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Intracellular organelles are subject to a steady flux of lipids and proteins through active, energy consuming

transport processes. Active fission and fusion are promoted by GTPases, e.g., Arf–Coatamer and the

Rab–Snare complexes, which both sense and generate local membrane curvature. Here we investigate,

through Dynamical Triangulation Monte Carlo simulations, the role that these active processes play in

determining the morphology and composition segregation in closed membranes. We find that the

steady state shapes obtained as a result of such active processes, bear a striking resemblance to the

ramified morphologies of organelles in vivo, pointing to the relevance of nonequilibrium fission–fusion

in organelle morphogenesis.

A characteristic feature of eukaryotic cells is the variety of

membrane bound organelles, distinguished by their unique

morphology and chemical composition. These internal organ-

elles emerge in the face of a steady ux of material (lipids/

proteins) in the form of membrane bound vesicles which fuse

into and ssion off from them. A central issue in cell biology is

to explain the morphology of organelles as a consequence of the

molecular processes and physical forces involved in this trans-

port.1–3 While there is detailed knowledge of the molecular

processes involved in membrane remodeling at short scales,

our understanding of the underlying physical principles gov-

erning large scale morphogenesis is still rudimentary.4

A possible indication of these underlying principles might be

obtained by noting that despite the differences in membrane

composition across organelles, ramied, tubular or sheet-like

shapes are generic large scale morphologies observed in

internal membranes, both in the secretory (e.g., Golgi) and the

endocytic (e.g., endosomes) pathways, suggesting the involve-

ment of common features shared by these organelles.

The most striking common aspect of organelles in the traf-

cking pathways is that they are dynamic membranous struc-

tures, subject to and driven by a continuous ux of a membrane

bound material.5 Several studies have shown that the time

scales of material ux via vesicle ssion and fusion onto a

compartment6 are at least comparable to membrane relaxation

times, which for a micron sized compartment, in the highly

viscous environment of the cell,7 is of the order of tens of

seconds. The large scale morphology of the membrane bound

compartments could be inuenced by the active out-of-equi-

librium processes of ssion and fusion of material.

The other common aspect is that organelles are subject to

the action of curvature sensing and curvature generating

proteins which modulate the local membrane shape—such

proteins now include a variety of bar-domain proteins,8 coat-

proteins9 and GTPases10–13 and are found on most membrane

bound organelles and the plasma membrane. In particular,

protein complexes such as Rabs–Snare and the Arf–Coatamer

that promote fusion and ssion, respectively,14 shuttle between

membrane bound and unbound states. The mechanochemistry

of these bound complexes suggest that they respond to and

drive changes in the local curvature of the membrane upon

energy consumption,15 see Fig. 1 for a schematic.

In this manuscript, we take these two common features,

namely nonequilibrium ssion–fusion affected by curvature

generating proteins, as the primary driver of the membrane

shape in internal organelles in the trafficking pathway. Our

coarse-grained modeling approach incorporates the basic

elements of transport and membrane physics, with minimal

molecular detail. This is denitely an oversimplication, and we

will not be able to comment on the shapes of specic organelles,

which might require the addition of specic molecular

aspects13,16 on top of this basic common model. We hope,

however, to capture the broad features of organelle morpho-

genesis by our model.

In general, the stochastic ssion–fusion of vesicles from-

onto the organelle membrane, produce changes in both the

local membrane curvature and membrane area.17–21 In this
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manuscript, for simplicity, we consider a perfectly balanced

membrane where the rates of ssion and fusion are the same. In

this limit, there are no uctuations in the lipid number. We

study the morphological changes in a closed membrane

induced by active curvature uctuations arising from ssion–

fusion, using a Dynamic Triangulation Monte Carlo (DTMC)

simulation. This ignores the effects of hydrodynamics and

treats the membrane within a Rouse description. We display the

steady state membrane shapes as a function of activity rate and

the extent of curvature generation per active event and show

how membrane activity manifests as a dynamical pressure. We

conclude with a discussion on the signicance of such actively

driven membrane remodeling in describing the shapes of

intracellular membrane organelles in vivo.

1 Model

Since we are interested in shape changes of a closed membrane

over large spatiotemporal scales (size of organelle, 10 mm[

size of transport vesicle, 100 nm; membrane relaxation time

scales, 1–10 s[ inverse rate of material ux), it is appropriate

to use a coarse-grained dynamical description of the

membrane, governed by membrane elasticity, relaxational

dynamics and activity.

Membrane elasticity

To be able to describe the ramied, strongly non-axisymmetric

shapes of membrane organelles, we use computer simulations,

where the uid membrane is represented as a triangulated

closed surface with N vertices, denoted by {~X}, that are inter-

connected to form a triangulation map, {T }, consisting of T

triangles and L links (see ESI section S2† for a detailed

description).

The membrane is assumed to be tensionless and in the

absence of any activity, the elastic stresses can be described by

the standard Canham–Helfrich energy functional,22,23 whose

discrete form is given by,

H el ¼
k

2

X

N

i¼1

ðHi �H0iÞ
2
Ai � Dp0V ; (1)

where Ai is the area element associated with vertex i, Hi is the

local mean curvature and k is the bending modulus, a material

parameter taken to be uniform for simplicity. The local spon-

taneous curvatureH0i, whose form we declare later, is a measure

of the preferred local mean curvature of the membrane and is

non-zero only at the sites of activity. In addition, there is an

osmotic pressure difference Dp0 which sets the scale of the

mean enclosed volume at equilibrium.

Such simulation models have been used to study non-

axisymmetric, multicomponent membranes, both at equilib-

rium and when subject to nonequilibrium driving.24–27

Active ssion–fusion induced by curvature generating/sensing

proteins

The active events of ssion and fusion are driven by curvature

generating vesicle–protein complexes (Fig. 1), represented by a

scalar eld f at every vertex i, and takes values +1 or �1,

depending on whether this complex is bound to the membrane

at i or not. When bound, fi ¼ 1, the complex induces a local

spontaneous curvature at i, else it does not; this is achieved by

setting H0i ¼ C0(1 + fi)/2 in eqn (1).

At every vertex i, the transition probabilities for fi% �fi are

taken to be independent of each other. We denote the mean

attempt rate for these non-equilibrium curvature changes by 3,

and choose a form of these transition rates,28 so as to ensure

that N�, the instantaneous number of vertices with fi ¼ �1

(with N¼ N+ + N�), does not deviate signicantly from a desired

value N0
�. The explicit form of these transition rates are

P þ/� ¼ 3�

�

Nþ

N

�

1

1þ expðz½Nþ �N� � A0�Þ
(2)

and

P �/þ ¼ 3þ

�

N�

N

�

1

hþ expð � z½Nþ �N� � A0�Þ
: (3)

These transition rates are entirely dependent on the

preferred asymmetry parameter, A0 h N0
+ � N0

�, and the

parameter z sets the scale of uctuations in N+. N
0
+ and N0

�

denote the steady state mean values of N+ and N�; we ensure

that N� reaches N0
� by setting h ¼

�

2
N�

Nþ
� 1

�

in (3). Note that

the above transition probabilities do not depend on the

energy change associated with a change in local conguration,

f % �f. This is unlike what one would expect for transition

probabilities obeying detailed balance.

The adsorption–desorption of protein complexes and the

concomitant membrane shape changes are non-equilbrium

processes. The transition probabilities associated with these state

changes explicitly break detailed balance, seen here as a violation

of the Kolmogorov loop condition (ESI section S3†)—we show that

there exists a loop in conguration space where the product of

transition probabilities in one direction is not equal to the product

Fig. 1 Schematics of active fusion–fission mediated curvature

changes. (a) Fusion of transport vesicle onto the organelle membrane

is induced by the energy consuming Rab–Snare complex and

accompanied by membrane deformation. (b) Fission of transport

vesicle from the organelle membrane is induced by the energy

consuming Arf–Coat complex and accompanied by membrane

deformation. Our study extends to other active membrane processes,

such as the switching of membrane bound pumps from their active to

inactive forms (ESI Fig. S1†).
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taken in the reverse direction. Detailed balance is restored when

we set 3¼ 0 or C0¼ 0. We will refer to 3 as the activity rate, and C0,

as the curvature–activity coupling. On top of all this, we allow the

curvature generation resulting from the binding and unbinding of

these complexes to be cooperative, this could be accounted for by

an Ising-Hamiltonian,

H f ¼ �
1

2

X

N

i¼1

X

j˛Ui

Jijfifj ; (4)

where the summation is over sites j ˛ Ui, the set of all vertices

connected to i. While in principle Jij can depend on the local

curvature, for simplicity we take it to be homogeneous and

equal to J. Note that J could be zero (uncorrelated (un)binding)

or can have either sign; the existence of export sites29,30 in the

secretory system might suggest that J > 0.

Monte Carlo dynamics of the membrane

The full Monte Carlo dynamics includes the above mentioned

active processes, the usual Kawasaki exchange moves of the

eld f, and theMetropolis moves of membrane shape,25,31 using

the full Hamiltonian

H ¼ H el + H f, (5)

as summarized in Fig. 2. It should be noted that unlike the active

process which changes the value of f in a non-conserved manner,

the Kawasaki exchange moves facilitate aggregation of f while

keeping its average at a constant value, thereby taking the f

distribution towards equilibrium. We dene a Monte Carlo sweep

(MCS) to be L attempts to ip links,N attempts tomove vertices,N+

attempts to exchange fiwith neighbouring vertices, and 3 attempts

to ip the value of f at vertices—this sets the unit of time.

We x N0
+ ¼ 0.1N and vary 3, C0 and J to explore the

morphology of membranes at the nonequilibrium steady state.

k and J are in units of kBT, and C0 is in units of a0
�1, where a0 is

the size associated with the coarse-grained vertices. Before

discussing the results of the active membrane, we display the

equilibrium membrane shapes and phase diagram by setting 3

¼ 0, for different values of C0 and J in ESI Fig. S4.†

2 Results and discussion

Motivated by the phenomenology of trafficking dynamics in the

secretory pathway,6we have explored the strong nonequilibrium

regime where membrane relaxation times are longer than the

timescale of activity. We monitor the time series of the volume,

cluster number and mean elastic energy and show that they

saturate to a nonequilibrium steady state.

The steady state morphologies of an active membrane are

shown in Fig. 3. These shapes can be broadly classied as: (a)

quasi-spherical, (b) prolate ellipsoids, (c) tubules and attened

sacs, and (d) stomatocytes. Fig. 4 shows the phase diagram of an

active membrane in the 3–C0 plane, with J xed. Similarly, the

phase diagram in the 3–J plane for a xed value of C0 is shown in

Fig. 2 DTMC of two-component fluid membranes. (a) A chosen

vertex is randomly displaced in 3-dimensions keeping the connectivity

{T } unchanged. (b) A link is flipped (red line) to change connectivity. (c)

Kawasaki exchange of {f} (green arrows) to enable diffusion of the

active protein complex on the surface (see text for notation). Here bh

1/kBT (kB is the Boltzmann constant and T is the temperature) and DH

is the change inH (eqn (5)) upon change in the conformational state of

themembrane. In addition to the abovemoves, we carry out the active

f% �f transitions at a rate set by 3.

Fig. 3 Shapes of an active membrane. (a) Steady state shapes at 3 ¼

0.1N/MCS and J ¼ 0, as a function of curvature–activity coupling, C0.

(b) Steady state shapes at J ¼ 0 and C0 ¼ 0.8, as a function of activity

rate, 3. The side of the stomatocyte that is curved-in, is colored

differently, for clarity. (c) Steady state shapes at 3¼ 0.1N/MCS andC0¼

0.8, as a function of cooperativity J between active species. All

configurations are obtained with k ¼ 20, Dp0 ¼ 0 and N0
+ ¼ 0.1N. The

locations of the active protein complexes are shown by the shaded

regions.
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Fig. 5. We nowmake detailed comments on the effect that each of

these parameters have on the membrane shape. We study the

steady state phase diagram of an active membrane upon varying

C0, 3 and J.

Effect of curvature–activity coupling, C0

Fig. 3a(i–iii) show a sequence of steady state shapes of the active

membrane going from quasi-spherical to tubule to attened sac

on increasing C0, at a xed activity rate 3 ¼ 0.1N/MCS. These

nonequilibrium steady state shapes are distinct from their

equilibrium counterparts (ESI Fig. S4†), obtained when the

activity rate 3 ¼ 0.

Effect of activity rate, 3

The steady state shapes are very sensitive to the rates of activity

and go from tubular to attened sacs to stomatocyte as the

activity rate is increased. This is illustrated in Fig. 3b for three

activity rates, 3 ¼ 0.1, 0.25 and 0.5N/MCS, at a xed value of

C0 ¼ 0.8.

Effect of cooperativity, J

Cooperativity between the active species, J > 0, promotes the

formation of clusters, which in turn enhances the effects of

activity and curvature–activity coupling, consistent with the

results reported in ref. 32 for the case of membrane mediated

aggregation of active pumps, and leads to the sequence of

shapes depicted in Fig. 3c. We nd that while activity promotes

small clusters, it prevents the formation of larger clusters

(Fig. 6a).

This point deserves further discussion. For an equilibrium

membrane, the critical transition to having large clusters occurs

around J � 1 (Fig. 6b), with the size of the largest cluster scaling

with the total number of aggregating particles. In contrast, for

the active membrane with 3 ¼ 0.1, there is no large scale cluster

formation at the steady state—indeed, though the average

domain size increases with J, 70% of the active species are still

monomeric (Fig. 6a).

We compute the cluster size distribution P(s), and nd

that it ts to a power law, with an exponential cutoff: P(s) �

s�a exp(�s/s0), with the exponent a and s0 roughly indepen-

dent of 3, but dependent on J (Fig. 6 and ESI section S6†). The

exponent a z 1, for small values of J, is consistent with the

results of Turner et al.15

Fig. 4 Phases of the active closed membrane as a function of C0 and

activity 3. The phase boundaries are mere guides to the eyes, deter-

mined by visual inspection of the dominant shape within an ensemble

of morphologies simulated at each state point.

Fig. 5 Phase diagram of the closed activemembrane as a function of J

and activity 3, for a fixed C0 ¼ 0.8. The phase boundaries are mere

guides to the eyes, determined by visual inspection of the dominant

shape within an ensemble of morphologies simulated at each state

point. Appreciable phase-segregation of the protein species happens

only in the absence of activity, 3 ¼ 0, and when Jx 1.

Fig. 6 Normalized cluster size distribution P(s) of the active species (a)

as a function of J at 3 ¼ 0.1N/MCS, (b) as a function of activity rate, 3,

given in units of N/MCS. The equilibrium distribution (3 ¼ 0) for J ¼

0 and 1 is shown for comparison. Here, N0
+ ¼ 0.1N and C0 ¼ 0.8.

2390 | Soft Matter, 2015, 11, 2387–2393 This journal is © The Royal Society of Chemistry 2015
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The phase diagram of the steady state morphologies of an

active membrane in 3–C0 and 3–J space, displayed in Fig. 4 and

5, shows that the same ramied or attened shape can be

achieved either by increasing 3 or C0. To identify order param-

eters characterizing these phases, we rst note that the surface

area of the active membrane remains roughly constant (Fig. 7),

not surprising given that the DTMC moves do not allow for a

change in the total number of vertices N and are connected by

tethers. We therefore characterize these phase transitions by

geometrical order parameters such as the scaled volume V/V0,

where V0 is the volume of the fully inated sphere, or the ratio of

the surface area-to-volume.

The scaled volume, collapses abruptly as the membrane

shape transforms from a quasi-spherical conformation to a

tubule or a disc, and thereaer smoothly goes to zero as the

membrane transforms to a stomatocyte (Fig. 8). This transi-

tion is also evident in the behaviour of other geometrical

measures related to the gyration tensor, such as asphericity

and shape-anisotropy (ESI section S9†). This collapse tran-

sition is of purely non-equilibrium origin, its onset is

advanced when 3 increases and is absent for an equilibrium

membrane, 3 ¼ 0 (Fig. 8).

Thus far, we had not imposed any constraint on the volume

enclosed by the membrane, which allows the quasi-spherical

membrane at equilibrium to acquire volume V such that the

membrane tension and excess pressure are zero. It should be

noted that the resulting enclosed volume V # V0, where V0 is the

volume enclosed by themembrane, with the sameN vertices, when

it is fully inated. Starting from this equilibrium state with V/V0 < 1

and C0 ¼ 0, we now explore the steady state shapes, at different

activity rates, as a function of an added pressure Dp0 (Fig. 9). At

large positive Dp0, the membrane is an inated sphere. The pres-

sure required to fully inate the membrane increases with C0 and

activity rate 3. On plotting the scaled volume versus an activity

renormalized pressure Dp ¼ Dp0 + Dpa, we nd a complete data

collapse (Fig. 10). Dpa is an activity induced dynamical pressure,

whose sign is negative. This dynamic pressure is calculated as

follows. Starting from a fully inated equilibrium vesicle with

volume V0, which will now have tension s0, we obtain the steady

state conguration of the vesicle for a xed activity rate andC0. The

enclosed volume V at the steady state is a decreasing function of 3

and C0, as shown in Fig. 7.

Fig. 7 (a) The average membrane area remains roughly the same

(within a range permissible by the tight bounds on the tether lengths),

upon changes inC0 and 3. (b) Average volume hVi enclosed as function

of C0 for different values of 3 shows significant changes. The transition

from a quasi-spherical membrane to tubular/flattened sacs/stoma-

tocytes is accompanied by a sharp reduction in the enclosed volume.

Here, k ¼ 20, C0 ¼ 0.8, J ¼ 0 and N0
+ ¼ 0.1N.

Fig. 8 Scaled enclosed volume (V/V0) as a function ofC0with k¼ 20, J

¼ 0.0 and N0
+ ¼ 0.1N for different values of 3 in units of N/MCS. The

transition from quasi-spherical to tube, disc and stomatocyte is shown

by the various shaded regions for the specific case of 3 ¼ 0.1N/MCS.

The transition from a quasi-spherical vesicle to other shapes is char-

acterized by a jump in the enclosed volume and gets sharper as 3

increases. The equilibrium, 3 ¼ 0, curve is when 10% of the vertices

have a local spontaneous curvature C0.

Fig. 9 Volume as a function of the bare pressure Dp0, for an active

membrane with C0 ¼ 0.8 and for activity rates 3 ¼ 0.0, 0.1, 0.25, 0.5,

0.75, 1.0, 2.0, 5.0 and 10.1N/MCS.

This journal is © The Royal Society of Chemistry 2015 Soft Matter, 2015, 11, 2387–2393 | 2391
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Starting from the steady state of the active membrane

obtained for every pair of 3 and C0, an inating pressure Dp0 is

applied in small increments and the individual Dp0–V

isotherms are recorded until the active membrane becomes

fully inated, i.e. until V(3, C0, Dp0)/V0 � 1. The isotherms for an

active membrane (see Fig. 9) for the case of C0 ¼ 0.8 show a

modied behaviour when compared to the isotherm obtained

at equilibrium. We nd that the maximum pressure required to

inate the vesicle increases by a value Dpa, whose origin is

dynamic, and is dependent on both 3 and C0. The isotherms for

the active membrane collapse onto the equilibrium curve, as

shown in Fig. 10, when the bare osmotic pressure Dp0 is

rescaled by the corresponding dynamical pressure Dpa to obtain

an effective pressure Dp ¼ Dp0 + Dpa.

To obtain an analytic estimate of the dynamical pressure

Dpa, we generalize the condition for equilibrium of an inated

spherical membrane33 to this active case: Dp0R + 2(s0 + sa) �

kC0
2 ¼ 0, where R is the radius of the inated sphere, s0 is the

tension on the equilibrium fully inated membrane, and sa ¼

�3kC0
2/(1 + 3) is the dynamic tension induced by ssion–fusion

at an activity rate 3.‡ This dynamic tension can be reinterpreted

as a renormalized pressure, Dp ¼ Dp0 � 23kC0
2/R(1 + 3),

consistent with the demonstration in the inset of Fig. 10.

3 Concluding remarks

Our goal here has been to be able to describe generic large scale

morphologies, such as ramied, tubular or sheet-like shapes,

that seem to be shared by many different internal membrane

compartments, both in the secretory (e.g., Golgi) and the

endocytic (e.g., endosomes) pathways, using a common shared

dynamical feature, namely the non-equilibrium processes of

ssion–fusion driven using energy consuming mechano-

chemical transducers.

This places nonequilbrium phenomena at the heart of

organelle morphogenesis and appears to have some level of

support.1,34,35 Our work should not be viewed as being incon-

sistent with the view that tubular and at organelle morphol-

ogies can arise from forces generated by specialized curvature-

modifying proteins or protein scaffolding proteins.4,13,36–41 It

could be that tubular and attened sheet-like structures formed

as a result of active ssion–fusion are stabilized by the presence

of protein scaffolds. In addition, it is possible that the presence

of lamentous cytoskeletal structures could provide a scaffold

that directly affects the membrane shape.

How does one experimentally test this nonequilibrium

perspective? The denitive aspects of the active nonequilibrium

viewpoint will be manifested in the dynamical uctuations at

the steady state, the dynamical response to perturbations and

the dynamics towards the steady state.17,18 Unfortunately, these

aspects cannot be analyzed using Monte Carlo simulations. A

simple and unique consequence of the active driving would be

the centre-of-mass movement of the entire organelle when the

ux of activity breaks fore-a symmetry, and could in principle

be amenable to experiments. Similarly, other consequences,

such as spontaneous swelling and tubular instabilities due to

activity induced negative tension,17,21,42 arise when there is an

imbalance between ssion–fusion dynamics.

Fig. 11 demonstrates how the shape and composition of the

active membrane relaxes towards equilibrium when the activity

3 is abruptly shut off. Starting from an initial tubular

morphology of the active membrane, the shape changes rapidly

to give rise to an inated, near–spherical equilibrium

morphology. The elastic energy H el drops exponentially fast

and that the curvature sensing/generating proteins cluster and

coarsen, as indicated by a rapid decrease of Nclus, to form

tubular buds (as in Kumar et al.25). This shape evolution is

Fig. 10 Data collapse of the scaled enclosed volume versus the

activity renormalized pressure, Dp. Data correspond to k ¼ 20,

C0 ¼ 0.8, N0
+ ¼ 0.1N with 3 ¼ 0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 5.0 and

10.1N/MCS. (Inset) Computed values of the dynamic pressure Dpa for

different values of 3 and C0 shows a good fit to 23kC0
2/R(1 + 3), where

R � 19.4a0 is the radius of the fully inflated membrane.

Fig. 11 Time evolution of an active tubular membrane at steady state,

with C0 ¼ 0.8, k ¼ 20, N0
+ ¼ 0.1N, J ¼ 1, and 3 ¼ 0.1N/MCS, following

the inhibition of activity—the time axis has been shifted such that the

inhibition occurs at t ¼ 0. The membrane relaxes to equilibrium,

forming buds, characteristic of two-component membranes,25 in the

process of minimizing the elastic energy, H el (open circles). Con-

committantly, domains, enriched in the protein complex, coarsen

resulting in a monotonic reduction of the cluster number, Nclus (open

squares). Symbols have been shown only at some representative

points.

‡ An induced tension of a similar form was proposed recently for an equilibrium

membrane when it is constrained to a conguration with curvature less than the

one set by the spontaneous curvature: R. Lipowsky, Faraday Disc., 2013, 161, 305.
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shown in ESI Movies M1 and M2.† Experimental approaches, in

which one monitors the dynamics of shape changes of Golgi

compartments using high resolution live-cell imaging, when the

agencies of active ssion and fusion are suddenly switched off,

could help resolve these issues.

Admittedly, one cannot ignore the effects of both specic

curvature generating proteins or the cytoskeletal scaffolding on

shaping the membrane conformations. In future, we plan to

add these effects to the nonequilibrium framework presented

here. We hope the results obtained here will drive further

experimental efforts in arriving at a deeper understanding of

the fundamental issues governing organelle morphogenesis.
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