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Abstract. The master equation for dichotomous diffusion (DD) (the integral
of a random telegraph process) is the well-known telegrapher’s equation, which
is converted to the Klein–Gordon equation by a simple transformation. After
a brief recapitulation of the solution and of the analogy between DD and the
Dirac equation in one spatial dimension, we consider velocity-biased DD. The
corresponding master equation and its solution are presented. It is shown that these
may be interpreted physically in terms of a Lorentz transformation to a frame
moving with a boost velocity equal to the mean drift velocity of the diffusing
particle. The modifications that arise in the connection with the Dirac equation
are also exhibited. The correspondence between the rest mass of the Dirac particle
and the frequency of direction reversal in the DD is shown to be modified precisely
by the time dilatation correction to the latter quantity.
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1. Introduction

The two main paradigms of diffusive processes as applied to physical situations are the Wiener
process (standard Brownian motion) and dichotomous diffusion (DD). The former, first studied
by Einstein [1] and Smoluchowski [2] in the physical context of the Brownian motion of colloidal
particles, can be obtained as the integral of white noise (a stationary, Gaussian, delta-correlated
Markov process). The latter is the integral of a stationary dichotomous Markov process (also
called a random telegraph process). It can also be regarded as the continuum version of a
‘persistent’ random walk in which the walker remembers the direction of the previous step while
taking the next step, thereby making the random walk a non-Markovian one. Such a random
walk was originally proposed [3, 4] as a means of incorporating the effects of a finite velocity
or momentum for a diffusing particle, in contrast to ordinary Brownian motion which formally
implies an infinite velocity for the particle. Since then, DD has been extensively investigated, both
in its own right and in the context of various applications [5]–[11]. Several interesting aspects
of the more general problem of dichotomous flows have also been studied (see, for instance,
[12]–[14]).

Although the position of the diffusing particle in DD is a non-Markov process, its position
and velocity together constitute a Markov process. This leads to a differential equation of second
order (in time), the so-called telegrapher’s equation, for the probability density of the position of
the particle in either of its two velocity states (and hence for the total positional probability density
as well). A simple change of variables converts this to the Klein–Gordon equation, suggesting
an analogy with relativistic quantum mechanics, similar to the well-known correspondence [15]
between the Schrödinger equation for a non-relativistic free particle and the ordinary diffusion
equation for Brownian motion. Such a correspondence was pointed out several years ago [16]
between the coupled first-order equations obeyed by the probability distributions in the two
velocity states in DD, and the Dirac equation in (1 + 1) dimensions. Subsequently, the analogy
between stochastic differential equations and quantum mechanical wave equations has been
developed further in the context of stochastic quantum mechanics. This includes studies of
relativistic stochastic processes associated with the Klein–Gordon equation [17], prescriptions
to pass from random walks and Brownian motion to the Schrödinger and Dirac equations
[18]–[21], the connection between the one-dimensional Dirac equation and certain Markovian
random walks involving an extra time dimension [22], and an extension to nonlinear Dirac and
diffusion equations [23].

In this paper, we call attention to an interesting extension of this correspondence that emerges
in the case of biased DD, the bias being in velocity or momentum space rather than position
space [24, 25]. Starting with a persistent random walk with unequal frequencies of direction
reversal out of the left-moving and right-moving states of the walker, we pass to the continuum
limit of velocity-biased DD. The associated master equation (and its solution) are shown to
be interpretable as unbiased DD viewed from a Lorentz-transformed frame, the boost velocity
of which is just the mean drift velocity induced by the bias. Moreover, the mean frequency
of direction reversal is also modified by precisely the associated time dilatation factor. The
other modifications that the quantum mechanical analogy undergoes are also brought out and
discussed.
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2. DD

We begin with a brief recapitulation of DD. A possible starting point is the simple stochastic
differential equation corresponding to DD. Alternatively, we could begin with the difference
equations corresponding to a persistent random walk, and pass to the continuum limit. As this is
more convenient for our present purposes, we adopt this approach.

Consider a random walk on a linear chain with sites labelled by m, in discrete time n. The
walk is spatially unbiased, but at each time step the walker has a probability p of jumping in
the same direction as his previous step, and a probability q = 1 − p of reversing direction. If
αR(m, n) (respectively, αL(m, n)) is the probability that the walker is at site m after n steps in
the right-moving (respectively, left-moving) state, the recursion relations satisfied by αR and αL

are [5]

αR(m, n) = pαR(m − 1, n − 1) + qαL(m − 1, n − 1),

αL(m, n) = qαR(m + 1, n − 1) + pαL(m + 1, n − 1).
(1)

If we choose the symmetric initial conditions αR(m, 0) = αL(m, 0) = 1
2δm,0, we also have

the symmetry property αR(−m, n) = αL(m, n). DD is the continuum limit of this random
walk, attained by setting n = t/τ, where τ−1 is the mean jump rate, m = x/a, where a is the
lattice spacing, and then passing to the limits τ → 0, a → 0, q → 0 such that lim(a/τ) = c,
the speed of the diffusing particle, while lim(q/τ) = λ, its mean rate of direction reversal.
The probability densities PR,L(x, t) = lim(2a)−1αR,L(m, n) then satisfy the coupled first-order
differential equations

(∂t + c∂x + λ)PR = λPL, (∂t − c∂x + λ)PL = λPR. (2)

Eliminating PR (or PL) in equations (2), we find that each of these quantities satisfies the so-called
telegrapher’s equation, namely,

(∂2
t + 2λ∂t − c2∂2

x)PR,L = 0. (3)

For simplicity, let us consider the solution on the infinite line −∞ < x < ∞ with natural
boundary conditions, with symmetric initial conditions

PR(x, 0) = PL(x, 0) = 1
2δ(x). (4)

The additional initial conditions required for the solution of the second-order equation (3) are
immediately obtained by using (4) in equations (2), to get(

∂PR

∂t

)
t=0

= − 1
2cδ

′(x),

(
∂PL

∂t

)
t=0

= 1
2cδ

′(x). (5)

With these initial data, the general solution [26] of the telegrapher’s equation reduces to the
following explicit expressions for PR and PL:

PR,L(x, t) = 1
2e−λt{δ(x ∓ ct) + (λ/2c)[θ(x + ct) − θ(x − ct)]

× [I0(λξ/c) ± (x ± ct)ξ−1I1(λξ/c)]}, (6)

New Journal of Physics 7 (2005) 11 (http://www.njp.org/)

http://www.njp.org/


4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

where ξ = (c2t2 − x2)1/2 and Ir is the modified Bessel function of order r. We note that
PR(−x, t) = PL(x, t) for any t � 0, as expected for the symmetric initial conditions considered.
Each of the densities PR,L is normalized to 1

2 . The total probability density P = PR + PL is
normalized to unity, and is given by

P(x, t) = 1
2e−λt{δ(x + ct) + δ(x − ct) + λ[θ(x + ct) − θ(x − ct)]

× [(1/c)I0(λξ/c) + (t/ξ)I1(λξ/c)]}. (7)

As already mentioned, it is well known that the telegrapher’s equation (3) may also be
obtained [6]–[8] as the master equation for DD by starting with the corresponding stochastic
differential equation

ẋ = cζ(t), (8)

where ζ(t) is a stationary dichotomous Markov process taking the values ±1, with zero mean
and autocorrelation 〈ζ(0)ζ(t)〉 = exp(−2λt). A ‘formula of differentiation’ [27] can then be used
to obtain the partial differential equation obeyed by the characteristic function of the positional
probability distribution, and thence the master equation for P(x, t) itself. The method may also be
extended [28, 29] to arrive at the master equations for various generalizations of DD [30]–[32],
including one involving a multi-state Markov process for the velocity [33], but we do not go into
these aspects here.

It is easily checked that the mean displacement 〈x(t)〉 = 0, while the mean-squared
displacement is given by

〈x2(t)〉 =
∫ ∞

−∞
x2P(x, t) dx = (c2/2λ2)(2λt − 1 + e−2λt). (9)

Thus 〈x2〉 � c2t2 for t � λ−1, while 〈x2〉 → c2t/λ for t 	 λ−1. As is well known, the
telegrapher’s equation goes over into the usual diffusion equation, and P(x, t) goes over to
the standard Gaussian solution of the latter, in the ‘diffusion limit’ c → ∞, λ → ∞ such that
c2/(2λ) → a finite diffusion constant D.

The correspondence between DD and relativistic quantum mechanics arises as follows [16]:
setting

PR,L(x, t) = e−λtψ1,2(x, t) (10)

in equation (3), we find that each of the ‘components’ψ1 and ψ2 obeys the Klein–Gordon equation

(∂2
t − c2∂2

x − λ2)ψ1,2 = 0, (11)

which suggests a formal connection with relativistic wave equations. In terms of ψ1,2, the coupled
equations (2) for PR,L read

(∂t + c∂x)ψ1 = λψ2, (∂t − c∂x)ψ2 = λψ1. (12)
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On the other hand, the Dirac equation for a free relativistic particle of rest mass m0 is(
iγµ∂µ − m0c

h̄

)
ψ = 0, (13)

where c stands for the speed of light in free space, as usual. In (1 + 1) dimensions, we have
∂µ = (c−1∂t, ∂x), and in the Weyl representation,

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
. (14)

Therefore equation (13) reduces to

(∂t + c∂x)ψ1 = (m0c
2/ih̄)ψ2, (∂t − c∂x)ψ2 = (m0c

2/ih̄)ψ1. (15)

But these equations are precisely those in equations (12) provided that, in the latter, we identify
the speed c of the diffusing particle with the speed of light, and the frequency λ of its direction
reversal with the rest mass of the Dirac particle according to [16]

λ = m0c
2/ih̄. (16)

The factor i that occurs in equation (16) is of course a reflection of the familiar analytic
continuation to imaginary time that occurs in the passage from the diffusion equation to the
Schrödinger equation (or from the heat kernel to the quantum mechanical propagator) in the
stochastic interpretation of quantum mechanics [15]. In the light of the analogy above, a Dirac
particle in one dimension may be regarded as moving back and forth on a line at the speed
of light (Zitterbewegung!) with random reversals of direction. The components of its wave
function are related to the probability density of the (classical) diffusing particle according to
the correspondence

PR,L ←→ eim0c
2t/h-ψ1,2. (17)

In one spatial dimension, of course, there is no spin, and the components ψ1,2 pertain to helicity
amplitudes.

3. Velocity-biased DD

We now turn to biased DD, where the bias is caused by a difference in the frequencies of direction
reversal when the particle is in the left- and right-moving states, respectively [8, 24, 25], rather
than a spatial bias produced, say, by an applied field. The bias is therefore effectively in velocity
or momentum space. Going back to the discrete-time random walk, let pR (respectively, pL) be
the probability that the walker continues in the same direction as the previous step when he is in
the right-moving (left-moving) state; the corresponding probabilities for direction reversal are
qR = 1 − pR and qL = 1 − pL, respectively. The recursion relations (1) are then replaced for
this biased random walk by

αR(m, n) = pRαR(m − 1, n − 1) + qLαL(m − 1, n − 1),

αL(m, n) = qRαR(m + 1, n − 1) + pLαL(m + 1, n − 1).
(18)
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The continuum counterpart of the random walk is obtained as before, in the limit τ → 0 and
qR,L → 0 such that lim qR/τ = λR, lim qL/τ = λL and λr �= λL. Equations (2) are replaced by

(∂t + c∂x + λR)PR = λLPL, (∂t − c∂x + λL)PL = λRPR. (19)

As before, we are interested in solutions on the infinite line with natural boundary conditions. The
most natural initial conditions correspond to treating the diffusion as an on-going equilibrium
renewal process; since the mean residence times in the right- and left-moving states are λ−1

R and
λ−1

L respectively, these initial conditions are [8]

PR(x, 0) =
(

λL

λL + λR

)
δ(x), PL(x, 0) =

(
λR

λL + λR

)
δ(x). (20)

As in the unbiased case, we may eliminate PL (or PR) from the coupled equations (19) to obtain
the second-order equation

[∂2
t + (λL + λR)∂t + c(λL − λR)∂x − c2∂2

x]PR,L = 0. (21)

The additional initial conditions to be satisfied by the solutions of equation (21) follow from
equations (19) and (20), and are

(∂tPR)t=0 = −c

(
λL

λL + λR

)
δ′(x), (∂tPL)t=0 = c

(
λR

λL + λR

)
δ′(x), (22)

in place of equations (5). It is convenient to define the average reversal rate

λ = 1
2(λL + λR) (23)

and a certain velocity

v =
(

λL − λR

λL + λR

)
c. (24)

Therefore |v| � c. The velocity v has, as we shall see, the significance of a mean drift velocity:
v > 0 implies a drift to the right, while v < 0 implies a drift to the left. In terms of the parameters
λ and v, the master equation (21) reads

(∂2
t + 2λ∂t + 2λv∂x − c2∂2

x)PR,L = 0. (25)

The ‘equilibrium’ initial conditions (20) imply that the normalizations of PR and PL remain
independent of time, being equal to λL/(λL + λR) and λR/(λL + λR) for all t � 0. The total
normalized probability density P = PR + PL also satisfies equation (25). Its first moment, the
mean displacement, works out to

〈x(t)〉 = vt. (26)

Hence d〈x(t)〉/dt = v, justifying the identification of v with the mean drift velocity. The mean-
squared displacement can also be found, without solving for P explicitly, by observing that it
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satisfies the ordinary differential equation(
d2

dt2
+ 2λ

d

dt

)
〈x2(t)〉 = 2c2 + 4v2λt. (27)

The variance of the position is then found to be

Var[x(t)] = 〈x2(t)〉 − 〈x(t)〉2 =
(

c2 − v2

2λ2

)
(2λt − 1 + e−2λt). (28)

This is to be compared with equation (9) for the unbiased case.
The probability density P(x, t) satisfies equation (25) with the initial conditions

P(x, 0) = δ(x),

(
∂P

∂t

)
t=0

= −vδ′(x). (29)

To solve the differential equation, we note that if we set

P(x, t) = ψ(x, t) exp
[
−λ

(
t − xv

c2

)]
(30)

in equation (25), then ψ(x, t) satisfies the Klein–Gordon equation

(∂2
t − c2∂2

x − λ′2)ψ = 0 (31)

with a modified constant λ′ related to the mean reversal rate λ by

λ′ = λ

(
1 − v2

c2

)1/2

. (32)

This yields, after some simplification, the solution

P(x, t) = 1

2
exp

[
−λ

(
t − xv

c2

)] { (
1 − v

c

)
δ(x + ct) +

(
1 +

v

c

)
δ(x − ct)

+ λ′[θ(x + ct) − θ(x − ct)]

×
[

1

c

(
1 − v2

c2

)1/2

I0(λ
′ξ/c) +

1

ξ

(
t +

xv

c2

)
I1(λ

′ξ/c)

]}
, (33)

where ξ2 = c2t2 − x2 as before. It is evident that this expression reduces, in the unbiased case
(v = 0), to the solution given in equation (7).

We now turn to the important question of the physical interpretation of the solution above
for P(x, t), and of the particular exponential factor occurring in equation (30). Let us begin with
the master equation (25) and make a Lorentz transformation (a boost) to a frame moving with
a velocity v, treating c as the speed of light in vacuum. Then, denoting the new coordinates by
(x′, t′) and writing (1 − v2/c2)−1/2 = γ as usual, we have

x′ = γ(x − vt), t′ = γ(t − xv/c2), (34)
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so that

∂

∂t
= γ

(
∂

∂t′
− v

∂

∂x′

)
,

∂

∂x
= γ

(
∂

∂x′ − v

c2

∂

∂t′

)
. (35)

Therefore, continuing to denote the probability density in the new space-time coordinates as
P(x′, t′), equation (25) becomes, in the moving frame,

(∂2
t′ + 2λ′∂t′ − c2∂2

x′)P = 0, (36)

where, as already found in equation (32), λ′ = λ/γ is precisely the average frequency of direction
reversal in the moving frame, allowing for time dilatation. The transformation P = e−λ′t′ψ then
converts equation (36) to the Klein–Gordon equation for ψ, just as the transformation P = e−λtψ

did in the unbiased case. We note that ∂2
t − c2∂2

x = ∂2
t′ − c2∂2

x′ , and that λ′t′ = λ(t − xv/c2), which
explains the origin of the exponential factor in equation (30). We may also verify that if we start
with the expression in curly brackets in equation (7) (the solution for unbiased DD) and make a
Lorentz transformation to a frame moving with velocity v, then, apart from an overall factor of
γ−1, we obtain precisely the expression in curly brackets in equation (33) (the solution for biased
DD), in terms of the new coordinates. In carrying out this verification, it is helpful to exploit the
fact that the combination [θ(x + ct) − θ(x − ct)] is an indicator function that is unity inside the
forward light cone and zero elsewhere, and that is invariant under orthochronous boosts. The
extra factor γ−1 arises because the probability density has the dimensions of (length)−1, and is
compensated for by a factor γ arising from the measure dx under the transformation, such that
the normalization of the total probability is preserved.

Finally, we show how the connection between DD and the Dirac equation in (1 + 1)

dimensions is modified in the velocity-biased case under discussion. As in equation (30), we
relate PR,L to the spinorial components ψ1,2 by setting

PR,L = ψ1,2 exp
[
−λ

(
t − xv

c2

)]
. (37)

Then, since each of the components ψ1,2 satisfies the Klein–Gordon equation (31), the reversal
frequency ←→ mass identification now reads

λ′ = λ

(
1 − v2

c2

)1/2

= m0c
2

ih̄
, (38)

rather than λ = m0c
2/ih̄ as in the unbiased case (equation (16)). Interestingly (and remarkably)

enough, this means that the original frequency of direction reversal λ is connected to the so-called
‘kinematic’ mass m, rather than the rest mass itself, for we now have

λ = mc2

ih̄
, where m = m0

(
1 − v2

c2

)−1/2

. (39)

Although each of the components ψ1,2 individually satisfies the Klein–Gordon equation, the
coupled first-order equations satisfied by these objects do not correspond directly to the Dirac
equation: substituting equation (37) in the coupled equations (19) for PR and PL, we get

(∂t + c∂x)ψ1 = λ(1 + v/c)ψ2, (∂t − c∂x)ψ2 = λ(1 − v/c)ψ1. (40)
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On the other hand, the coefficient on the right-hand side is the same (= m0c
2/ih̄) in both the

equations in the case of the Dirac equation (equation (15)). This is easily taken care of by
writing, instead of equation (37),

PR = ϕ1(1 + v/c)1/2 exp[−λ(t − xv/c2)], PL = ϕ2(1 − v/c)1/2 exp[−λ(t − xv/c2)],

(41)

so that the spinor (ϕ1 ϕ2)
T obeys the Dirac equation (15) on making the identification specified

in equation (38).
For completeness, we point out that there is an alternative (and perhaps less significant)

way in which a connection between velocity-biased DD and a relativistic wave equation may be
made. One may retain the quantities ψ1,2 as defined in equation (37), continue to identify λ itself
with m0c

2/ih̄ as in the case of unbiased DD, and ask what sort of wave equation (40) represents.
Now, in the Weyl representation (equation (14)), we have γ0 = σx and γ1 = −iσy, in terms of
the Pauli matrices. The standard Dirac equation (iγµ∂µ − m0c/h̄)ψ = 0 can therefore be written
in this representation as(

iσx∂t + cσy∂x − m0c
2

h̄

)
ψ = 0. (42)

Multiplying throughout by σx, we therefore get the coupled set of equations (15), namely,

(∂t + cσz∂x)ψ =
(

m0c
2

ih̄

)
σxψ. (43)

On the other hand, equations (40) can be written (with λ set equal to m0c
2/ih̄) in the form

(∂t + cσz∂x)ψ =
(

m0c
2

ih̄

) (
σx +

v

c
iσy

)
ψ. (44)

To express this in terms of the γ matrices, we multiply both sides of this equation by σx. But in
(1 + 1) dimensions the counterpart of the usual γ5 matrix is simply γ0γ1, which is just σz in the
Weyl representation. Therefore equation (44) reduces to[

iγµ∂µ − m0c

h̄

(
1 − v

c
γ5

)]
ψ = 0, (45)

suggestive of a ‘helicity-projected’ form of the original Dirac equation.

4. Concluding remarks

We have considered a persistent random walk with different frequencies of direction reversal
in the two velocity states of the walker. In the continuum limit, this leads to a form of biased
DD that generalizes the usual DD, and enables an extension to be made of the analogy between
the coupled master equations for DD and the Dirac equation for a relativistic particle in one
spatial dimension. This extension can be given a physical interpretation in terms of a Lorentz
transformation.
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It is interesting to ask whether similar analogies exist in the case of multi-level diffusion,
in which the velocity of the diffusing particle is an N-state Markov process with N > 2. In this
connection, it is worth pointing out that the master equation for the total positional probability
density P(x, t) then satisfies a partial differential equation of order N in time, provided the
transition matrix of the velocity process is such that a single equation can be obtained for P

by an elimination procedure [33]. It is also of interest to examine the extension of the analogy
between diffusive processes and relativistic wave equations to more than one spatial dimension
[34, 35], a non-trivial problem in which open questions remain.
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