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Abstract: In the present work, apart from operating on the structure of a 
conventional genetic algorithm (GA), a heuristic which uses techniques like 
differential mutation probability, elitism and local search is used to produce 
near optimal solutions for large machine loading problems with less 
computational intensity. Two variants of the machine loading problem are 
analysed in the present work: single batch model and the multiple batch 
models. The sensitivity of the problem with respect to the tool capacity 
constraint is evaluated to find that moderately restricted problems requiring 
greater computational resources in comparison to lesser restricted and tightly 
restricted class of problems. The performance of various dispatching rules was 
compared to infer that the least slack principle fares better than the other tested 
dispatching rules. It is observed from the results, that the proposed heuristic is 
efficient in handling large and complex machine loading problems. 
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1 Introduction 

A flexible manufacturing system (FMS) is an integrated manufacturing system which 
consists of a network of multi-functional numerically controlled (NC) machine tools, 
each with automatic tool changing capabilities and automated material transfer systems. 
The FMS systems are widely applied in industrial practices because it provides the 
flexibility of a low volume – high variety manufacturing along with the efficiency of a 
high volume – low variety manufacturing. As noted by Graves (1981), it involves 
complex production planning level decisions to utilise the system in an optimal and 
efficient manner. The conditions for the efficient working of an FMS can be maintained 
by partaking a lot of important control decisions such as part type selection, machine 
grouping, production ratio planning, work-in-process inventory planning, machine 
loading, etc. (Hutchison, 1991). 

Several researchers have studied one or more of the important decision making 
problems in FMSs. Chan et al. (2005) developed a fuzzy goal programming model with 
an artificial immune system for machine tool selection and operation allocation problem 
in FMSs. Kim et al. (2003) have addressed the tool requirements planning problem in a 
FMS. The objective is to minimise tool cost subject to a makespan constraint. They 
develop four heuristics that start with an infeasible solution and increase the number of 
tool copies till the makespan constraint is satisfied. Computational tests on randomly 
generated problems indicate that good solutions can be obtained to the problem within 
reasonable computational time. Atmani and Lashkari (1998) present a zero one integer 
programming model for machine tool selection and operation assignment in FMS. A 
mathematical model which, through constraint optimisation principles, is able to find the 
optimal distribution of workforce optimising fundamental parameters, such as man-hours, 
throughput, makespan and work in process was proposed by Gilles and Matteo (2009). 

Stecke (1983) discussed the formulation and solution of non-linear integer production 
planning problems for FMSs. The author listed five important decision making problems 
in FMS. These are part selection problem, machine grouping problem, production ratio 
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problem, resource allocation problem and machine loading problem. Among the above 
mentioned problems, it has been found that two problems – part type selection and 
machine loading – are crucially important for the efficiency of an FMS (Gershwin, 1994). 
It has also been shown that optimising a machine loading problem automatically 
maximises the system utilisation, maximises the expected throughput and minimises 
inventory levels (Shanthikumar and Stecke, 1986). 

The machine loading problem can be defined as “assignment to the machines of the 
operations of the selected part types and the tools necessary to perform these operations, 
subject to the technological and capacity constraints and according to some loading 
objective, in a way that will best utilize the machines, or maximize production, when the 
system is running” (Hwang, 1986). The machine loading problem has been studied in 
great detail in the recent past. Berrada and Stecke (1986) investigated the problem for 
several different objectives for a system containing equal sized groups of pooled 
machines. Shanker and Srinivasulu (1989) considered the loading problem for a  
non-stationary part mix which could change dynamically during the running time of the 
system. 

2 Literature review 

In the past, the loading problem has traditionally been solved by breaking it into three 
parts: job sequence determination, allocation of jobs to machines and reallocation. 
However, Liang and Dutta (1993) suggested an integrated approach which undertook 
these three steps collaboratively and it was shown to produce better results. Owing to the 
flexibility of an FMS, there are several objectives which are of equal importance while 
solving a machine loading problem. As Tiwari and Vidyarthi (2000) suggest, the 
prominent ones among them are workload balance, inter-cell movements, tool 
changeovers, etc. The machine loading problem is a known hard problem. Hence, various 
scheduling techniques have been developed to tackle the ever increasing complexity and 
flexibility of manufacturing systems. The optimisation techniques proposed in the 
literature include: linear programming (Nascimento, 1993) goal programming (Hoitomt 
et al., 1993), dynamic programming (Song et al., 1995), branch and bound (Kuhn, 1995) 
and Lagrangian relaxation (Mukhopadhyay et al., 1998). The approximation techniques 
include priority rule-based heuristics (Sarma et al., 2002); local search algorithms – 
iterative search, simulated annealing (Kopfer and Mattfield, 1997), memetic algorithm 
(Wisut and Karn, 2011), tabu search (Goldberg and Korb, 1989), etc. Ali and Sangari 
(2010) developed a new algorithm using a simulated annealing, to find the optimal 
inspection strategy for a serial multistage process. Valente (2007) proposed several 
dispatching heuristics for the single machine scheduling problem with linear earliness 
and quadratic tardiness costs, and no machine idle time. Ponnambalam and Kiat (2008) 
address the machine loading problem in FMSs using particle swarm optimisation. They 
addressed a bi criteria problem of minimising system imbalance and maximising 
throughput considering technological constraints on machine availability and tool slots. 
The test their proposed algorithm on ten problems from the literature and conclude that 
the proposed algorithm provides good solutions. 

Tiwari and Vidhyarthi (2000) addressed the machine loading problem in FMS that 
minimises system imbalance and maximises throughput considering technological 
constraints on machine availability and tool slots. They test their proposed genetic 
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algorithm on ten randomly generated problems. They also indicate that rules other than 
SPT can give good performance with respect to loading problems in FMS. The proposed 
GA has been tested on small sized problems with up to eight jobs. 

A special mention is necessary here for the branch and bound technique developed by 
Berrada and Stecke (1986). A sequence of sub-problems are defined; each sub-problem 
being solved by an efficient branch and bound technique and the resultant solution being 
modified to satisfy any violated constraints by solving multiple very small integer 
problems via the branch and backtrack procedure. Moslehi et al. (2010) used an efficient 
lower and upper bounds and new dominance rules, a branch-and-bound scheme for 
solving problem of scheduling n jobs on a single machine to minimise the sum of 
maximum earliness and tardiness. This approach has been demonstrated to be an optimal 
scheduling technique for a single batch problem irrespective of its nature and variety. 
However, the only drawback of this technique is that it can handle problems of only a 
moderate size and fails to deal with problems of greater size. Optimisation techniques are 
unable to handle greater sized problems. On the other hand, most of the approximation 
techniques are shown to be very specific for a particular class of problems and cannot be 
applied universally across the different classes. 

Several search and artificial intelligence techniques like reinforcement learning, 
artificial neural networks, Petri net model, etc., were proposed for optimisation of 
machine loading problems (Tiwari et al., 1997). Search algorithms are primarily of two 
types: local search and evolutionary. Local search-based heuristics are known to produce 
good results in short computational times but they run the risk of being caught in local 
critical points. Evolutionary algorithms can be formulated independently depending on 
the nature of the problem and its performance is heavily dependent on the formulation. 
Maheswaran et al. (2008), proposed hybrid heuristic algorithms based on dynamic 
dispatching rule, greedy heuristic (backward phase) and backward phase heuristics with 
an iterated local search to solve the single machine scheduling problems with the 
objective of minimising the total weighted tardiness. Genetic algorithms can be 
considered to be a hybrid of the two previous techniques as it applies a local search 
operator in an evolutionary framework. They combine the advantages of both, efficiency 
of the local search and robustness of the evolution (Co et al., 1998). Although instances 
of GA being used to solve a flow shop or a job shop are abundant, applications are 
relatively scarcer when compared to a parallel machine scheduling problem (Dar-El and 
Sarin, 1984). Min and Cheng (1999) proposed a GA for solving the identical parallel 
machine scheduling problem with the objective of minimisation of makespan. Cheng  
et al. (1995) used genetic algorithms to solve the same problem for minimising the 
maximum weighted absolute lateness. McCormick and Pinedo (1995) formulated a GA 
for scheduling with the dual objectives: flow time and makespan. Figielska (1999) 
devised a GA integrated with column generation technique to solve parallel machine 
scheduling for the purpose of minimising the makespan and total cost of changeovers. 

A large body of literature has been found for solving the parallel machine scheduling 
problems based on the objectives of makespan and flow time, but there is a relative 
dearth of work which considers the workflow balancing as its main objective. Also, these 
techniques are unable to model the dynamic and stochastic nature of the manufacturing 
systems and take extensively long computing time required for the machine to gain 
intelligence. 

The optimisation and approximation techniques mentioned above are adept at solving 
moderately sized machine loading problems (Viswanadham and Narahari, 1994). 
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However, with the evolution of manufacturing environment, an FMS is now expected to 
handle a far greater number of jobs. In such situations, the machine loading problem can 
be immensely complex with the addition of multiple batch possibilities, tool savings and 
tool capacity constraints. Hence, there is a growing need for techniques which would be 
able to solve such problems of growing size with relative ease. Taking a cue from these 
observations, the present work attempts to develop a systematic integrated approach to 
address the entire machine loading problem simultaneously. The genetic algorithm-based 
heuristic proposed in the present work is capable of solving complex and large sized 
machine loading problems in a FMS. In the present work, issues such as load balance, 
system tardiness and material wastage were addressed. Load balance is the primary 
objective because with the huge capital investment needed for the installation of an FMS, 
the management expects the system utilisation to be at a maximum which can be easily 
achieved by the balancing of workloads. Moreover, low tardiness levels facilitate timely 
supply of orders and help the organisation maintain good customer relations and build an 
esteemed brand value. Similarly, minimisation of overall material wastage has a directly 
proportional relationship with the operational costs of the system. 

3 Problem definition 

A class of problems of scheduling n independent jobs N = {1, 2, 3 ……n} on m similar 
parallel machines M = {1, 2, 3 … …m} with the purpose of optimising a predefined 
criterion is considered in the present work. This class of problems is typically known as 
parallel machine scheduling problem. 

The binary variable xij, is defined as xij = 1, if job i is operated on machine j. xij = 0, if 
job i is not operated on machine j. 1,ijj

x =∑  to ensures that one job gets processed on 

only one machine and one machine cannot operate on more than one job at a time. pij is 
the time taken by machine j to complete the operation of job i. If few jobs are 
incompatible on certain machines, xij would always be 0 for such job machine pairs. 
These job-machine pairs would form the incompatibility matrix. Also, it is assumed that, 
all the jobs are available for processing at the start time of the process. Moreover, a job 
has to complete its processing once it has been loaded on a machine and no pre-emption 
of jobs is allowed. Present work would mainly deal with the cases of parallel similar 
unrelated machines. They are more in tune with the industrial reality in comparison with 
the others as the different machines might have been bought at different times, operating 
on different technological principles, thus giving rise to independent processing times. 

3.1 Tooling constraints 

Each machine would have a tool magazine with a finite capacity. The tool capacity of a 
machine is represented by tj and is defined by the number of slots present in its tool 
magazine. Each slot can hold one individual tool. If a job has been allotted to a particular 
machine, the tool magazine of that machine should house all the tools corresponding to 
the job, failing which the processing of the job would not be possible. Each job requires 
the same group of tools irrespective of the machine on which it is processed. If several 
jobs have been allocated to a particular machine and some of the tools required are 
common to a few jobs, it is sufficient for the machine to store a single copy of the 
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common tools and not store duplicate copies of the same tool. This leads to significant 
tool capacity savings for a machine if the allocated jobs share a large number of common 
tools. 

3.2 Single and multiple batch problems 

Although a machine can only process one job at a time, multiple jobs can be allocated to 
a single machine. However, the tool magazine of a machine may house a greater number 
of tools which is sufficient for processing of several jobs. In that case, the machine can 
process several jobs sequentially without undergoing any tool changeover as it already 
houses all the tools required for processing the different jobs. Hence, the group of jobs 
which can be processed by a machine without undergoing any tool changeover is called a 
‘batch’ of jobs. The parallel machine scheduling problem can operate in two modes: 
single batch or multiple batches. In the single batch model, a machine can process only 
one batch of jobs while in the multiple batches model, a machine can handle more than 
one batch of jobs. Generally, industrial practices favour the multiple batch model as it is 
less capital intensive due to the lesser number of machines required and an improved 
percentage of machine utilisation. 

In a single batch model, the tool capacity of the machine should be such that it should 
be able to house the tools necessary for the processing of all the jobs allocated to the 
machine. Tool capacity of a machine, tj should always be greater than or equal to number 
of tools required to process all allocated jobs in one batch. In a multiple batch model, a 
machine is allowed to undergo any number of tool changeovers. Hence, in case the 
machine is incapable of processing all the allocated jobs in one batch due to tool capacity 
constraints, it can process the initial set of jobs, undergo a tool changeover to change the 
tools in its magazine and then proceed to do the remaining jobs. 

3.3 Objective functions 

The following three objectives: load balance, total tardiness of the system and total 
material wastage in the system are used as objectives for optimisation. 

3.3.1 Load balance 

The makespan of each machine is defined as the completion time of the last job 
processed on it. It is represented by cj. Several definitions of load balance exist including 
minimising the difference between the maximum and minimum loads or between the 
maximum and the average of the loads. In this paper, we minimise the maximum of the 
makespan of all machines. 

3.3.2 Tardiness 

Each job has a due date associated with it which represents the deadline by which it is 
expected to have been released from the system. In case the job is delayed beyond its due 
date, it is said to be tardy and the tardiness of the job is represented by: 

( )max 0,j i it C d= −  (1) 
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where Ci is the release time or completion time of the job and di is the due date of the job. 
The total tardiness of the system is represented as: 

i

T ti=∑  (2) 

3.3.3 Material wastage 

Each job is associated with a parameter which defines the length of the job. When more 
than one job is processed together in a batch, all the jobs are placed together on a sheet 
(considered to be one dimensional) and the leftover length of the sheet is considered to be 
wastage. Thus, the total length of the sheet wasted across all the batches put together is 
considered as the material wastage of the system. 

4 Genetic algorithm-based heuristic 

A genetic algorithm is an intelligent probabilistic search algorithm that simulates the 
process of evolution by taking a population of solutions and applying genetic operators in 
each reproduction. Each solution in the population is accorded a fitness value by 
evaluating it according to some performance measure. The population is operated on by 
three main genetic operators: reproduction, crossover and mutation. The reproduction is a 
process in which the individual strings are copied according to their fitness values which 
results in more highly fit chromosomes and less weak chromosomes in the intermediate 
mating pool. During the crossover operation, the chromosomes used for mating are 
selected through the roulette wheel selection strategy. Mutation is practiced to avoid the 
solution from getting stuck in a local optimum. One cycle of these genetic operations and 
the evaluation procedure is known as a generation in GA terminology. The cycle of 
reproduction – crossover – mutation – selection is continued until the termination 
criterion is met. Apart from the above described structure of a conventional GA, other 
techniques such as elitism, local neighbourhood search and increased mutation incidence 
are used in the present work to produce comparatively better results. The parameters used 
in the algorithm are given in Table 1 and the steps involved in the proposed algorithm are 
shown in Figure 1. 
Table 1 Parameters used in the genetic algorithm 

Sl. no. Parameter Value 

1 Population size 50 to 250 
2 Mutation probability 0.01 
3 Local neighbourhood search threshold Gets triggered after 25 successive 

generations of no improvement 
4 Increased mutation incidence threshold Gets triggered after 50 successive 

generations of no improvement 
5 Stagnation threshold 200 
6 Maximum number of generations 1,000 
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Figure 1 Various steps in the proposed genetic algorithm 
 

 

Pheno style coding is used and hence the value of the ith gene of the chromosome 
represents the machine on which the ith job is to be processed. After the determination of 
the objective functions for all the chromosomes of a generation, a fitness value is 
calculated for each chromosome which is representative of its degree of ‘fitness’. The 
entire step by step process of the calculation of fitness values is described below. 

Step 1 All the chromosomes of the population are arranged in an ascending order and 
are given ranks according to their relative. 

Step 2 Rank value of a chromosome is calculated as: 

Rank Value 1 (Rank / Population Size)= −  

Step 3 Performance value of a chromosome is calculated as: 
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Objective function of the best chromosome of the populationPerformance Value
Objective function of the chromosome

=  

Step 4 Goodness value of a chromosome is calculated as: 

Goodness value  Rank Value  Performance Value= +  

Step 5 Finally, the fitness value of a chromosome is calculated as: 

Goodness value of the chromosomeFitness Value of a chromosome
Goodness value of all
chromosomes of the population

=

∑
 

Table 2 Calculation of fitness values of chromosome 

Chromosome Objective 
value Rank Rank 

value
Performance 

value 
Goodness 

value Fitness value = (Goodness value / 4.35) 

A 40 2 0.6 0.5 1.1 0.25 

B 50 3 0.4 0.4 0.8 0.18 

C 20 1 0.8 1 1.8 0.41 

D 100 5 0 0.2 0.2 0.05 

E 80 4 0.2 0.25 0.45 0.10 

Total     4.35 1 

Table 2 presents the calculation of fitness values for a given set of chromosomes. In the 
present work, the fitness proportional selection, known as roulette wheel selection is used 
to choose chromosome for various genetic operations like reproduction, crossover, 
mutation, weeding, etc. After evaluating various crossover techniques such as partial 
mapped crossover, edge recombination operator, etc., it was found that the two point 
crossover technique was the best suited for this genetic algorithm design and it is 
implemented in this work. In the mutation technique used in the proposed algorithm, 
firstly, a random number between zero and the chromosome length is generated. This 
random number represents the number of genes of that chromosome which will undergo 
mutation. The genes to be mutated are selected randomly. The value of the genes is now 
changed from the present value to a random value between zero and the number of 
available machines. 

In case the best solution of the population has not shown any improvement for a 
number of successive generations, the process is triggered for the best five chromosomes 
of the population. The value of one random gene is changed randomly to one of the 
available machine and this new chromosome is fed into the population. If the best 
solution of the population does not show any improvement for a number of successive 
generations, the mutation probability for the next generation increases to an appreciably 
higher level thus encouraging a larger number of chromosomes to mutate. This promotes 
a higher amount of diversity in the population which helps the heuristic to break out of 
the local optima. 

To ensure that the best chromosomes of a population are not lost during the selection 
strategy for the next generation, the best 1% chromosomes of the population are always 
transferred to the next generation as a rule. The algorithm is terminated when either of the 
two conditions is satisfied: 
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• the process has reached the pre-defined limit for the maximum number of 
generations 

• the best chromosome of the population has not shown an improvement for a number 
of successive generations which is greater than or equal to the stagnation threshold. 

Upon termination, the best chromosome of the current population is presented as the near 
optimal solution of the problem. 

5 Results and discussions 

In the present work the branch and bound technique developed by Berrada and Stecke 
(1986) is used to provide a benchmark for a given problem. The basic scheme of the 
branch and bound techniques is to devise the problem as a series of sub-problems whose 
solutions would eventually converge to the optimal solution. Each of these sub-problems 
have a δl associated with them and the objective of the sub-problem is to find an 
allocation of jobs which results in a load balance which is less than δl. δl is fixed as the 
midpoint of the interval between the upper bound (UB) and the lower bound (LB) of the 
problem. These bounds are revised with the solution of each sub-problem in the 
following manner: initially, UB is set at α while LB is set at 0. If we are able to find an 
optimal solution to the sub-problem, the bounds get revised according to solution 
otherwise LB is updated to δl while UB remains the same. It is observed that for large and 
complex problems the branch and bound technique fails to give results within a 
reasonable CPU time. 

5.1 Single batch model 

The two techniques have been run for a variety of single batch model problems of 
different sizes and load balancing is the prime objective which is evaluated. 
Table 3 Computational resources required by the branch and bound technique 

Time (in seconds) Number of nodes evaluated 
Sl. no. Size 

Average Standard deviation
 

Average Standard deviation 
1 10 × 3 22.4 3.9  443.8 49.9 
2 15 × 4 80.8 9.9  3,521.4 367.6 
3 20 × 5 144.1 19.7  15,359.6 1,734.8 
4 25 × 6 333.3 36.7  41,646.6 5,011.3 
5 30 × 7 621.5 64.1  122,627.4 11,264.7 
6 35 × 8 1,182.2 152.8  220,092.8 25,053.6 
7 40 × 9 1,738.5 224.2  446,836.8 36,829.2 

The branch and bound technique provides optimal solution to the single batch model of a 
load balancing problem. However, the computation resources required by the technique 
rise exponentially as the size of the problem increases. This has been illustrated by the 
following set of graphs and tables. Computational time required by the branch and bound 
technique to solve seven problems each of different sizes is listed in Table 3. It is 
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observed that, though the branch and bound technique gives optimal solution, the time 
required increases exponentially as the number of nodes that need to be evaluated 
increases with increase in size of the problem. The problems have been evaluated on a 
computer processor of frequency 2.4 GHz. For documentation purposes, the individual 
values of the time taken and the number of nodes evaluated by the branch and bound 
technique for the sizes 10 jobs × 3 machines is listed in Table 4. 
Table 4 Computational requirements for 10 × 3 sized problems 

Problem no. Time (in seconds) No. of nodes evaluated 

1 26 410 
2 17 354 
3 20 440 
4 23 456 
5 21 497 
6 23 423 
7 18 406 
8 30 439 
9 21 521 
10 25 493 
Total  4,438 

5.1.1 Comparison of performance of GA heuristic with the branch and bound 
technique 

This section evaluates the degree of near optimality of the solutions given by the  
GA-based heuristic. The optimal solution used for comparison is evaluated through the 
branch and bound technique. An identical set of five problems is evaluated by both of the 
techniques; the GA-based heuristic and the branch and bound technique. Henceforth, the 
solutions given by the GA-based heuristic are compared with the optimal solution to get a 
perspective on their efficacy. 
Table 5 Average percentage deviation of GA-based heuristic from optimal solution 

Size of the 
problem 

Average percentage deviation of GA-based heuristic’s solution from the optimal 
solution 

10 × 3 2.70 % 
15 × 4 5.3 % 
20 × 5 9.4 % 
25 × 6 13.1 % 
30 × 7 8.5 % 
35 × 8 11.8 % 
40 × 9 10.5 % 

The average percentage deviation of the solution to that obtained using branch and bound 
technique are presented in Table 5. As the table suggests, the solutions obtained from the 
GA-based heuristic do not deviate far off from the optimal solution of the problems. This 
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study substantiates the claim of the GA-based heuristic to give ‘near optimal’ solutions to 
such problems. 

5.1.2 Robustness of the GA-based heuristic 

This section analyses the robustness of the GA-based heuristic in terms of the 
computational resources required while solving problems of larger sizes. The GA-based 
heuristic is run for ten different problems of various sizes, the sizes ranging from  
10 jobs × 3 machines to 150 jobs × 20 machines. 
Table 6 Average time required by GA-based heuristic to solve a problem 

Problem size Average time  
(in seconds) Problem size Average time 

(in seconds) 
10 × 3 33 80 × 13 631 
20 × 5 118.6 90 × 14 775.6 
30 × 7 291.5 100 × 15 840.6 
40 × 9 354.7 110 × 16 989.1 
50 × 10 367.2 120 × 17 1,019.2 
60 × 11 546.2 130 × 18 1,066.1 
70 × 12 573.2 150 × 20 1,261.3 

Several trials were conducted to establish the efficiency of the proposed method for large 
size problems and the results are reported on Table 6 and shown graphically in Figure 2. 
Table 6 and the graph establish that the GA-based heuristic is far less computationally 
intensive than the branch and bound technique and can easily be used to solve problems 
of greater sizes with near optimal results. 

Figure 2 Comparison of the time required by GA-based heuristic and branch and bound 
technique to solve problems of different sizes 

 

5.1.3 Sensitivity of the branch and bound technique 

This section discusses the sensitivity of the branch and bound technique with respect to 
the tool capacity constraints. The effect of the constraints on the computational resources 
required by the technique is demonstrated by a series of graphs. 
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The class of single batch – parallel machine scheduling problems can be segmented 
into three divisions on the basis of their tool capacity constraints: loosely restricted, 
moderately restricted and tightly restricted. Loosely restricted problems are such that the 
tool magazines have a relatively greater capacity and hence, the tool capacity constraint 
lends a greater degree of freedom and does not have much bearing on the solution. 
Tightly restricted problems are such that the tool magazines have a relatively lesser 
capacity and hence very often, the problem is rendered infeasible due to the over bearing 
tightness of the tool capacity constraints. Moderately restricted problems are the ones 
which do not fall into either of the categories and operate in a regular manner. 

The computational resources required to solve a problem depend significantly on the 
‘restrictive’ class of the problem. This can be demonstrated by evaluating a series of 
problems for which the entire problem statement is the same but for the tool capacity 
constraint. The computational resources required for solving the different problems as we 
gradually increase the tightness of the tool capacity constraint are observed. This analysis 
is done for each of the various sizes and the results are depicted below in the form of 
Figure 3(a) to Figure 3(c). For each size, this experiment is repeated thrice thus 
constituting three different cases for each size. 

Figure 3 Sensitivity of branch and bound technique for problems of different sizes,  
(a) problems of size 10 × 3 (b) problems of size 25 × 6 (c) problems of size 25 × 6  
(see online version for colours) 

 
(a) 

 
(b) 
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Figure 3 Sensitivity of branch and bound technique for problems of different sizes,  
(a) problems of size 10 × 3 (b) problems of size 25 × 6 (c) problems of size 25 × 6  
(continued) (see online version for colours) 

 
(c) 

From the above graphs, it can be inferred that while the ‘loosely restricted’ and the 
‘tightly restricted’ class of problems take relatively lesser amount of computational time 
than the ‘moderately restricted class’ thus generating a rough bell shaped curve. This can 
be attributed to the fact that in the ‘loosely restrictive’ class of problems, the tool capacity 
constraint does not play much of a role in the solution does acting as a virtually  
non-existent constraint while in the ‘tightly restricted’ class of problems, due to the over 
bearing tightness of the constraints, the technique is left to evaluate only a handful of 
feasible solutions as most of the possible allocations are rendered infeasible due to the 
overt tightness. 

5.2 Multiple batch model 

This section of the report analyses the performances of the different heuristics while 
evaluating multiple batch parallel machine scheduling problems. It also compares the 
various dispatching rules that can be used for sequencing in multiple batch problems and 
tries to evaluate the nature of the relationship between the different objectives relevant to 
the multiple batch model such as load balancing, tardiness, sheet wastage, etc. 

5.2.1 Computational requirements of different techniques used 

The branch and bound technique and the GA-based heuristic are modified in order to be 
applicable to the multiple batch model. While the computational time required for the 
branch and bound technique is roughly comparable to the time required for the single 
batch model, the time required for the GA-based heuristic increases to a small extent due 
to the presence of a nested GA algorithm which requires comparatively greater 
computational resources. 
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Figure 4 Comparison of computational time required by branch and bound technique and  
GA-based heuristic for multiple batch models 

 

While making a comparison between the computational times required by the two 
heuristics (Figure 4), it is observed that while the time for the branch and bound 
technique rise exponentially with the increase in the problem size, the time for the  
GA-based heuristic increases linearly, thus making it suitable for evaluation of larger 
sized problems. A graphical comparison between the timings of the two heuristics is 
presented below. 

5.2.2 Comparison of performance of different techniques 

The efficacy of the solutions given by the different techniques while solving the multiple 
batch model problems are compared in this section. The comparisons are made by 
solving an identical set of five problems using the three different dispatching rules; 
shortest processing time (SPT) deterministic heuristic, branch and bound technique and 
the GA-based heuristic to allocate jobs to the various batches. It is observed that the SPT 
heuristic fares poorly in comparison to the branch and bound technique and the GA-based 
heuristic. The graphs comparing the solutions given by different heuristics for different 
problem sizes are shown in Figure 5. 

Figure 5 Comparison of performance of various techniques while solving problems of different 
size, (a) problems of size 10 × 3 (b) problems of size 40 × 9 

  
(a)     (b) 
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Moreover, it is also seen that the nested GA-based heuristic is giving comparatively 
better solutions than the branch and bound technique unlike the single batch model where 
the latter was seen to be giving the best solution. This is because of the presence of the 
nested GA which uses a genetic algorithm to determine the sequencing of the jobs 
allocated to a particular machine while the branch and bound technique uses a pre-
defined deterministic rule, in this case the earlier due date principle, to determine the 
sequencing. Table 7 lists the average improvements of nested GAs solution when 
compared to the branch and bound’s solutions. It should be noted here that the solution 
obtained by the branch and bound technique is a heuristic solution and is used only for 
the purpose of comparison of performance. 

Table 7 Average percentage improvement of nested GA heuristic over branch and bound 

Problem size  
(number of jobs) 

Average percentage improvement of nested GA heuristic  
over branch and bound 

10 28.8% 

15 25.9% 

20 30.2% 

25 39.1% 

30 36.9% 

35 35.4% 

40 40.2% 

5.2.3 Comparison of performance of various dispatching rules 

A dispatching rule is the pre-determined rule which determines the sequence in which the 
allotted jobs are fed to a particular machine. This section compares the performance of a 
few dispatching rules by evaluating the same problem individually for the different 
dispatching rules and comparing their results. The three dispatching rules being evaluated 
here are: 

• earliest due date (EDD) 

• SPT 

• least slack. 

We evaluate five different problems for the five different sizes (30 jobs, 60 jobs, 90 jobs, 
120 jobs, 150 jobs). Each problem is evaluated separately for the three different 
dispatching rules and the results are presented in Figure 6(a) to Figure 6(c). 

It is observed that the SPT dispatching rule does not perform well in comparison to 
the other two rules. Moreover, it is seen that the least slack rule performs marginally 
better in a majority of the cases. The average improvements of the EDD rule and least 
slack rule over the SPT rule for the various sizes are listed in Table 8. 
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Figure 6 Comparison of performance of dispatch rules for problems of different size,  
(a) 30 job problems (b) 60 job problems (c) 90 job problem 

  
(a)     (b) 

 
(c) 

Table 8 Improvement of performance of dispatching rules over SPT rule 

Average improvement over SPT rule by Problem size 
(number of jobs) EDD rule Lease slack rule 

30 30.9% 50.0% 
60 41.2% 53.4% 
90 33.1% 46.1% 
120 34.3% 50.9% 
150 37.3% 48.0% 

5.2.4 Relationship among different objectives 

Tardiness, load balancing and material wastage are the few objectives which are of prime 
importance in an industrial scenario. It is observed that the total tardiness of the system 
and the load balancing are non-conflicting objectives and share a directly proportional 
relationship. Moreover, material wastage and tardiness of a system turn out to be 
conflicting objectives and have an inversely proportional relationship. 
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The relationship between the various objectives of a system is evaluated in the 
genetic algorithm-based heuristic by tracking their values through the different 
generations. The values of the three above mentioned objectives are recorded at intervals 
of 50 generations and the recorded values are plotted in a graph, given in Figure 7, to 
understand the relationship in a better manner. 

Figure 7 Relationship among different objectives for different problems, (a) 120 job sized 
problem (b) 150 job sized problems 

  
(a)     (b) 

It is observed that load balancing and tardiness of the system are non-conflicting 
objectives. We see that as the generations progress, both the load balance and the 
tardiness decrease simultaneously. This is because of the fact that if the load balance 
decreases, it implies that the entire load of the system is being distributed in an even 
manner across the present machines. This ensures that the jobs are released at relatively 
earlier times because in this case, jobs are not stuck in machines which are loaded heavily 
in comparison to other machines, thus increasing the overall tardiness of the system. 

Moreover, it is also seen that material wastage and tardiness of a system are 
conflicting objectives. As the generations progress, the tardiness of a system decreases 
while the sheet wastage of the system increases thus displaying an inversely proportional 
relationship. This is because of the fact that identical jobs have same due dates while  
non-identical jobs do not have same due dates. Sheet wastage is minimised only when we 
process all identical jobs in one batch which facilitates efficient nesting thus leading to 
lesser material wastage but this would lead to increased tardiness as the entire stock of 
other parts would have to wait for the first geometry to finish. This explains why material 
wastage and tardiness act as conflicting objectives. 

In summary, the GA-based heuristic produces solutions which are within 15% of the 
optimal solution for the single batch problem. The GA-based heuristic is shown to be 
capable of solving large sized problems within reasonable times. Moreover, it is also seen 
that the nested GA-based heuristic gives better solutions than the algorithm where jobs 
are allocated to machines using dispatching rules and then optimised using a branch and 
bound technique. 

The practicing managers would find the proposed algorithms useful since they 
provide very good results within reasonable computational effort. Algorithms when used 
in practice have to provide quick and good solutions rather than provide optimum 
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solutions consuming enormous time. This research also brings out the tradeoff between 
tardiness and nesting problems which would bring together these two independent 
problems in practice to obtain good implementable results. 

6 Conclusions 

The unique contribution of the present work is the development of a genetic  
algorithm-based heuristic to solve complex and large sized machine loading problems in 
a FMS within reasonable computational effort. Other contributions include the result that 
the time taken by a prevalent branch and bound technique is highly sensitive to the tool 
magazine capacity of the machines. A comparison of performance among the different 
dispatching rules: EDD rule, SPT rule and the least slack rule for the multiple batch size 
problem indicated that the least slack dispatching rule produces the best results. It is also 
concluded observed that load balance and total tardiness are non-conflicting objectives 
while material wastage and total tardiness are conflicting objectives and share an 
inversely proportional relationship. 

A limitation of the work is that the proposed GA is a heuristic technique and cannot 
guarantee optimal solutions always. Another limitation is that we have compared the 
nested GA (for multiple batches) with an algorithm that uses a dispatching rule in the first 
stage and a branch and bound in the second stage. 

Further work can concentrate on development of a heuristic which is capable of 
handling a situation where in orders of jobs keep coming in dynamically and it is capable 
of generating real time schedules for every modification. Moreover, there is a need for a 
technique which would be capable of handling multiple stage flow shops as well which 
increases the complexity level of the problem to a significant extent. Apart from these, 
several other factors which can be incorporated into the proposed heuristic to make it 
more efficient are breakdown of machines, non-availability of tools, grouping of jobs and 
non-deterministic processing times. 
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