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ABSTRACT

Oscillatory instabilities, although ubiquitous in nature, are undesirable in many situations such as biological systems, swaying of bridges and
skyscrapers, aero-acoustic flutter, prey-predator and disease spread models, and thermoacoustic systems, where they exhibit large amplitude
periodic oscillations. In the present study, we aim to study the suppressionmechanism of such undesired oscillations in a pair of thermoacoustic
oscillators, also known as horizontal Rijke tubes. These oscillators are coupled through a connecting tube whose length and diameter are varied
as coupling parameters. With the variation of these parameters, we show the first experimental evidence of rich dynamical phenomena such as
synchronization, amplitude death, and phase-flip bifurcation in coupled identical thermoacoustic oscillators.We discover that when frequency
and amplitude mismatch are introduced between these oscillators, quenching of oscillations in one or both the oscillators occurs with further
ease, through the mechanisms of amplitude death and partial amplitude death. Finally, we show that the effectiveness of coupling is sensitive
to the dimensions of the connecting tube which can be directly correlated with the time delay and coupling strength of the system.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5114695

The occurrence of undesirable large amplitude, self-sustained
periodic acoustic oscillations observed in confined combustion
systems is referred to as thermoacoustic instability. Mitigation of
such instabilities remains a challenge, even after decades of exten-
sive research. In the current study, we use concepts from synchro-
nization theory to mitigate thermoacoustic instability. Toward
this, we couple two horizontal Rijke tubes in the thermoacous-
tic instability state of operation, using a connecting tube whose
dimensions are varied as the control parameters. The variation
of the length of the connecting tube leads to the transition from
antiphase to in-phase synchronization via the state of amplitude
death, i.e., the complete quenching of oscillations in both the sys-
tems, for low amplitude limit cycle oscillations in identical ther-
moacoustic systems.On the other hand, an abrupt transition from
antiphase to in-phase synchronization, commonly referred to as
phase-flip bifurcation, is observed in the case of high amplitude
limit cycle oscillations in such systems. Therefore, any combina-
tion of length and diameter of the connecting tube proves insuffi-
cient in suppressing high amplitude oscillations in identical Rijke
tube oscillators. In order to obtain complete mitigation of such
high amplitude oscillations, we introduce frequency detuning

between the oscillators. As the detuning between the oscillators
is gradually increased, we notice an increase in the suppression
of amplitudes of oscillations in both the oscillators, leading to
the phenomenon of amplitude death. A further increase in the
frequency detuning leads to the occurrence of partial amplitude
death in the system, where the oscillations in one oscillator are
nearly quenched while they are sustained in the other. We further
investigate the regimes of amplitude suppression in the system for
the combined addition of frequency detuning and amplitudemis-
match between the oscillators. We observe enhanced suppression
of oscillations in the system due to the addition of mismatch in
system parameters.

I. INTRODUCTION

Oscillatory motions arising in natural systems can either be
desirable or undesirable based on our perspective. Oscillations in a
pendulum clock,1 breathing patterns in animal species,2 and oscilla-
tions produced in musical instruments3 are a few examples of oscil-
lations that are considered desirable. However, oscillations in cases
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such as ecological systems, such as prey-predator systems,4 epidemic
spread systems,5 precision instrument manufacturing,6 lasers,7 and
structural systems,8,9 and biological systems, such as neuro-muscular
systems,10 are undesirable. The uncontrolled amplification of such
undesirable oscillations beyond a critical threshold can lead to catas-
trophic disasters. Some noteworthy examples of such catastrophes
are the collapse of the Tacoma Bridge,11 swaying of the Millen-
nium Bridge12 leading to its shut down, or thermoacoustic instability
leading to failure of rockets and gas turbine engines.13

One of the well-studied cases of such undesirable oscillations
which hindered the development of gas turbine industry, rocket
engines, and power generation units is the issue of thermoacoustic
instability.14,15 Thermoacoustic instability refers to the occurrence of
high amplitude acoustic pressure oscillations inside a combustor due
to the positive feedback between the acoustic field of the combustor
and the heat release rate fluctuations in the flame.14,15 The presence
of such instabilities has led to various damages ranging from the
destruction of gas turbine engine components during testing to mas-
sive structural damage in the Rocketdyne F-1 rocket engine in Saturn
V program.16 Several control strategies such as active and passive
controls have been developed over the years to suppress thermoa-
coustic instability by disrupting the coupling between the acoustic
field and the unsteady flame dynamics and increasing the acoustic
damping of the system, respectively.17–19 Although these strategies
prove very effective, they often face problems related to installations
of actuators/sensors amidst harsh conditions as well as their lim-
ited applicability due to the restricted operational range. Apart from
these techniques of suppressing such oscillations, recent studies focus
on the application of synchronization theory20,21 in suppressing the
oscillations in one22,23 or multiple thermoacoustic systems.24–26

Synchronization is a universal phenomenon marked by the
adjustment of rhythm of coupled oscillators due to mutual inter-
action between them.20 Such mutual coupling between two self-
sustained nonlinear oscillators can exhibit various phenomena such
as phase-locking, phase-drifting, phase-flip bifurcation, and oscil-
lation quenching.27 In the case of weakly coupled oscillators, the
mutual interaction between the oscillators is limited to their phases;
hence, they exhibit phase-locking behavior or synchronization. On
the other hand, strong mutual coupling affects both the phase and
the amplitude of coupled oscillations, causing the reduction or com-
plete cessation of oscillations in all the oscillators. Such a dynamical
behavior wherein all the oscillators approach a common steady state
due to coupling is referred to as amplitude death and was discovered
by Strutt and Rayleigh28 in a system of two organ pipes. In some sit-
uations, mutual coupling does not necessarily lead to quenching of
oscillations in all the coupled oscillators; it may result in a coexis-
tence of oscillatory and steady states, which is referred to as partial
amplitude death (PAD).29

The occurrence of the oscillation quenched states due to the
coupling of two or more oscillators in thermoacoustic systems has
lured recent research attention. The experimental study by Biwa
et al.24 showed the occurrence of amplitude death in two thermoa-
coustic engines for simultaneous application of dissipative and time
delay couplings, even for zero frequency detuning. In a thermoa-
coustic engine, the conversion of thermal power into acoustic power
results in high amplitude pressure oscillations.30 A thermoacoustic
engine consists of a porous stack placed between hot and cold

exchangers in a tube, and the temperature difference across the stack
amplifies the acoustic fluctuations. On the other hand, the feedback
between the acoustic field and the unsteady flame dynamics in the
presence of a mean flow in a confinement results in thermoacoustic
instability. A recent study by Thomas et al.25 systematically investi-
gated the amplitude death phenomenon in a mathematical model of
coupled horizontal Rijke tube oscillators, when both dissipative and
time delay coupling are applied collectively and individually. They
further extended the study31 to characterize the effect of Gaussian
white noise on the amplitude death behavior of such coupled oscilla-
tor systems. They noticed prebifurcation noise amplification during
the transition from limit cycle to amplitude death state, and vice
versa.

An experimental study by Hyodo and Biwa32 compared the
effect of connecting two thermoacoustic engines with single and two
connecting tubes on their amplitude death behavior. They found that
a single tube, having a diameter of 62.5% of the resonance tube, is
as effective as two connecting tubes, having a diameter of 7.5% of
the resonance tube, in suppressing the oscillations. A recent study by
Jegal et al.26 investigated the amplitude death behavior in two tur-
bulent thermoacoustic combustors connected through a cross talk
arrangement. They observed that the combustors operating under
stable conditions were excited to high amplitude oscillations after
being coupled via the cross talk. They also observed amplitude death
after coupling the oscillators, having asymmetric boundary condi-
tions, in their unstable state. Although the aforementioned studies
provide a cognizance on the oscillation quenching mechanism in
coupled thermoacoustic oscillators, a systematic experimental inves-
tigation to understand the role of connecting tube dimensions (i.e.,
length and diameter) and parameter mismatch, such as amplitude
and frequency of limit cycle oscillators, on their quenching behavior
is yet to be reported.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

The experimental setup [Fig. 1(a)] used to study the amplitude
quenching behavior of limit cycle oscillations (LCOs) consists of a
pair of horizontal Rijke tubes (named as A and B). In these sys-
tems, an electrically heated wire mesh acts as the heating source.33

The detailed characteristics of a single horizontal Rijke tube system
can be obtained from Matveev33 and Gopalakrishnan and Sujith.34

Here, Rijke tube A [Fig. 1(a)] has a cross section of 9.3 × 9.4 cm2

and is 102.0 cm long, while Rijke tube B has a cross section of 9.3 ×
9.5 cm2 and a length of 104.0 cm. Separate decouplers of dimen-
sions 120.0 × 45.0 × 45.0 cm3 are attached to the inlet of both the
Rijke tubes to ensure that the flow entering the systems is immune
from the upstream disturbances. The dimensions of the decoupler
being much bigger than the cross section of the duct, the pressure
is maintained at ambient conditions (acoustic pressure fluctuations,

p
′ = 0 Pa) at both ends. Separate heating elements are located at a
distance of 27.5 cm from the decoupler in each system. A mean air
flow rate of 40 SLPM (standard liter per minute) is supplied to each
system through separate mass flow controllers (Alicat Scientific, with
an uncertainty of ±0.52 SLPM). The decay rates of each system are
experimentallymeasured in the absence of flow by subjecting the sys-
tems to external sinusoidal perturbations using a loudspeaker (Ahuja
AU60). The acoustic decay rate values for Rijke tube A and Rijke tube
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FIG. 1. (a) Schematic of the experimental setup having two horizontal Rijke tube oscillators A and B, which are coupled using a connecting tube. (b) Variation of root mean
square amplitude, p0, with heater power (K) for the isolated Rijke tube oscillators A (red triangles) and B (blue circles). (c) and (d) The time series of limit cycle oscillations and
the corresponding amplitude spectrum of Rijke tube oscillators A and B, respectively, prior to coupling. The uncoupled natural frequency of oscillator A is f0A = 165.0 ± 1.1 Hz
and oscillator B is f0B = 162.8 ± 1.1 Hz.

B are measured to be 14.5 ± 0.5 s−1 and 12.7 ± 0.6 s−1, respectively.
We maintain the acoustic decay rate within bounds to ensure con-
sistency in the experimental conditions and the repeatability of the
experimental results.

The characterization of the individual Rijke tube oscillators is
performed by analyzing their amplitude and frequency responsewith
a change in the heater power (K). Figure 1(b) shows the variation
of root mean square value, henceforth referred to as amplitude, of
acoustic pressure oscillations (p0) of the uncoupled oscillators A and
Bwith the heater power (K).We observe that both the systems exhibit
Hopf bifurcation, i.e., the transition from a steady state to stable limit
cycle oscillations [shown in Figs. 1(c) and 1(d)], at different critical
values of K, owing to the difference in decay rates of each oscillator.
We also observe a small difference in the frequency of oscillator A
(165.0Hz) and B (162.8Hz) due to the difference in their lengths. In
order to study the dynamics of identical oscillators, the amplitude and
frequency of oscillator A are adjusted by varying the heater power
and the length of the oscillator, respectively, such that the resultant
uncoupled amplitude and frequency values of oscillator A are equal
to that of oscillator B.

The position of a square extension duct of side 9.0 cm and
length 12.0 cm is manually changed to vary the natural frequency of
Rijke tube A initially from 165.0Hz to 162.8Hz to make both Rijke
tube oscillators identical. Although, identical conditions cannot be
attained in practice and the oscillators are only nearly identical, the
uncertainty being small, we refer to these oscillators having nearly
equal amplitude and frequency as identical in Secs. III A–III C. The

limit cycle dynamics of these systems are coupled by connecting them
using a vinyl tube, whose length and diameter are varied as control
parameters [see Fig. 1(a)]. The length (L′) of the connecting tube is
varied from 72.0 cm to 132.0 cm in steps of 5.0 cm, while the diam-
eter (D) is varied from 0.4 cm to 1.2 cm in steps of 0.2 cm. Here, the
length of the connecting tube (L′) is normalized with the wavelength
(L = L′/λ, where λ = c/f0B and c is the speed of sound at ambient
conditions) of acoustic standing wave developed in oscillator B (the
oscillator whose length remains constant throughout the study). The
coupling ports for the vinyl tube, indicated as VA and VB, are located
at a distance of 46.5 cm from the outlet of both the Rijke tubes and are
equippedwith ball-type valves, which aremanually opened to initiate
the coupling between the systems.

Simultaneous measurements of acoustic pressure fluctuations
are performed prior to and after the initiation of coupling using
pressure transducers (PCB 103B02, with an uncertainty of ±0.2 Pa)
located at positions PA and PB, at a distance of 31.5 cm from the outlet
of the tubes, as shown in Fig. 1(a). The data are acquired from each
oscillator at a sampling rate of 10 kHz for a duration of 25 s for each
set of experiments using a DAQ system (NI USB 6343). All experi-
ments conducted to study the synchronization and the suppression
of oscillation after coupling are carried out at values sufficiently away
from the Hopf point of both the oscillators.

Further analysis on the coupled dynamics of these oscillators
is performed after an introduction of frequency and amplitude mis-
match in the system. The amplitude mismatch (1p0) and frequency
detuning (1f ) in the system are defined as 1p0 = |p0A − p0B| and
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1f = |f0A − f0B|, where {p0A, f0A} and {p0B, f0B} are the amplitudes
and frequency of oscillators A and B, respectively, in their uncou-
pled state. Since the frequency of acoustic oscillations in the duct
is directly dependent on its length, the frequency of oscillator A
is varied from 147.8Hz to 162.8Hz by varying its effective length
using an extension duct. This frequency variation in oscillator A
corresponds to 0–15.0Hz of frequency detuning in the system. The
frequency of limit cycle oscillations in oscillator B (f0B) is maintained
constant throughout the study. The normalized frequency detun-
ing (1f /f0B) corresponding to this frequency change in oscillator A
with respect to oscillator B is nearly 0–0.092. Similarly, the amplitude
mismatch between the acoustic oscillations in both the oscillators
is introduced by varying the heater power (K) of oscillator A with
respect to that of oscillator B.

III. RESULTS

Here, we present the results obtained by varying the coupling
and the system parameters, and present their effects on the amplitude
suppression behavior of the coupled Rijke tube oscillators. The study
is conducted for the variation of four independent parameters, which
are (1) length (L) and (2) diameter (D) of the connecting tube, and
(3) frequency detuning (1f ), and (4) amplitude mismatch (1p0) of
the limit cycle oscillations in the system. The results obtained from
each of these cases are individually presented in Secs. III A–III C.

A. Effect of variation in coupling parameters

on identical oscillators

The primary methodology adopted to quench thermoacous-
tic oscillations in identical Rijke tube systems is to vary the length
(L) of the connecting tube having a diameter of 1.0 cm. Toward this
purpose, the amplitude and frequency in the uncoupled state of the

Rijke tube oscillators A and B are maintained at nearly equal val-
ues, and the acoustic responses of the systems are measured for each
length (L) of the connecting tube. The synchronization analysis of the
acoustic pressure data is performed by extracting the instantaneous
phases of both the oscillators using the Hilbert transform,20 which
helps in extending the signal from the real plane to a complex plane.
Hence, we obtain the analytic signal, ζ(t) = p(t) + pH(t), where p(t)
is the acquired pressure signal and pH(t) is its corresponding Hilbert
transformed signal given by

pH(t) =
1

π
P.V .

∫ ∞

−∞

p(τ )

t − τ
dτ , (1)

where P.V . is the Cauchy Principle value. The instantaneous phases
of each signal, 8(t), are obtained from the analytic signal as ζ(t)
= A(t) exp(i8(t)). The relative phase between the signals of oscil-
lators A and B is obtained from the difference of their instantaneous
phases [8A(t) and 8B(t), respectively] as 18(t) = 8A(t) − 8B(t).
When the coupled oscillators are synchronized, the temporal vari-
ation of relative phase between them fluctuates around a constant
value. This constant value of relative phase is computed in terms of
mean phase difference between the two signals (|18|) as follows:

|18| =
1

N
6N

t=1|18(t)|, (2)

where N is the total number of samples in the signal and 18(t) is
the instantaneous phase difference (wrapped in the interval of 0◦ and
180◦) between two oscillators.

Figure 2(a) shows the two-parameter bifurcation plot between
the uncoupled amplitude (p0) of the oscillators and the length (L) of
the connecting tube used for coupling the identical oscillators. We
observe that for lower values of p0, the coupled dynamics exhibited
by the system transition from a state of antiphase synchronization
to in-phase synchronization via an intermediate state of amplitude

FIG. 2. (a) Two-parameter bifurcation plot between the uncoupled amplitude of pressure oscillation (p0) and the length (L) of the connecting tube, displaying the coexistence
of amplitude death and phase-flip bifurcation in a system of identical oscillators. Depending on the value of the uncoupled amplitude of the oscillators, the coupled dynamics of
the system exhibits either (b) phase-flip bifurcation for higher values or (c) transition from anti-phase (AP) to in-phase synchronization (IP) via amplitude death (AD) for lower
values.
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death (AD) as L is increased [as shown in Fig. 2(c)]. The state of
antiphase synchronization is characterized by a phase shift of nearly
180◦ between the oscillators, whereas, during the state of in-phase
synchronization, both oscillators exhibit nearly 0◦ of phase shift. The
dominant frequency of the oscillators is observed to be lower during
antiphase synchronization and higher during in-phase synchroniza-
tion, as compared to their uncoupled value. In the intermediate state
between antiphase and in-phase synchronization, we observe com-
plete quenching of oscillations in both the oscillators due to coupling,
and thus, the system behavior converges to a homogeneous steady
state. Such a state of coupled dynamics is termed as amplitude death.35

The instantaneous phase calculated using the Hilbert transform is
undefined due to the lack of oscillations during this state and hence
is not discussed in Fig. 2(c).

When the amplitude of acoustic pressure oscillations in the
uncoupled state of the oscillators is sufficiently high, we observe an
abrupt transition from antiphase synchronization to in-phase syn-
chronization, as the length of the connecting tube is increased [see
Fig. 2(b)]. During this transition, the mean value of the phase dif-
ference between the oscillators abruptly changes from nearly 180◦

to 0◦ [Fig. 2(b)-I], which is accompanied by a corresponding jump
in their dominant frequency [Fig. 2(b)-II]. Such a sudden switch-
ing of phase difference between the oscillators at a critical value
of the coupling parameter is commonly referred to as phase-flip
bifurcation, PFB.36 The direction of jump in the frequencies of oscil-
lators during the PFB observed in our system is opposite to what is
usually reported in the literature,36,37 where such a synchronization
transition is associated with a decrease in the frequency of oscil-
lators. From Fig. 2(b), we observe that the critical value of L at
which the PFBhappens is around 0.53. Previous theoretical studies by
Thomas et al.25,31 on similar Rijke tube oscillators have reported the
existence of AD in identical oscillators. They showed that, when the
oscillators are only time delay coupled, the increase in amplitude of
limit cycle oscillations reduces the region for which AD is observed
in the parameter space of coupling constants (i.e., delay and cou-
pling strength) in the system. However, their study did not report the
existence of PFB in the model of coupled Rijke tube oscillators. We
here, report the first experimental evidence of phase-flip bifurcation
in coupled thermoacoustic systems.We also conclude that a connect-
ing tube of appropriate length [in the range shown in Fig. 2(a)] is
sufficient to quench the undesired thermoacoustic oscillations with
low amplitude and is insufficient to do so for the high amplitude
oscillations in coupled Rijke tube oscillators.

Now, let us take a closer look at the suppression behavior of
acoustic oscillations in coupled identical Rijke tubes when the ampli-
tude of their oscillations in the uncoupled state is low (p0 = 40 Pa)
and high (p0 = 120 Pa). We study this behavior of oscillators when
the dimensions (L and D) of the connecting tube are varied. Here,
the suppression in the amplitude is quantified as1p = p0 − p, where
p0 and p are the amplitudes of acoustic pressure oscillations before
and after the initiation of coupling, respectively. The suppression
is normalized with the uncoupled amplitude (p0) such that 1p/p0
= 1 corresponds to complete suppression (or amplitude death) and
1p/p0 = 0 points toward the lack of suppression in the amplitudes
of Rijke tube oscillators.

When the amplitude of pressure oscillations is low (p0 = 40 Pa),
we observe that the relative suppression of coupled oscillations varies

significantly with the diameter of the connecting tube [Fig. 3(a)]. For
smaller diameters of the connecting tube (D = 0.4 cm and 0.6 cm),
we observe the presence of weak coupling between the oscillators
A and B when L < 0.48, which in turn, is projected as the lack of
suppression in the oscillations in Fig. 3(a). In contrast, we observe
a complete suppression in oscillations for L ≥ 0.48 until the system
dynamics transition to in-phase synchronization atL = 0.58. Such an
interaction among the oscillators leading to changes in the amplitude
of coupled oscillations for L ≥ 0.48 suggests the existence of stronger
coupling between them. When the diameter of the connecting tube
is larger, D ≥ 0.8 cm, we observe an increase in the suppression of
acoustic pressure oscillations in coupled Rijke tubes, in the entire
range of L considered in our study. Furthermore, the system dynam-
ics exhibits the state of amplitude death (1p/p0 → 1) for L ranging
from 0.39 to 0.58, irrespective of the value ofD used for the connect-
ing tube. These observations further suggest that the occurrence of
AD is possible only for certain combinations of dimensions (L and

FIG. 3. The variation of relative suppression in the amplitude of acoustic pressure
oscillations (1p/p0) in oscillator A is plotted with respect to the length of the con-
necting tube (L), for various values of diameter (D). The amplitude of uncoupled
oscillations, p0, is 40 Pa in (a) and 120 Pa in (b). A similar trend can be observed
in the case of oscillator B.
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D) of the connecting tube when low amplitude identical Rijke tube
oscillators are coupled.

For the case shown in Fig. 3(b) with p0 = 120 Pa, we see that
the variation in the relative suppression (1p/p0) of acoustic pressure
oscillations with the length of the connecting tube remains nearly
the same, irrespective of the diameter of the connecting tube used.
Hence, we can conclude that any combination of length and diameter
of the connecting tube considered in the current study proves ineffec-
tive in suppressing high amplitude pressure oscillations of identical
Rijke tube oscillators.

B. Effect of frequency detuning on the amplitude

suppression behavior of coupled oscillators

Having discussed the insufficiency of variation in the dimen-
sions (i.e., length and diameter) of the connecting tube in complete
suppression of high amplitude acoustic pressure oscillations (p0 >

60 Pa), we introduce frequency detuning in the system to suppress
them. The amplitudes of limit cycle oscillations in the uncoupled
state, p0, of both the oscillators are kept nearly constant at 120 Pa.
The dimensions of the connecting tube (L = 0.48 and D = 1.0 cm)
are fixed such that they correspond to the maximum suppression
of limit cycle oscillations after coupling [as observed in Figs. 3(a)
and 3(b)]. The introduction of frequency detuning in coupled Rijke
tubes engendered an increase in the suppression of pressure oscilla-
tions in both the systems [Fig. 4(a)]. For low values of detuning (say,

0–4.0Hz), we observe that the suppression in the amplitude of cou-
pled oscillations increases monotonically with detuning. We observe
nearly 10% reduction in the amplitude of limit cycle oscillations in
both the Rijke tubes for 1f = 0Hz [Fig. 4(c)], which increases to
nearly 60% for 1f = 4.0Hz [Fig. 4(d)]. In addition to the reduction
in amplitude, we also note that coupling these detuned oscillators
causesmutual synchronization between them, leading both the oscil-
lators to stabilize at identical frequencies [as shown in Fig. 4(b)].With
a further increase in the value of frequency detuning, 4.0Hz < 1f <

9.0Hz, we observe complete quenching of pressure oscillations (i.e.,
1p/p0 ≈ 1) in both the systems, which is also referred to as the state
of amplitude death. Figure 4(e) represents such a case of amplitude
death, with simultaneous quenching of oscillations in both the oscil-
lators, leading to the absence of periodic behavior in their dynamics,
for 1f = 7.0Hz.

When the frequency detuning in the system is sufficiently
large, 1f >= 9.0Hz, we observe that one among the oscillators
regains its periodic oscillations while the other oscillator remains in a
nearly quenched state. Such a phenomenon of oscillation quenching,
where limit cycle oscillations of one oscillator coexists with a nearly
quenched state of another due to coupling, is referred to as partial
amplitude death.29,38 For the frequency detuning of1f = 15.0Hz, we
notice that the oscillations in Rijke tube B are nearly quenched (i.e.,
minimal fluctuations) while that in Rijke tube A retain the state of
large amplitude limit cycle oscillations [see Fig. 4(f)]. We also note
that during the state of partial amplitude death, both the oscillators

FIG. 4. Variation of (a) relative suppression in the response amplitudes and (b) dominant frequencies of oscillators A and B after coupling for different values of frequency
detuning, 1f , when L = 0.48, D = 1.0 cm, and p0 = 120 Pa. The time series corresponding to various states of coupled dynamics observed for frequency detuning of (c)
0 Hz—no suppression, (d) 4.0 Hz—significant suppression, (e) 7.0 Hz—amplitude death, and (f) 15.0 Hz—partial amplitude death.
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exhibit identical frequencies [see Fig. 4(b)], whose value tends to
be closer to that of the oscillator with higher amplitude. In other
words, in Fig. 4(f), where oscillatorA exhibits higher amplitude oscil-
lations compared to oscillator B, both the oscillators oscillate with a
frequency near the uncoupled frequency value of oscillator A [see
Fig. 4(b)]. This also suggests that the oscillator which regains its
oscillations during the state of partial amplitude death drives the
oscillations in the other oscillator which is oscillating at significantly
lower amplitudes.

In Fig. 5, we show the coupled dynamics of limit cycle oscilla-
tions (LCO) developed in detuned Rijke tube oscillators for various
dimensions (L and D) of the connecting tube. The amplitudes of
both LCOare fixed at 120 Pa in their uncoupled state. Two-parameter
bifurcation plots between the length of the connecting tube (L) and
the frequency detuning between oscillators (1f ) are plotted for var-
ious values of connecting tube diameters (D). For a lower value
of the tube diameter, D = 0.6 cm [Fig. 5(a)], we notice the exis-
tence of only LCO and PAD dynamics for the range of L and 1f
investigated in this study. The coupling induced by smaller diameter
tube being weak, is insufficient to simultaneously quench the oscil-
lations in both the oscillators. The effect of finite detuning (1f >

3.0Hz) for L = 0.56 is noticed only in oscillator B, where the LCO is
quenchedwhile they are retained in oscillatorA, indicated as PADB in
Fig. 5(a). On the other hand, when the tube diameter is sufficiently
large, D = 0.8, 1.0, and 1.2 cm, we see the existence of all LCO,
AD, and PAD states in the coupled dynamics of both the Rijke
tubes [see Figs. 5(b)–5(d)]. For lower values of frequency detuning

FIG. 5. Two-parameter bifurcation plots between frequency detuning in the sys-
tem (1f ) and length of the connecting tube (L) for diameter values of (a) 0.6 cm,
(b) 0.8 cm, (c) 1.0 cm, and (d) 1.2 cm when p0 is fixed at 120 Pa in both the oscilla-
tors. Various states of coupled dynamics, namely, limit cycle oscillations (LCOs),
partial amplitude death in oscillator A (PADA), partial amplitude death in oscillator
B (PADB), and amplitude death (AD) are depicted in the plots.

(1f < 4.0Hz), we observe LCO in both the oscillators, irrespec-
tive of the value of L for all these diameters. When the frequency
detuning is relatively high (1f > 5.0Hz), oscillation quenching is
observed for a specific range of L in either one or both the Rijke tube
oscillators, depending on the dimensions of the tube as is explained
subsequently.

For the case of D = 0.8 cm, shown in Fig. 5(b), we observe that
the AD region is limited to L ≈ 0.5 at 1f = 3.0–10.0Hz. For larger
values of detuning (1f = 8.0–13.0Hz), we observe the occurrence
of PAD along with the states of LCO and AD in our system. Here,
the oscillation quenching states (PAD and AD) are limited over the
range of L from 0.46 to 0.55. At very high values of frequency detun-
ing (1f > 13.0Hz), the occurrence of PAD states alone is witnessed
for this range of L in the system. A similar scenario is observed in
the case of D = 1.0 cm as shown in Fig. 5(c); however, we observe
that the overall zone of suppression (region covered by AD and PAD
states) is increased. For larger values of diameter, D = 1.2 cm [see
Fig. 5(d)], the value of1f corresponding to the occurrence of PAD is
lower than that corresponding to the state of AD. Further, we observe
that for 1f ranging from 6.0 to 15.0Hz, we observe the existence of
AD, PAD and LCO for varying values of L. This is in contrast with the
behavior shown by smaller diameters such as 0.8 and 1.0 cm, where
we observe the state of PAD and LCO alone at frequency detuning
values of 1f > 13.0Hz [Figs. 5(b) and 5(c)]. Thus, we can conclude
that the amplitude suppression zone of LCOs in coupledRijke tubes is
increased due to the addition of frequencymismatch between the sys-
tems, and the suppression is maximum for a finite range of L around
0.5 and D = 1.0 cm.

C. Effect of amplitude and frequency mismatch on

the amplitude suppression behavior of the coupled

oscillators

As we know, the dynamics of most real-world systems with
multiple combustors are usually nonidentical. They tend to possess
inherent detuning along with a mismatch in the amplitudes of their
oscillatory dynamics. Hence, in order to understand the effect of such
a mismatch in the system parameters on the suppression of their
coupled dynamics, we investigate the coupled behavior of Rijke tube
oscillators having a combination of frequency detuning and ampli-
tude mismatch. Toward this purpose, the amplitude of oscillator A
in the uncoupled state is varied from 60 to 120 Pa in steps of 10 Pa,
through the adjustment of its supplied heater power (K), and the
frequency is varied from 162.8Hz to 147.8Hz in steps of 1.0Hz by
varying its effective length. On the other hand, the amplitude and
frequency of oscillator B are kept constant at 120 Pa and 162.8Hz,
thereby introducing a mismatch in the uncoupled amplitude and
frequency values of both the oscillators.

Figures 6(a) and 6(b) show the two-parameter bifurcation plots,
highlighting the amplitude suppression (1p) behavior of LCOs in
coupled Rijke tube oscillators A and B, respectively, upon coupling
with a single connecting tube. Here,1p is the difference in the ampli-
tudes of LCO in an oscillator before and after the application of
coupling, p0 − p. In Fig. 6, the complete suppression of oscillations is
indicated by1p ≈ 120 Pa (dark zones) and the absence of amplitude
suppression after coupling by 1p ≈ 0 Pa (light zones). The existence
of 1p ≈ 0 Pa in Figs. 6(a) and 6(b) at identical values of system
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FIG. 6. Two-parameter bifurcation plots showing the effect of variation in ampli-
tude mismatch, 1p0 and frequency detuning, 1f between the Rijke tube oscilla-
tors (a) A and (b) B on their oscillation quenching behavior (1p). The values of
L and D are fixed at 0.48 and 1.0 cm, respectively.

parameters (1p0, 1f ) indicates the occurrence of LCO in both the
oscillators whereas that of 1p ≈ 120 Pa indicates the AD state. The
coexistence of 1p near 120 Pa in one of the oscillators and near 0 Pa
in another oscillator at a particular value of {1p0,1f } indicates the
presence of PAD in the system of coupled oscillators.

From Fig. 4, we see that when the oscillators are coupled with
a nearly zero amplitude mismatch (1p0 ≈ 0 Pa), coupled dynamics
of the oscillators transition from a state of LCO (1f < 5.0Hz) to
AD (5.0Hz ≤ 1f ≤ 8.0Hz) and then to PAD (1f > 8.0Hz) as the
frequency detuning in the system is increased. With an increase in
the amplitude mismatch in the system, we observe an expansion in
the parameter region over which AD is observed. We observe that
for values of |1p0| > 50 Pa, the state of amplitude death, which is
marked by values of1p ≈ 120 Pa in both Figs. 6(a) and 6(b), expands
to 1f ≈ 3.0Hz to 1f ≈ 15.0Hz. From these observations, we con-
clude that a finite frequency detuning is necessary for the complete
quenching of large amplitude LCO, and the addition of mismatch in
amplitude and frequency of oscillators facilitates easier suppression
of their oscillations.

IV. DISCUSSION

In Secs. III A–III C, we explored the effect of the different system
aswell as coupling parameters on the amplitude suppression behavior
of limit cycle oscillations developed in a pair of coupled prototypical
thermoacoustic oscillators. With the use of a single connecting tube
of appropriate length and diameter, we showed that limit cycle oscil-
lations having low amplitudes can be completely quenched in both
the oscillators. However, in order to quench the limit cycle oscilla-
tions with high amplitude in either one or both the oscillators, we
need to have a finite frequency detuning in the system. Finally, we
demonstrate that the simultaneous presence of amplitude mismatch
and frequency detuning enhances the oscillation quenching behavior
of coupled thermoacoustic systems.

We notice that the use of the connecting tube induces an acous-
tic time delay (τ ) in the coupling between the thermoacoustic oscil-
lators, as a finite value of time is required for the propagation of

acoustic waves from one oscillator to another. This value of the time
delay is proportional to L (i.e., ∝ L

′
/c ). On the other hand, vary-

ing the diameter of the connecting tube results in the variation in
its admittance, i.e., Y = S/ρc, where S = πD2/4 is the area of cross
section of the tube and ρ is the density of ambient air. Thus, depend-
ing on the value of D, the amount of acoustic energy transmitted
to or reflected from the connecting tube at the junctions of each
oscillator (A and B) varies. This, in turn, indicates that the varia-
tion in D indirectly controls the strength of coupling between the
oscillators.

We observe that, when oscillators of nearly equal amplitude
and frequency are coupled, we observe the coexistence of ampli-
tude death (AD) and phase-flip bifurcation (PFB) in the system. In
coupled identical oscillators, the dynamics of low amplitude limit
cycle oscillations transition from antiphase to in-phase state of syn-
chronization via an intermediate state of AD. However, for high
amplitude oscillations, the systemdisplays PFB.Hence, we conjecture
that the amplitude of limit cycle oscillations in identical oscillators
determines the coupling requisites (length and diameter of the tube)
necessary for affecting the amplitude of each oscillator. For a given
length and diameter of the connecting tube, when the amplitude of
limit cycles is low, the oscillators are weak, and hence the coupling
induced due to a given tube diameter is sufficient to cause AD in
the system. On the other hand, when the amplitude of limit cycles
is sufficiently large, the oscillators are considerably strong that AD
is not achievable with the same diameter of the tube, as seen in
Fig. 2. Nevertheless, a significant suppression was observed at a criti-

cal value of L
′
corresponding to L

′
cr = 112.0 cm (nondimensionalized

as 0.53) for high amplitude oscillations as well. Since the value of

L
′
cr is nearly equal to the length of the Rijke tubes (i.e., L

′
cr ≈ λ/2),

the connecting tube facilitates the propagation of half wave between
the oscillators. Here, we note that the limit cycle oscillations are
developed in both the systems at the fundamental mode of acoustic
oscillations and the boundary conditions of the Rijke tubes corre-
spond to acoustic pressure fluctuations p′ = 0 Pa at both the ends.
Such a propagation of an acoustic half wave from one oscillator to
another induces a phase delay (φ) of π radians between the signals
of coupled oscillators, which can be understood from the following
equations.

The phase delay in the propagation of acoustic waves via the
connecting tube is given byφ = ωτ , whereω is the angular frequency
of acoustic waves in the Rijke tube oscillator given byω = 2πc/λ and
τ is the time taken by the acoustic wave to propagate via the connect-

ing tube (τ = L
′
/c) from one oscillator to another. Hence, the phase

delay between the two oscillators is given by

φ = ωτ = 2π
c

λ

L
′

c
= 2π

L
′

λ
. (3)

When L
′ = L

′
cr = λ/2, we obtain a phase delay of

φ = 2π
L

′

λ
= 2π

λ/2

λ
= π . (4)

This implies that when L
′
> L

′
cr , the switching of the mean

phase difference between the oscillators occurs from 180◦ (antiphase,

observed for L
′
< L

′
cr) to 0

◦ (in-phase). We also notice that the max-
imum suppression is observed in the system for larger connecting
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tube diameters (i.e., Dcr ≈ 1.0 cm), indicating a stronger coupling
between the oscillators, which is nearly 1/10th of the hydraulic
diameter of the Rijke tube oscillator39 (Dhydraulic = 10.7 cm, where
Dhydraulic =

√
4A/π is calculated from the cross-sectional area, A, of

the Rijke tube).
Further, we observe that an introduction of frequency detun-

ing near L
′ ≈ λ/2 induces the phenomenon of AD in the system at

low values of detuning and partial amplitude death (PAD) at higher
values of detuning. For lower values of detuning, as the wavelength
corresponding to the standing wave in both the oscillators is nearly
equal, the length of the connecting tube facilitating a phase delay of

π [L
′ = λ/2 from Eq. (4)] would be near L ≈ 0.5. Hence, we observe

complete suppression of oscillations in both the systems. As the value
of frequency detuning is increased, the frequency of oscillator B is
higher than that of oscillator A (f0B > f0A). This, in turn, suggests that
the wavelength and, therefore, the corresponding length of the con-
necting tube facilitating a phase delay of π belonging to oscillator

A is higher than that of oscillator B (λ0B < λ0A ⇒ L
′
B < L

′
A). Hence,

as the length of the connecting tube is increased, the occurrence of
PADB precedes the occurrence of PADA. The intermediate lengths of
the coupling which would facilitate the phase delay of near π would
also lead to the exhibition of AD in the system. Hence, the state of
AD is intermediate to the state of PADB and PADA.

Thus, our study suggests that the optimum length of the con-
necting tube required to quench the limit cycle oscillations in coupled
thermoacoustic systems should be nearly equal to half the wave-
length of the acoustic standing wave developed in the system and
the optimum diameter should be nearly 1/10th of the system diam-
eter. Our study finds applications in controlling and suppressing
undesirable thermoacoustic oscillations produced in various physical
systems such as multiple can and can-annular combustors. More-
over, the systematic investigation of oscillation quenching behavior
of coupled highly turbulent combustors and systems that exhibit
thermoacoustic instabilities with several natural frequencies requires
further investigation.
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