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OVERLAPPING CONTROL VOLUME METHOD FOR SOLUTE TRANSPORT

By Atul Kumar Verma,1 S. Murty Bhallamudi,2 and V. Eswaran3

ABSTRACT: In this paper, an overlapping control volume method is presented for the numerical solution of
transient 2D solute transport problems in ground water. The method is applicable for nonorthogonal grids and
uses an isoparametric formulation for computing the dispersion and for second-order upwinding. Time integration
is performed using an implicit approach. Three test cases are considered for comparing the numerical with
analytical solutions. The scheme is second order in space and, when combined with Crank-Nicholson, is also
second order in time. The results using Crank-Nicholson and full implicit (first-order) time integration methods
are compared for problems with a variety of boundary conditions. For diffusion-dominated flows (PD # 2)
Crank-Nicholson works well, but for convection-dominated flows it produces spurious oscillations due to nu-
merical dispersion errors. These oscillations are controlled by a flux limiter but only for Courant numbers below
unity. It is shown that for high Courant and Péclet numbers a slight weighting of the time stepping toward fully
implicit is effective against spurious oscillations and offers an optimum compromise between numerical dissi-
pation and dispersion errors for a wide range of Courant and Péclet numbers. The scheme is shown to work on
mildly nonorthogonal grids.
INTRODUCTION

Modeling the transport of dissolved solutes in ground-water
flows of practical interest requires the numerical solution of a
transient convection-dispersion equation in two or more di-
mensions. The numerical schemes for these equations need to
have sufficient accuracy and also be adaptable to complex ge-
ometries, which are common in practical applications of sol-
ute-transport problems. The accuracy of a scheme is classified
by its order of accuracy in space and time. Integrations of first-
order accuracy have diffusive errors, which tend to spread the
solution at sharp fronts. Therefore, second-order integration
schemes are preferable for problems with such fronts. How-
ever, second-order schemes tend to produce solutions with
spurious oscillations at the fronts. In recent years there has
been much activity in the development of flux limiters, which
suppress these oscillations (Hirsch 1991).

Finite-element methods (FEMs) are popular for solving the
transport equations [e.g., Huyakorn and Pinder (1983)]. Finite-
difference methods, although simple and easy to apply in rec-
tangular domains, have difficulty in handling complex geom-
etries. The FEMs are algorithmically more complex but can
be applied on irregular geometries. One of the main problems
with the conventional Galerkin finite-element formulation is
its inability to handle convection-dominated flows. Van Gen-
uchten (1977), Pinder and Shapiro (1979), Heinrich et al.
(1977), Sun and Yeh (1993), Wang et al. (1986), Yeh (1986),
and Westerink and Shea (1986) have developed FEMs that
attempt to minimize the numerical oscillations in various
ways. Yu and Singh (1996) developed a modified Galerkin
FEM for solute transport.

Eulerian-Lagrangian methods have also been developed in
recent years for the solution of transport equations. In these
methods, the advection-dispersion equation is decomposed
into two parts, one modeling pure advection and the other
dispersion. The Lagrangian approach is used for the advection
part and the Eulerian approach for the dispersion part. These
techniques reduce the numerical oscillations but produce false
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diffusion at the front. Yeh (1990), Yeh and Chang (1992), and
Ijiri and Karasaki (1994) used various techniques to minimize
this diffusion. These schemes achieve a better accuracy at the
expense of higher computational costs, especially when 2D
transport is involved.

Finite-volume techniques offer a viable alternative to FEMs
for solving flow and transport problems (Peyret and Taylor
1983). They combine the flexibility of handling complex ge-
ometries, intrinsic to FEM, with the simplicity of finite-differ-
ence methods. Putti et al. (1990) developed a triangular finite-
volume technique for solving the ground-water solute transport
equation. This method uses a monotone interpolation scheme
to avoid the numerical oscillations at sharp concentration
fronts in advection-dominated flows. This is an explicit
method in which the computational time step is restricted by
considerations of numerical stability. This often increases the
computational burden, especially in long-period simulations
that are common in solute transport problems. Cox and Nishi-
kawa (1991) presented a total variation diminishing scheme
based on rectangular orthogonal elements. This method is also
based on an explicit formulation for the time stepping.

Recently, Verma and Eswaran (1996) introduced an over-
lapping control volume (OCV) technique for solving the
steady convection-diffusion equation in arbitrary 2D domains
on nonorthogonal grids. They use an isoparametric formula-
tion to compute diffusion and to introduce a higher order up-
winding. The scheme is in many ways comparable to the
QUICK scheme (Leonard 1979). The scheme was shown to
have second-order accuracy in space and to be computation-
ally efficient. The method can be used on nonorthogonal ge-
ometries and with Dirichlet, Neumann, and Robin boundary
conditions. Flux limiting has also been applied to the OCV
formulation by Verma and Eswaran (1997), who extended the
previous work to the explicitly (first-order) time-integrated
transient case and incorporated a flux limiter into the scheme.

In this paper, the OCV technique is extended to address the
specific problem of multidimensional transient solute transport
in ground water. However, the algorithm can also be used in
computational fluid dynamics and other areas. The formulation
in this paper has the following unique features, beyond the
limits of the above two cited papers:

• It can handle a variable tensorial diffusivity, which is
common in solute transport.

• The time stepping is implicit and unconditionally stable
(solute transport problems often have long integration
times, which are expensive for explicit schemes restricted
by a conditional stability criterion).



• The scheme, already second-order accurate in space, is
combined with the Crank-Nicholson time-stepping
scheme to be second-order in time as well.

• Satisfactory results can be obtained for a large range of
grid Péclet numbers (to at least 2,000) and Courant num-
bers (to 4), which makes it suitable for large time-step
integrations of both diffusions and convection-dominated
flows.

This paper presents the formulation of the scheme and the
results of three test cases that demonstrate its capabilities. The
issue of suppression of spurious oscillations is also addressed.
It is shown that a judicious choice of the implicit weighting
factor with a previously developed flux limiter (Verma and
Eswaran 1997) is highly efficient in suppressing oscillations.

GOVERNING EQUATIONS

The governing equation for solute transport under saturated
ground-water flow conditions is given by (Freeze and Cherry
1979)

­C
R = =? (D ?=C ) 2 =? (VC ) 2 lR C (1)d h d

­t

where C = solute concentration; V = pore-water velocity vec-
tor; Rd = retardation factor; l = first-order decay coefficient;
Dh = hydrodynamic dispersion tensor; and t = time. The ele-
ments of the dispersion tensor Dxx, Dzz, Dxz (=Dzx) are generally
functions of velocity and the molecular diffusion. In the pres-
ent study, the case of a homogeneous and isotropic medium
under 2D ground-water flow with 2D dispersion is considered.
However, the numerical scheme is a general one and can be
applied to nonhomogeneous, nonisotropic conditions.

FINITE-VOLUME FORMULATION

The solution domain is discretized into a structured non-
orthogonal grid as shown in Fig. 1(a) and a control volume as
shown in Fig. 1(b) is considered. The choice of control volume
does not involve the determination of any intermediate points
and uses the grid point coordinates directly to form the control
volumes. Each control volume is labeled by the index of the
central node [e.g., the control volume for (i, j) is shown in
Fig. 1(b)]. It can be seen that adjacent control volumes will
overlap each other, hence the name ‘‘overlapping control vol-
ume’’ technique.

On integrating (1) over the control volume and applying the
Gauss-divergence theorem, we get

­C ­C ­C
R dA = D 1 D n dld xx xz xEE R FS D G

­t ­x ­zcs

­C ­C
1 D 1 D n dlzx zz zR FS D G

­x ­zcs

2 C(un 1 wn ) dl 2 lR C dAx z dE EE
cs (2)

where dl = elemental length on the boundary (control surface)
of the control volume; nx and nz = direction cosines of the
local outward unit vector on the boundary in x and z directions,
respectively; and dA = elemental area of the control volume.
Eq. (2) can be partially discretized as

R Ad s n11 n n11 n n11(C 2 C ) = u[DIFF ] 1 (1 2 u)[DIFF ] 1 u[CONV ]
Dt

n n11 n1 (1 2 u)[CONV ] 1 u[DEC ] 1 (1 2 u)[DEC ] (3)

where
FIG. 1. Definition Sketch for Control Volume Formulation

­C ­C ­C ­C
DIFF = D 1 D n 1 D 1 D n dlxx xz x zx zz zR FS D S D G

­x ­z ­x ­zcs

CONV = 2 C(un 1 wn ) dlx zR
cs

DEC = 2lR CAd s

As = area of the control volume; Dt = computational time step;
and u = weight parameter, which is equal to 0.0 for explicit
schemes and 1.0 for fully implicit schemes. If u is equal to
0.5 we get the Crank-Nicholson scheme, which is second-or-
der time accurate. Superscripts n and n 1 1 in (3) denote the
evaluation of the terms at the time levels t and t 1 Dt, re-
spectively.

The contour integration for the terms on the right-hand side
of (3) is counterclockwise. These terms are further discretized
as described in the following sections.

Convection Term

The midpoint rule is used to approximate the convective
term
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(k) (k) (k) (k) (k) (k) (k)C(un 1 wn ) dl = C (u Dz 2 w Dx ) = C Fx zR O O
k=1 k=1cs

(4)

where the superscript (k) refers to the edges of the control
volume [see Fig. 1(b)]; and F(k) is the fluid flux across edge
k. The quantities and are the changes in the coor-(k) (k)Dx Dz
dinates along the edge, i.e., = xm11 2 xm and = zm11

(k) (k)Dx Dz
2 zm (note these can be negative), where the subscript m refers
to the node number. The velocity components and are(k) (k)u w
the averages of the values at the end points of the edge k.

The outward volume rate of flow through the edge k, (k)F
is given by

(k) (k) (k) (k) (k)F = (u Dz 2 w Dx ) (5)

To incorporate the second-order upwinding, in (4) is ap-(k)C
proximated at the midpoint of control surface k by interpola-
tion within the upwind control volume adjacent to the surface.
For example, referring to Fig. 1(b), if the flow is leaving the
control volume (i, j) across face 1 (i.e., is positive), then(1)F

is approximated by interpolation within the control vol-(1)C
ume for node (i, j). The values at the grid points constituting
the control volume (i, j) are used for determining On the(1)C .
other hand, if is negative, the values at the grid points of(1)F
the control volume (i 2 1, j 2 1) are used to obtain The(1)C .
interpolation scheme to obtain the value at face k is basedC(k)
on mapping of the cell (Verma and Eswaran 1996) onto a
2 3 2 square in a j 2 h space [Fig. 1(c)]. The interpolation
is then done using finite-element type shape functions

2 2N = 0.25(2j 2 h 1 jh) 1 0.125(j 1 h ) (6a)1

2 2N = 0.25(j 2 h 2 jh) 1 0.125(j 1 h ) (6b)2

2 2N = 0.25(j 1 h 1 jh) 1 0.125(j 1 h ) (6c)3

2 2N = 0.25(2j 1 h 2 jh) 1 0.125(j 1 h ) (6d )4

2 2N = 1 2 0.5(j 1 h ) (6e)5

which are used for the isoparametric interpolation of

5

x = N x (7)i iO
i=1

5

z = N z (8)i iO
i=1

5

C = N C (9)i iO
i=1

where the subscript i refers to the node number [see Fig. 1(b)].
The value of is determined, for upwinding, at the midpoint(k)C
(in j, h space) of any edge k by first determining N1, N2, N3,
. . . , N5 for the corresponding j and h values (e.g., j = 0 and
h = 21 for k = 1) of the upwind cell and then using (9).

Diffusion Term

The diffusion term is also approximated using the midpoint
rule. This term is discretized as given below

­C ­C ­C ­C
D 1 D n 1 D 1 D n dlxx xz x zx zz zR F D S D G

­x ­z ­x ­zcs

(k) (k)4
­C ­C(k) (k) (k)= D 1 D (Dz)xx xzO F S D S D G
­x ­zk=1

(k) (k)4
­C ­C(k) (k) (k)2 D 1 D (Dx)zx zzO F S D S D G
­x ­zk=1 (10)
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where and are again determined using averages(k) (k) (k)D , D , Dxx zz xz

of the end-point values and and are de-(k) (k)(­C/­x) (­C/­z)
termined at the midpoint (again in j, h space) of the edge k
using the derivatives of the shape functions Ni

(k) (k)5
­C ­Ni= C (11)iS D O S D
­x ­xi=1

(k) (k)5
­C ­Ni= C (12)iS D O S D
­z ­zi=1

where the derivatives of the shape functions are computed dur-
ing the initialization procedure and stored for subsequent use.

Decay Term

The decay term DEC in (3) is computed using the scalar
value C at the cell center.

Boundary Conditions

In the earlier study (Verma and Eswaran 1996), boundary
conditions were implemented through the use of additional
fictitious points along the domain boundary. These additional
points were needed for the upwinding and diffusion term cal-
culations at the grid points on the boundary. The values of
scalar C at these fictitious points were specified using a quad-
ratic extrapolation. In this study, simple (i.e., first-order) up-
winding is used for cell faces next to the boundary. This allows
for a direct implementation of both Dirichlet and Neumann
boundary conditions. Numerical experimentation has indicated
that the difference in results obtained using the above two
methods is not significant for the problems studied here.

Solution Procedure

Finally, with the above formulation, the discretized equation
for (1) can be written

a C = a C 1 b (13)p p nb nbO
nb

where Cp = (unknown) concentration value at the central node;
Cnb = (unknown) values at the neighbors (including those for
neighboring control volumes introduced by upwinding); and b
= sum of known quantities. The coefficients ap and anb are
given in Appendix I. The Gauss-Seidel iterative technique is
used to solve the discretized equation. The coefficient matrix
may lose its diagonal dominance in highly convective flows
and the iterative scheme thus may become unstable. To facil-
itate iterative convergence, the terms with negative coefficients
in the summation in (13) are approximated by previous iter-
ation values and transferred to b. This improves the numerical
convergence properties of the algorithm without affecting its
discretization consistency, because the converged solution sat-
isfies the original discrete equations. No difficulties were en-
countered in solving the variety of test problems using this
procedure.

FLUX LIMITER

There has been considerable interest in recent years on the
use of total variation diminishing and flux-limiting schemes to
avoid the overshoots/undershoots inherent in second-order so-
lutions of flows with sharp gradients [e.g., Hirsch (1991)].
Mostly, flux-limiting schemes have been used with steady-state
formulations or explicit time-integration schemes. A flux-lim-
iting scheme has been developed for the OCV method. The
flux limiter has shown itself to be effective in removing os-
cillations in steady-state and explicitly time-stepped problems
(Verma and Eswaran 1997).

The algorithm developed by Verma and Eswaran (1997)



uses second-order upwinding normally but switches to first-
order upwinding in abnormal cells where second-order up-
winding would cause unboundedness. A cell is considered to
be abnormal when the scalar value at the central node is out-
side the range of values at the cell corners. The algorithm is
given in detail in the referred paper and hence is not repeated
here. The above flux limiter is used here without any major
modifications, the only difference being the use of ‘‘estimated’’
values in the implicit iterations instead of the known values
as in the explicit solution.

RESULTS

Three test cases of transient 2D transport in porous media
are considered in this section. In the first two cases, we com-
pute the transport of a scalar in rectangular domains with three
different types of boundary conditions. The solution with
Crank-Nicholson and fully implicit time-stepping schemes are
compared. The third case considers nonrectangular domains
and nonorthogonal grids; methods are presented for the sup-
pression of spurious oscillations in the solutions, and the
scheme’s applicability for a wide range of Courant and grid
Péclet numbers is demonstrated. In all cases, comparisons are
done with known analytical solutions. The accuracy of differ-
ent time-stepping schemes for the OCV method is investigated
and the circumstances under which spurious oscillations arise
and methods for their removal are discussed.

Test Problem 1: Dirichlet Boundary Condition
at Source

Test Problem 1 considers unsteady 2D solute transport be-
tween two impervious boundaries. A finite-length strip solute
source, whose concentration is a given function of time, is
located asymmetrically along the z-axis at x = 0 in a unidirec-
tional seepage velocity field, as shown in Fig. 2. The rectan-
gular domain is 75 m in the x-direction and 50 m in the z-
direction. The geometrical parameters for the source (Fig. 2)
are B1 = 5 m, B2 = 10 m, and B3 = 35 m. The uniform pore
velocity u is 0.1 m/day. The longitudinal, transverse, and cross
dispersivities, Dxx, Dzz, and Dxz, are 1.0, 0.1, and 0.0 m2/day,
respectively. The retardation factor Rd is 1.0, and the decay
coefficient l is 0.0. The initial condition is given by C(x, z,
0) = 0. The boundary condition at x = 0, t > 0, is given by

C(0, z, t) = 0, 0 < z < B (14a)1

C(0, z, t) = 1.0, B < z < B 1 B (14b)1 1 2

C(0, z, t) = 0, B 1 B < z < z (14c)1 2 m

The analytical solution for the above problem is given by
Batu (1989). The computational domain is represented by 61
3 41 (in the x- and z-directions, respectively) grid points, and
the computational time step Dt is 1 day. The Courant number
([uDt/Dx) is Cn = 0.08, and the longitudinal grid Péclet num-
ber ([uDx/Dxx) is PD = 0.125. Here, and in the next test prob-
lem, the same grids and numerical parameters are used as were
used by Batu (1989, 1993) in the numerical validation of the
analytical solutions. Fig. 3 presents the longitudinal concen-
tration distributions at t = 100 days as a function of x for z =
10 and 16.25 m. Fig. 4 presents the lateral concentration dis-
tributions for x = 5 and 20 m. The numerical results in these
figures are obtained using the Crank-Nicholson scheme (u =
0.5) and the fully implicit scheme (u = 1.0). As can be seen
from these figures, the method gives accurate solutions. To
examine numerical stability for Courant numbers greater than
unity, computations are made with 121 3 81 grid points and
Dt = 10 days (Cn = 1.6). The computed results for this case
obtained using the implicit scheme are compared with the an-
alytical results in Fig. 5. Although stable results could be ob-
FIG. 2. Schematic of Test Problem 1

FIG. 3. Longitudinal Concentration Profile: Test Problem 1
(Grid = 61 3 41, Dt = 1 Day)

FIG. 4. Transverse Concentration Profile: Test Problem 1 (Grid
= 61 3 41, Dt = 1 Day)

FIG. 5. Transverse Concentration Profile: Test Problem 1 (Grid
= 121 3 81, Dt = 10 Days)

tained using the OCV scheme, there is somewhat more error
in the numerical solution. This is expected because the most
accurate results are generally obtained when Cn = 1. The fully
implicit scheme, which is only first-order accurate in time,
introduces noticeably larger errors than the Crank-Nicholson
scheme.
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FIG. 7. Longitudinal Concentration Profile at z = 51.5 m: Test
Problem 2

FIG. 6. Schematic of Test Problem 2

Test Problem 2: Mixed Boundary Condition at Source

This example considers the 2D solute transport in a unidi-
rectional flow field with mixed (Robin) type boundary con-
ditions at the source. A finite-length strip solute source is lo-
cated asymmetrically along the z-axis at x = 0 in a
unidirectional velocity field, as shown in Fig. 6. The domain
is 185 m in the x-direction and 53 m in the z-direction. The
geometrical parameters for the source (Fig. 6) are B1 = 45 m,
B2 = 5 m, and B3 = 3 m. The uniform pore velocity u is equal
to 0.15 m/day. The longitudinal, transverse, and cross disper-
sion coefficients, Dxx, Dzz, and Dxz, are equal to 3.195, 0.645,
and 0.0 m2/day, respectively. The retardation factor and the
decay coefficient are equal to 1.0 and 0.0, respectively. The
initial condition is given by C(x, z, 0) = 0. Boundary condition
is given by

F (0, z, t) = 0, 0 < z < B (15a)x 1

F (0, z, t) = uC , B < z < B 1 B (15b)x m 1 1 2

F (0, z, t) = 0, B 1 B < z < z (15c)x 1 2 m

where Cm = 1.0; and Fx = convective-dispersive flux compo-
nent (the mass flow rate of solute per unit area) in the x-
direction

­C
F = FuC 2 FDx xx

­x

­C
F = 2FDz zz

­z

where F = porosity (=0.25 for the problem under considera-
tion).

The analytical solution for the above problem is given by
Batu (1993). In the numerical solution, the computational do-
main is divided into 48 3 29 nonuniform grid points (closer
mesh spacing near the upstream boundary), and Dt is equal to
1 day (Cn = 0.04, PD = 0.18). The numerical results for the
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FIG. 8. Transverse Concentration Profile at x = 22.5 m: Test
Problem 2

FIG. 9. Temporal Variation at x, z = 8.75, 47.5 m: Test Problem 2

normalized concentration obtained using the Crank-Nicholson
scheme (u = 0.5) are compared with the analytical solution in
Figs. 7–9. Longitudinal and transverse concentration versus
distance comparison at x = 51.5 and 22.5 m are shown in Figs.
7 and 8, respectively, at a 180-day period. Fig. 9 presents the
time variation of the normalized concentration at the point x,
z = 8.75, 47.5 m. As can be seen from these figures, a good
correspondence exists between the numerical results and the
analytical results.

Test Problem 3: Nonrectangular Domain

In this example, a nonrectangular domain with a nonor-
thogonal grid, as shown in Fig. 10, is considered. The length
of the domain along the x-axis L is 10 m; its lateral boundaries
are given by the equation

px
z = 6 2.0 1 1.05 sin (16)F S DG2L

A strip source of length 1 m is placed center-symmetrically
along the z-axis at x = 0 in a uniform velocity field. The re-
tardation factor and the decay coefficients are equal to 1.0 and
0.0, respectively, and u = 0.2 m/day. The initial condition is
given by C(x, z, 0) = 0. The boundary condition at x = 0 is
given by

C(0, z, t) = 1, at the source (17a)

C(0, z, t) = 0, elsewhere (17b)

Dirichlet boundary conditions are applied at the lateral
boundaries. For the specification of the time varying concen-
trations along the lateral boundaries, the analytical solution
given by Javendel et al. (1984) for the semi-infinite domain is
used. The analytical solution can be written

t 2 2x ux u t x 1
C(x, z, t) = exp exp 2 2S D E F G 3 / 22D 4D 4D t txx xx zz4 (pD ) 0Ï xx

a 2 z a 1 z
? erf 1 erf dtF S D S DG

2 (D t) 2 (D t)Ï Ïzz zz



FIG. 10. Grid Layout for Test Problem 3
FIG. 11. Longitudinal Concentration Profile: Test Problem 3
(PD = 2)

where a = half-width of the strip source at x = 0. A fourth-
order numerical integration is used to evaluate the above equa-
tion to obtain the concentration at the lateral boundaries, to
supply the boundary conditions, as well as at any interior point
if needed for comparison with the numerical solution. The
computational domain is divided into 100 3 81 grid points.
The time step D t is taken as 0.1, 0.5, 1.0, and 2.0 days, and
the corresponding Courant number Cn is 0.2, 1.0, 2.0, and 4.0,
respectively.

In the previous sections the Crank-Nicholson scheme has
been shown to be more accurate than fully implicit time step-
ping. Therefore, we first investigate the solutions obtained us-
ing the Crank-Nicholson scheme for this problem. Fig. 11
shows the Crank-Nicholson solution, for various Courant num-
bers, for the problem at t = 20 days; the longitudinal grid
Péclet number PD is a moderate value of 2.0 (Dxx = 0.01 m2/
day, Dzz = 0.0025 m2/day). The solutions for Courant numbers
of 1.0 and 2.0 are good, whereas the solutions for Cn = 4.0
are acceptable, showing only a slight overshoot. The solutions
for Cn below unity all fall on the analytical solution but are
not shown (to avoid clutter).

Fig. 12 shows for the same situations the Crank-Nicholson
FIG. 12. Longitudinal Concentration Profile: Test Problem 3
(PD = 40)

solutions for a grid Péclet number of 40.0 (Dxx = 0.0005 m2/
day, Dzz = 0.0025 m2/day) correspond to a highly convection-
dominated flow. It can be seen that for this case, the solutions
show overshoots—small for Courant numbers below unity but
large for higher Courant numbers—which may be unaccept-
able in many cases.

Next, in an attempt to suppress spurious oscillations, the
flux limiter for the OCV scheme is used. Fig. 13 shows nu-
merical results for the same case (PD = 40) as previously stud-
ied but with the flux limiter in use. The results clearly show
that for Courant numbers of unity and below the flux limiter
is successful in removing oscillations. But for higher Courant
numbers, the flux limiter fails. This by itself is not surprising
as the above flux limiter, like most flux limiters, uses only the
neighboring cell values to detect oscillations, whereas at high
Courant numbers information arrives from far cells. In general,
flux limiters have been used for explicit schemes with Courant
numbers below unity. No flux limiters used with second-order
implicit schemes have yet been demonstrated as effective for
high Courant numbers.

A different strategy can be used to avoid overshoots by in-
JOURNAL OF HYDROLOGIC ENGINEERING / JULY 2000 / 313



FIG. 13. Longitudinal Concentration Profile Obtained Using
Flux Limiter: Test Problem 3 (PD = 40)

FIG. 14. Effect of u on Longitudinal Concentration Profile:
Test Problem 3 (PD = 2000, Cn = 2)

FIG. 15. Longitudinal Concentration Profile: Test Problem 3
(u = 0.7, PD = 2)

FIG. 16. Longitudinal Concentration Profile: Test Problem 3
(u = 0.7, PD = 40)
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FIG. 18. Effect of Grid Distortion on Longitudinal Concentra-
tion Profile: Test Problem 3 (u = 0.7, PD = 2,000, Cn > 1)

FIG. 17. Distorted Grid for Test Problem 3

troducing enough numerical dissipation into the scheme by
choosing the time-stepping parameter u as some value other
than 0.5. As u values below 0.5 do not allow unconditional
stability, only values above 0.5 are used. To use values other
than u = 0.5 is to introduce a first-order error and numerical
diffusion into the time stepping; therefore, it is preferred to
make the least departure from that value as possible.

Fig. 14 shows the solutions, for Courant number Cn = 2.0
with u chosen variously, for a very high grid Péclet number
of 2,000.0 (Dxx = 0.00001, Dzz = 0.0). The figure shows that
at u = 0.5, Crank-Nicholson gives substantial overshoots,
which decrease but do not disappear for u = 0.6. The value u
= 0.7 does not show any overshoots. To increase u any further
would only increase the numerical spreading, as can be seen
by the u = 1.0 solution in the figure. Therefore, for this case
at least, u = 0.7 seems an optimum compromise between nu-
merical dispersion (oscillations) and numerical diffusion
(spreading). The scheme performs satisfactorily with u = 0.7
for a wide range of Courant and grid Péclet numbers.

Figs. 15 and 16 show the same solutions as Figs. 11 and
12, with PD = 2 and 40, respectively, but with solutions time
stepped with u = 0.7 instead of the Crank-Nicholson scheme.
The solution shows no overshoots, although slightly more
spreading than Crank-Nicholson solutions.

The OCV scheme has been shown to lose little of its ac-
curacy on mildly nonorthogonal grids when applied to steady-
state problems (Verma and Eswaran 1996, 1997). Here it is
shown that this feature is retained by the present implicitly
time-stepped scheme. A new distorted grid is generated by
perturbing each interior grid point in Fig. 10 randomly be-
tween 610% of the grid interval in the x-direction. A section
of the distorted grid is shown in Fig. 17. Fig. 18 shows the
solution at t = 20 days on the grids corresponding to Figs. 10
and 17 for PD = 2,000 and Cn = 1.0, 2.0, and 4.0. There is



FIG. 19. Effect of Grid Distortion on Longitudinal Concentra-
tion Profile: Test Problem 3 (u = 0.7, PD = 2,000, Cn < 1)

little deterioration of accuracy due to grid distortion. This
holds true even for Cn below unity, as shown in Fig. 19. These
figures also show that numerical spreading of the solution in-
creases unambiguously with the Courant number, as can be
expected. The results in Figs. 18 and 19 are obtained using
the scheme with u = 0.7 and the flux limiter. The flux limiter
does not seem to affect the final solution for a Courant number
greater than unity but does stabilize the time-stepping scheme.
For example, in this case without the flux limiter, there could
not be convergence beyond Cn = 1.0. (However, if conver-
gence is obtained for Cn > 1, the solutions with and without
the flux limiter are almost the same.)

CONCLUSIONS

In this study, an OCV technique is presented for solving the
transient 2D solute transport equation for ground-water flows.
Considered are 2D domains with orthogonal and nonorthog-
onal grids. An isoparametric formulation is used to compute
diffusion and to introduce higher order upwinding. An implicit
formulation is used for time stepping.

The numerical technique is verified using the 2D analytical
solutions. The test cases for verification include Dirichlet,
Neumann, and mixed boundary conditions. It is shown that
the Crank-Nicholson scheme is most accurate for diffusion-
dominated flows (with grid Péclet number <2) but introduces
spurious oscillations for convection-dominated flows. The flux
limiter used in this study can remove the oscillations for
Courant numbers below unity. For higher Courant numbers in
convection-dominated flows, spurious oscillations can be
avoided by using a value other than 0.5 for the implicit weight-
ing factor; although because of this, the scheme does not retain
formal second-order accuracy. For a wide range of Courant
and grid Péclet numbers, u = 0.7 is shown to result in an
optimum compromise between numerical dispersion (oscilla-
tions) and numerical diffusion (spreading). The effect on ac-
curacy of mild nonorthogonality of the grids is shown to be
insignificant.

APPENDIX I. TERMS

Diffusion Terms

For the face 1 (i.e., k = 1) at the midpoint (i.e., j = 0, h =
21) of the control surface as shown in Figs. 1(b and c), the
diffusion coefficients are shown below

­N ­Nkk kk(1) (1) (1) (1)DIFFo1(kk) = D Dz 1 D Dzxx xzS U U
­x ­z(0, 21) (0, 21)

­N ­Nkk kk(1) (1) (1) (1)2 D Dx 2 D Dxzx zzU U D
­x ­z(0,21) (0, 21)
where kk = 1–5 are the local node numbers in the counter-
clockwise sense, as shown in Fig. 1(c). The other terms on the
right-hand side of the above expression have already been de-
fined. Similarly for the control-volume faces 2–4, the diffu-
sion coefficients are, respectively, as follows:

­N ­Nkk kk(2) (2) (2) (2)DIFFo2(kk) = D Dz 1 D Dzxx xzS U U
­x ­z(1, 0) (1, 0)

­N ­Nkk kk(2) (2) (2) (2)2 D Dx 2 D Dxzx zzU U D
­x ­z(1,0) (1, 0)

­N ­Nkk kk(3) (3) (3) (3)DIFFo3(kk) = D Dz 1 D Dzxx xzS U U
­x ­z(0, 1) (0, 1)

­N ­Nkk kk(3) (3) (3) (3)2 D Dx 2 D Dxzx zzU U D
­x ­z(0,1) (0, 1)

­N ­Nkk kk(4) (4) (4) (4)DIFFo4(kk) = D Dz 1 D Dzxx xzS U U
­x ­z(21, 0) (21, 0)

­N ­Nkk kk(4) (4) (4) (4)2 D Dx 2 D Dxzx zzU U D
­x ­z(21,0) (21, 0)

where kk = 1–5. If we define local nodes 1–4 as the west,
south, east, and north neighbors, respectively, for the node p,
the final expression for the diffusion coefficients for a control
volume can be expressed

D = DIFFo1(1) 1 DIFFo2(1) 1 DIFFo3(1) 1 DIFFo4(1)W

D = DIFFo1(2) 1 DIFFo2(2) 1 DIFFo3(2) 1 DIFFo4(2)S

D = DIFFo1(3) 1 DIFFo2(3) 1 DIFFo3(3) 1 DIFFo4(3)E

D = DIFFo1(4) 1 DIFFo2(4) 1 DIFFo3(4) 1 DIFFo4(4)N

D = DIFFo1(5) 1 DIFFo2(5) 1 DIFFo3(5) 1 DIFFo4(5)P

Convection Term

For face 1, again at the midpoint, the convection term is
approximated

(1) (1) (1)(1)CONVo1 = (C F u = (N C ) F u , k = 1–5mid k k mid

Here, midpoint is (j = 0, h = 21) for the positive value of
F (1) and (j = 0, h = 1) for the negative F (1). Combining both
the possibilities in a single expression, we get

(1)CONVo1 = max(F , 0)[Co1(1)C 1 Co1(2)C 1 Co1(3)Ci21, j i, j21 i11, j

(1)1 Co1(4)C 1 Co1(5)C ] 2 max(2F , 0)[Co11(1)Ci, j11 i, j i22, j21

1 Co11(2)C 1 Co11(3)C 1 Co11(4)C 1 Co11(5)C ]i21, j22 i, j21 i21, j i21, j21

A similar expression for other surfaces (CONVo2, CONVo3,
and CONVo4) of a control volume can be obtained. Rearrang-
ing the terms and writing expressions for each node of a con-
trol volume, we get

(1) (2) (3)C = [Co1(1)max(F , 0) 1 Co2(1)max(F , 0) 1 Co3(1)max(F , 0)W

(4) (1)1 Co4(1)max(F , 0)] 2 [Co11(4)max(2F , 0)

(4)1 Co44(2)max(2F , 0)]

(1) (2) (3)C = [Co1(3)max(F , 0) 1 Co2(3)max(F , 0) 1 Co3(3)max(F , 0)E

(4) (2)1 Co4(3)max(F , 0)] 2 [Co22(4)max(2F , 0)

(3)1 Co33(2)max(2F , 0)]

(1) (2) (3)C = [Co1(4)max(F , 0) 1 Co2(4)max(F , 0) 1 Co3(4)max(F , 0)N

(4) (3)1 Co4(4)max(F , 0)] 2 [Co33(1)max(2F , 0)

(4)1 Co44(3)max(2F , 0)]
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(1) (2) (3)C = [Co1(2)max(F , 0) 1 Co2(2)max(F , 0) 1 Co3(2)max(F , 0)S

(4) (1)1 Co4(2)max(F , 0)] 2 [Co11(3)max(2F , 0)

(2)1 Co22(1)max(2F , 0)]

(1) (2) (3)C = [Co1(5)max(F , 0) 1 Co2(5)max(F , 0) 1 Co3(5)max(F , 0)P

(4)1 Co4(5)max(F , 0)]

where the subscripts N, S, E, and W denote the neighboring
nodes as defined earlier and the remaining terms of CONVo1,
CONVo2, CONVo3, and CONVo4 can be included in the term
b of (15). Finally, the coefficients can be represented

a = u[C 2D 1 max(C , 0) 1 max(C , 0) 1 max(C , 0)P p P N S E

R Ad s
1 max(C , 0)] 1 1 unR AW d s

Dt

a = u[D 1 max(2C , 0)]N N N

a = u[D 1 max(2C , 0)]S S S

a = u[D 1 max(2C , 0)]E E E

s = u[D 1 max(2C , 0)]W W W

R Ad s
b = SS 1 C 2 u[max(C , 0)(C 2 C ) 1 max(C , 0)(Ci, j N i, j11 i, j S i, j21

Dt

n2 C ) 1 max(C , 0)(C 2 C ) 1 max(C , 0)(C 2 C )]i, j E i11, j i, j W i21, j i, j

n1 (1 2 u)[DIFF 1 CONV 1 DEC]

where SS consists of source terms as well as any other terms
that cannot be included in the other coefficients defined above.
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APPENDIX III. NOTATION

The following symbols are used in this paper:

As = area of control volume;
C = solute concentration;

Cn = courant number;
Dh = hydrodynamic dispersion tensor;

Dxx, Dzx, Dzz = elements of dispersion tensor;
dA = elemental area of control volume;
dl = elemental length on control surface;
F = flux across edge of control surface;

(i, j) = node number for control volume;
(k) = superscript for local edge numbers of control vol-

ume;
m = subscript for local node numbers of control vol-

ume;
N1, . . . , N5 = finite-element type shape functions;

n = superscript to denote time level;
nx, nz = direction cosines of local outward unit vector on

control surface;
PD = grid Péclet number;
Rd = retardation factor;

t = time;
u = velocity in x-direction;
V = pore-water velocity vector;
w = velocity in z-direction;
x = x-coordinate;
z = z-coordinate;

Dt = computational time step;
Dx = change in x-coordinate along edge of control sur-

face;
Dz = change in z-coordinate along edge of control sur-

face;
h = local coordinate for transformed element corre-

sponding to z;
u = implicit weighting parameter;
l = first-order decay coefficient;
j = local coordinate for transformed element corre-

sponding to x; and
f = porosity.


