ag. NaOH (M%), 159.0,15.1, 141.1, 73.0 (100%).

solution, and extracted with GBI, (10 mL). The Synthesis of 11

combined organic layers were dried over,8la,

filtered, and concentrated in vacuo. The resultant4-Methoxy-2-(1-phenylvinylanilinela(100 mg, 0.44
crude was purified by column chromatography using mmol, 1 equiv), Pd(OAg)2.9 mg, 0.013 mmol, 3
mixture of ethyl acetate/hexane as eluent. mol%), K,CO; (18 mg, 0133 mmol, 30 mol%) and
toluene (2 mL) were added under argon atmosphere
to an oven dried 10 mL reaction tube equipped with
stir bar Successivelyisocyanide2a (0. 1 mL, 0.88
mmol, 2 equiv) was introduced and the reaction tube
was sealed with rubber septum and kept at 80°C in
pre-heated oil batifter stirring for 2 h, the reaction
mixture was cooled to room temperature. Evaporation
' of solvent followed by purified by column
129.2,128.7, 127, 122.6,120.3 1.7, 113.2, 107.7, chromatography using hexane/ethyl acetate mixture
55.7; MS (2): 250.0 (M, 100%), 235.0, 217.9. (97:03) as eluent fifrded11in 67 % yield along with
7:(Samson and Daltrozzo, 201427 mg, 67% yield; ~ 16% of3a 91 mg, 67 % yield; light green liquid; FTIR
white solid; mp 192-193°C; FTIR (KBr): 3430, 2031, (Neat): 3429,3056, 2959, 2868, 1604, 1436, 1018, 865
1599, 1409, 1092, 801 cf'H NMR (400 MHz, ¢’ *H NMR (400 MHz, CDCJ, 24°C):$ 7.32-
CDCl,, 24°C):6 7.77-7.71 (m, 1H), 7.66 (dd, 181z 7-23(m, 5H), 7.09 (d, 1H,= 8.73 Hz), 6.83 (dd, 1H,
8.2, 1.1 Hz), 7.61-7.54 (m, 1H), 7.53-7.44 (m, 5H), J=8.6,2.9 Hz), 6.75 (d, 1d,= 2.9 Hz), 5.81 (d, 1H,
7.24-7.19 (m, 1H), 6.67 (s, 1H), 5.00 (s, 28¢{1H} ~ J=1.1Hz), 5.28 (d, 1H] = 1.1 Hz), 3.77 (s, 3H),
NMR (100 MHz, CDCJ, 24°C):5 156.3, 151.5, 146.4, 119 (s, 9H);*C{*H} NMR (100 MHz, CDC}, 24
137.8,130.3,129.3,128.6, 126.1, 125.1, 123.2, 122.4,C): 6 156.6, 147.1, 145.340.4, 137.4, 131.5, 128 3,

111.9; MS (/2): 220.0 (M 100%),180.0, 165.0, 95.5, 127.7, 126.7, 124.916.1, 115.9, 14.4, 56.8, 55.7,
51.0. ' 31.4; MS (W2): 306.1 (M), 291.1, 250.0 (100%),

235.0,57.1.

6: 33 mg, 72% yield; white semi solid; FTIR (KBr):
3412, 3050, 2985, 1674122, 1030, 740 cm H
NMR (400 MHz, CDCJ, 24°C):5 7.84 (d, 1HJ =
9.2 Hz), 7.61-7.53 (m, 2H), 7.51-7.43 (m, 2H), 7.37-
7.29 (m, 1H), 7.26 (s, 1H), 7.05 (s, 1H), 6.75 (s, 1H),
5.29 (s, 2H), 3.75 (s, 3HC{'H} NMR (100 MHz,
CDCl,, 24°C):5 155.4, 153.5, 145.1, 135.9, 130.0

Synthesis of N-(4-phenylquinolin-2-yl) Piperazine
8 Results and Discussion

(Alhaideret al, 1985) In 10 mL reaction tube, bis-2- To begin with, optimization of palladium catalyzed
(chloroethyl) amine Hydrochloride (100 mg, 0.45 oxidative isocyanide insertion reaction utilizimgho-
mmol,), 4-phenylquinolin-2-amine (80 mg, 0.45 mmol) Vinylaniline laandtert-butylisocyanideaas model
and K,CO, (313 mg) were refluxed in-butanol (2 substrate was envisioned, as showfainle 1. Initially
mL) for 28 h.After the completion of the reaction, 1 e€quivalentolaand 2 equivalent &awas treated
the reaction mixture was cooled to room temperatureWith 5 mol % of Pd(OAc) and 1.5 equivalent of
and excess of §CO, was filtered off. Evaporation ~ K4PO, in toluene at 100°C for 5 h. Formation of
of solvent and followed by recrystallization in mixture €xpected 2-aminoquinolir@awas observed in 13%
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yield (Table 1, entry 1)To improve the yield oBa Na,CO,, KOAc were screened éble 1, entries 7-
addition of external oxidant was envisaged to 9). Among them, only KCO, gave the comparable
regenerate the active Pd-catalyst, because substratggeld. Due to the ease of handling,GO, was chosen
are oxidatively coupled by Pd-catalyst whereby two as suitable base for the subsequent studies.
protons are removed and palladium also reduced tdDecreasing the catalyst loading from 5 mol% to 3
Pd(0). Thus, the addition of 1 equivalent of Cul mol% also gave the produgain similar yield (89%,
improved the yield oBato 48% (Bble 1, entry 2).  Table 1, entry 10). Similarlgecreasing the equivalents
Decreasing the equivalent of Cul to 5 mol % and useof K,CO, to 30 mol% with 3 mol% of Pd(OAgglso

of molecular oxygen as co-oxidant at 1 atm, led to thegave the comparable yieldgfile 1, entries1t12).
formation of3a in 72% yield (Bble 1, entry 3).  But, further decreasing the equivalents ofCI0,
Interestingly increase in the yield (92%) 8& was decreased the yield &a Finally, these studies
observed when molecular oxygen was used as solsuggested that the best optimized conditions as 3 mol%
oxidant, without Cul (&ble 1, entry 4). Next, of Pd(OAc)Z, 30 mol% of KCO,, O, toluene, 100°C,
importance of palladium and base in the present5 h.

reaction was examined. Reaction in the absence of , . .

Pd(OAcC), did not afford the produ@ia, only lawas With the optimized conditions in hand, we moyed
recovered (@ble 1, entry 5). On the other hand, on to.explore of _substrgtes scope. Thus, various
decrease in the yield (52%) was observed with substl_tutedor_tho-wnylan_lllne de_rlvatlvesl were
removal of KPO, (Table 1, entry 6)This reveals examined withtert-butylisocyanide2a under the

that both Pd(OAG)and KPO. are important and optimized conditionsAs shown in Scheme 2,
the reaction if]deé% catall;azed4by paIIaFc)iium unsubstituted, methyl, atert-butyl substituted aniline
' derivatives gave the corresponding 2-aminoquinolines

Subsequentlydifferent bases like JCO,, 3b, 3cand3d in 83%, 89% and 82%, respectively

Table 1: Palladium catalyzed oxidative cyclization ofortho-vinylaniline 1aand isocyanide2al@

Ph
(|3 Pd(OAc), | Ph
. @C_ﬁ (X mol %) 0 X
NH., = ‘é base, oxidant N/ NJ<
1a 3a H

2a 100 °C, 5h
Entry X mol% Base (equiv) Oxidant Yield (%)°]
1 5 K,PO, (1.5) - 13
2 5 K,PO, (1.5) cullel 48
3 5 K,PO, (1.5) cul/o, 72
4 5 K,PO, (1.5) o, 92
5 K,PO, (1.5) 0, 0
6 5 o, 52
7 5 K,CO, (1.5) 0, 88
8 5 Na,CO, (1.5) o, 61
9 5 KOAC (1.5) 0, 72
10 3 K,CO, (1.5) o, 89
11 3 K,COj (1.0) 0, 87
12 3 K,CO, (0.3) o, 90 (67)¢

[a] Reaction conditionsta (1 equiv),2a (2 equiv), Pd(OAc)(X mol%), base (equiv), oxidant, toluene, 100 °C, 5 h. [b] Isolated yield.
[c] 1 equiv of Cul. [d] 5 mol% of Cul. [e] 10 mol% of,KO,
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The optimized conditions are compatible with both Unfortunately possibly due the steric reason, further
electron rich and electron deficient aniline derivatives, heating of4 at higher temperature (140°C) also did
which led to the synthesis 8f, 3i and3j in good not afford the3q.

yield. Interestinglythe reaction tolerates free hydroxyl _

and sensitive functional group like acetal as part of 'Aftgr succe_ssfully d_emons_tratm_g_ the
aniline derivatives and corresponding prod@gtand appllcgblllty of various substltutgd-vmylanlllne

3h were isolated in 76% and 42% vyield. Sterically der!vatlv_es, we chused our attention on the scope of
hindered 6-substituted aniline derivatives underwent &ous '|socyan|des. Iso_cy_anlde de_n_ved fram
smooth reaction to produce 3k and3! in good butylamine undern the optl_mlzed conditions V\Llﬂbl_
yield. On the other hand, 3-substituted aniline gave the produ@r in 37% yield. The present reaction

derivatives gave the prod&itin slightly lower yield. also works well with b(_enzylamin_e-deri_v ed_isocyanide
Furthermore, different aryl moiety on the alkene gave and the corresponding 2-aminoquinoliéis was

the corresponding 2-aminoquinolir@ms-o in ~81% isolated in 15% yield. Unfortunatejyhenylisocyanide
yield. Replacement of aryl with alkenyl substituent

did not afford the cyclized produ@t, instead

also furnished the produ8p in 88% yield. Reaction ggcglmpositlion of Ttartigg ma;[jeriglhv:]as obier\{ed.f
of &-phenyl substituted-vinylaniline did not furnish ~ S'Milar resultwas also observed with the synthesis o

the expected cyclized prodd, instead formation 3“'\,N from correqunding _p-subs.tituted
of carbodiimide 4 was observed in 42% arylisocyanides. Interestinglgterically hindered
" ortho-substituted arylisocyanide gave corresponding

product3xin 32% yield. On the other hand, electron
deficientp-nitro substituted arylisocyanide gave the

1
R Pd(OAc), (3 mol % i P : .
. 8 (OAc), (3 mol %) R2 urea derivatives, instead of expected cyclized
~R?%2 C.® o A
S S K2>CO3 (30 mol % i
R N R ke roduct
L NH 7< Toluene, O, SN p .
2 o
1 2a 100 °C, 5h 3 H
Ph Ph Ph
4 Ve Ph o PdOAG),(3mol %) Ph
= ~ A R C. ® KeCOs (30 mol %) R N
1 1 ~
N/ HIBU N/ u Bu N/ H Bu + N,R1 Toluene, 02 N/ N R
3a: 90% 3b: 83% 3c: 89% ; /1bNH2 2 100 °C, 5h 3 H
Ph Ph Me Ph e
Ph h
Bu Me X N
NN N">N Me N“N
> C,H .Ph
3d: 82% Me 5. 78°/HT 3 65% N H 40 N H N H
. o
3r: 37% 3s: 15% 3t 0%
Ph Ph Ph oh o
0 XN HO X F X
¢ B B B B R2 = Bu; 3u: 0% A
0 N? N ! N7 N ! N7 N . . R2 = CFg 3v: 0% .
2 - . .
3g: 76% 3h: 42% 3i: 88% N©NHRZ=OMe; 3w: 0% ax aoout H
Ph Ph Ph 0 neer
EtO,C N N N Ph HN—4
N
_ By _ By O _ By R2 HNO [O2
NTON NTON O NTON
i 65% . 569
3j: 65% -0 3k 68% 3l: 74% 5 5: 56%
0_
R = Me: 3m: 81% O Scheme 3: Palladium catalyzed aerobic oxidative cyclization:
= Me; 3m: 81% ) .
R = Bu; 3n: 82% N ' Scope of isocyanide®
N\ / O R R=F; 30: 80% N/
Bu—NH Bu—NH 3p: 88%

o P For th_e wide synthetic utilitythe d(_aveloped
©\/j By + ©\/V/ N, transformation should also be successful in large-scale
N"N N> Bu experiment. Hence, the reaction was performed in
Sa: 0% 4 a2% gram scale witHlb and 2a under the palladium-
Scheme 2: Palladium catalyzed aerobic oxidative cyclization: Catalyzed COﬂditiOI‘lS, which effeCtively gave the
Scope of substitutedortho-vinylaniline 1. 18 h product3b in comparable yield (80%), proving that
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the developed reaction is applicable in large scale (eqa | o
(0]
1) ¥ CSN7< % No reaction
NH
) 2a
Gram scale synthesis: 10 Bn
Ph o Pd(OAC), (3 mol %) Ph b)| Ph 2a, Pd(OAC), | Ph
Co®  KoCOg (30 mol %) ©\)j o K,CO3 (30 mol % °
N K2COs (30 mol %) N . 16%
ny\i ’ 7< Toolueney 020 N7 NJ< NH Toluene, O, N//'/ “Bu + 3a:16%
1b 2a 100 °C, 5 h, 80% 3b H 1a 2 80°C,2h 1: 67%
1.05 gram 0.9 mL 1.18 gram c) | Ph | Ph
(e} toluene, 100 °C 0 X
/'//N\tBu N/ N‘tBu
. . . N~
Further synthetic application of the developed 1 withoutPd - 3a: 81% (2.25 h)
methodology was demonstrated through the with Pd - 3a: 83% (40 min)

conversion oBto free amine and formal synthesis of
anti-depressant agedi{Scheme 4). (Alhaidest al,
1985; Hinoet al, 1980) Deprotection aert-butyl
group in3ato free amin® was achieved on treatment analyzed using NMR to understand the possible
with TFA under reflux conditions in 72% vyield. formation of carbodiimidell as intermediateThe
Similarly, 3b was also successfully converted to the analysis revealed generation of carbodiinfiti@nd
free amin€r in 67% yield. Reaction of with bis(2- to further confirm, carbodiimid&l was successfully
chloroethyl)amine hydrochloride and®O, gave the  isolated in 67% yield from the palladium catalyzed
piperazine derivativ8, a valuable intermediate for reaction oflaand2aat 80°C, along with 16% &a
the synthesis of anti-depressant adgent (Scheme 5b)Thermal cyclization ofll, in the
absence of Pd(OAgand Q, at 100°C for 2.25 h
furnished the 2-aminoquinolinga in 81% vyield

Ph Ph N
R TFA R R = OMe; 6: 72% (Scheme 5¢). In the presence of Pd(QAsinilar
= —_— N R=H;7:67% At :
_ reflux _ result for the cyclization dfl was observed in only
N NH N
Hlc

Scheme 5: Isolation and conversion of intermediatell

3a/3b NH 40 min. These results suggesting that the reaction
KFZEOS I’ ﬁHz going through carbodiimide and its cyclization to 2-
Ph 18(;’;503‘32",1' o o aminoquinoline is promoted by both thermal and
m Ph palladium.
0 " U - m Based on the preliminary mechanistic
anti-depressant ClJ NTENTY investigation, we propose the following mechanism
agent 8: 64% NH

for the palladium catalyzed aerobic oxidative
Scheme 4: Formal synthesis of anti-depressant agent cyclization (Scheme 6). Palladium comphexormed
from Pd(OAc) and isocyanide, reacts with amine in
the presence of base to form compiexrormation

Having demonstrated the new palladium Of palladium specie€ from B can be explained
catalyzed aerobic oxidative cyclization oftho-  through the insertion of isocyanide onto Pd-N bond.
vinylanilines with isocyanides, the preliminary B-Hydride elimination fromC would generate
mechanistic investigation was undertaken. Reactionintermediate carbodiimid& and complexD.
of N-benzyl protectedrtho-vinylaniline 10with 2a  Reductive elimination of acid from afford the Pd(0)
under the standard conditions did not afford any SPecies, which on oxidation with molecular oxygen
product, only starting material was recovered, and acid would regenerate the catalytically active

suggesting that free ‘Nfis important for the reaction speciesA. On the other hand, carbodiimide
(Scheme 5a). undergoes Pd-assisted thermatéectrocyclization

to afford cyclized compound followed by [1,7]-H

Based on the observation mentioned in Schemeshift would furnish the expected 2-aminoquinolines
2, the standard reaction b with 2a was stopped 3.

after 20 min and the crude reaction mixture was
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PdX, R!
2
¢2L al N R
H,0 [Q + Base
2 [PdX,L,] ZNH,
2XH +1/,0, A
XH-Base
[PdL ]
R1
L= CN-R3 2
H CN-R AR
Ru _ B
NH
[HPd(X)L,] D R3NC AL
R1
Rt ~R?
~_R? R D
7 @ pZ L
R_\ | /'//N‘Ra JN\H
N/
o C NP PAXL,
[Pd]/Aielectrocyclization RS

RY, R
R2 R2
1,7]-H
N7 N NONTNC
F R3 3 H

Scheme 6: Plausible mechanism for the synthesis of 3

In conclusion, we have developed a new cabodiimide as possible intermediate and subsequent
palladium catalyzed aerobic oxidative cyclization of palladium assisted thermal electrocyclization and [1,
o-vinylaniline and isocyanides for the synthesis of 7]-H shift to cyclized product. Furthermore, the
biologically important substituted 2-aminoquinolines in reaction is applicable to synthesis of pharmaceutically
good to excellent yield. The method tolerates variousimportant heterocycles, as illustrated by a formal
functional groups and utilizes catalytic amount of synthesis of anti-depressant agent.
palladium catalyst/base and molecular oxygen, the
most sustainable oxidant, as sole oxidant. The protoco

is operationally simple and environmentally benign e thank the Board of Research in Nuclear Sciences
owing to the low catalyst use and base _Ioa_ldlng a”d(BRNS) through DAEYoung Scientishward (Project
excellent atom and stepfeiency. Preliminary  No. 2012/20/37C/14/BRNS) for financial support.
mechanistic investigation revealed the formation of A ¢ s R. thanks CSIR, New Delhi for a fellowship.
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