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In this paper, we investigate the approximability of two node deletion problems. Given 
a vertex weighted graph G = (V , E) and a specified, or “distinguished” vertex p ∈ V ,
MDD(min) is the problem of finding a minimum weight vertex set S ⊆ V \ {p} such that 
p becomes the minimum degree vertex in G[V \ S]; and MDD(max) is the problem of 
finding a minimum weight vertex set S ⊆ V \ {p} such that p becomes the maximum 
degree vertex in G[V \ S]. These are known NP-complete problems and they have been 
studied from the parameterized complexity point of view in [1]. Here, we prove that for 
any ε > 0, both the problems cannot be approximated within a factor (1 − ε) logn, unless 
NP ⊆ Dtime(nlog log n). We also show that for any ε > 0, MDD(min) cannot be approximated 
within a factor (1 − ε) logn on bipartite graphs, unless NP ⊆ Dtime(nlog log n), and that 
for any ε > 0, MDD(max) cannot be approximated within a factor (1/2 − ε) logn on 
bipartite graphs, unless NP ⊆ Dtime(nlog log n). We give an O (logn) factor approximation 
algorithm for MDD(max) on general graphs, provided the degree of p is O (logn). We then 
show that if the degree of p is n − O (logn), a similar result holds for MDD(min). We 
prove that MDD(max) is APX-complete on 3-regular unweighted graphs and provide an 
approximation algorithm with ratio 1.583 when G is a 3-regular unweighted graph. In 
addition, we show that MDD(min) can be solved in polynomial time when G is a regular 
graph of constant degree.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problems of making a distinguished vertex minimum or maximum degree by vertex deletion in undirected graphs 
are very natural, albeit unexplored problems in graph theory, and see a wide array of applications. We formally state these 
two problems as follows.

• MDD(min): Given a graph G = (V , E) with a distinguished vertex p ∈ V , find a vertex set S ⊆ V \{p} of minimum size 
such that the vertex p is the unique vertex of minimum degree in G[V \ S].
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• MDD(max): Given a graph G = (V , E) with a distinguished vertex p, find a vertex set S ⊆ V \{p} of minimum size such 
that the vertex p ∈ V is the unique vertex of maximum degree in G[V \ S].

Variants of these problems include the weighted case, in which we are interested in finding a vertex set S of minimum 
weight instead of minimum cardinality, when each vertex in G has a weight associated with it.

These problems have been previously studied in [1,2] with reference to directed graphs and electoral networks. The most 
natural motivation lies in competitive social networks, which are undirected, and in which the degree of a node is widely 
seen as a measure of its popularity, influence or importance. An agent may wish to decrease the influence of a competing 
agent (minimize the degree of a distinguished vertex) or increase his own influence (maximizing degree of a distinguished 
vertex) at minimum cost, by shielding the minimum number of other agents from the network.

Another application lies in terrorist networks studied extensively in [3,4], in which the connectivity of a particular node 
in the network may be decreased by targeting the minimum number of other nodes. The MDD(min) problem finds a direct 
application in this scenario, as well as in similar scenarios involving cartel networks.

The third major application could lie in biology – in protein networks. There have been a multitude of papers published 
[5,12,14] which try to correlate the parameter of a particular node in the network – such as degree, centrality, etc. – 
with the importance of the corresponding protein. While degree is seen as a reasonably good indicator of connectivity and 
influence, it may be interesting to look at how many other proteins would have to disappear from the network in order to 
make a particular protein influential. This is a direct application of MDD(max), and the minimum number of other proteins 
which need to be deleted could provide a measure of essentiality of the protein corresponding to the distinguished vertex. 
The research in this area has been mainly empirical so far, and this could provide another metric to judge the importance 
of a particular protein given its interaction network.

Both MDD(min) and MDD(max) are known to be NP-complete [1]. Previous work on these two problems involved 
approaches using parameterized complexity [1], but a classical complexity approach has not yet been taken as per our 
knowledge. In this paper, we take a classical complexity theory approach towards the problems and make the following 
contributions:

• We show that MDD(min) on a graph G is equivalent to MDD(max) on the graph Gc .
• We prove that both MDD(min) and MDD(max) are hard to approximate within a factor smaller than log n, where n

represents the number of vertices in the input graph.
• On bipartite graphs, we prove that MDD(min) and MDD(max) are hard to approximate within a factor smaller than 

O (log n).
• We propose an O (log n) factor approximation algorithm for MDD(max) when the input graph G satisfies a certain 

property. As a consequence of this, we show that if d(p) = O (log n) in the input graph G , MDD(max) is approximable 
within a factor of O (log n).

• We show that MDD(min) is solvable in polynomial time on k-regular graphs, as long as k = O (1).
• For 3-regular unweighted graphs, we propose an approximation algorithm for MDD(max) with approximation ratio 

1.583. On 3-regular bipartite graphs, we prove that MDD(max) is APX-complete.

2. Preliminaries

All the discussion in this paper concerns undirected graphs. The word graph is used to mean undirected graph without 
any ambiguity.

2.1. Notation

In a graph G = (V , E), the sets NG(v) = {u ∈ V (G) : (u, v) ∈ E} and NG [v] = NG(v) ∪ {v} denote the neighbourhood and 
the closed neighbourhood of a vertex v in G , respectively. The degree of a vertex v in G is |NG(v)| (or the number of 
neighbours of v in graph G) and is denoted by dG (v). Note that even if v /∈ V (H), dH (v) could be non-zero, if v ∈ V (G)

and H is a subgraph of G . We shall use N(v), N[v] and d(v) instead of NG (v), NG [v] and dG (v), respectively, when there is 
no ambiguity regarding the graph under consideration. In a similar vein, for a set of vertices S , we define N(S) = ∪v∈S N(v)

and N[S] = ∪v∈S N[v].
A graph G = (V , E) is called k-regular if dG(v) = k, ∀v ∈ V . For S ⊆ V , G[S] denotes the subgraph induced by S on G . 

The complement of a graph G = (V , E) is the graph Gc = (V , Ec), where (u, v) ∈ Ec if and only if (u, v) /∈ E , ∀u, v ∈ V , u �= v . 
Unless otherwise mentioned, n denotes the number of vertices in the input graph.

In a graph G = (V , E), S ⊆ V is called a dominating set in G if N[S] = V . Given a graph G = (V , E), an instance of
MDD(max), we say that S ⊆ V \ {p} is a solution to MDD(max) for G , if the vertex p is the maximum degree vertex in 
G[V \ S]. S is called a minimal solution to MDD(max) for G if, for each u ∈ S , S \ {u} is not a solution to MDD(max) for G . 
A minimum solution to MDD(max) on graph G is a solution S to MDD(max) of minimum weight/cardinality. Similarly, a 
solution (and minimal solution, minimum solution) to MDD(min) for G is defined.
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2.2. Known results

We now state the definitions of a few known NP-complete optimization problems such as the minimum dominating set
problem, f -dependent set problem and minimum set cover problem, and state approximability and inapproximability bounds 
for them.

Definition 1 (MinDom). Given a graph G = (V , E), the minimum dominating set problem MinDom is to find a dominating 
set S of minimum cardinality.

Given a universe U = {x1, x2, . . . , xr} and a collection of subsets F = {F1, F2, . . . , Ft} where Fi ⊆ U , a set T ⊆F is called 
a set cover for U if ∪F∈T F = U . Size of a set cover T is defined as the number of sets in it.

Definition 2 (MinSetCover). Given an instance (U , F), the minimum set cover problem MinSetCover is to find a set 
cover T of minimum size.

Both MinDom and MinSetCover are known to be equivalent with respect to approximation preserving reductions [9]
and both cannot be approximated within a factor better than log n.

Proposition 3. (See [6].) For any ε > 0, MinDom and MinSetCover cannot be approximated within a factor (1 − ε) log n, unless 
NP ⊆ Dtime(nlog log n). Note that for MinSetCover, n = |U | + |F | = r + t.

Another inapproximability result for MinDom is also known, and we will use it in some of our proofs.

Proposition 4. (See [11].) MinDom is APX-complete for cubic (3-regular) as well as bicubic (3-regular bipartite) graphs.

Definition 5 ( f -dependent set deletion). Given a vertex weighted graph G = (V , E) and a function f : V → N, the f -dependent 
set deletion problem is to find a set S ⊆ V of minimum weight such that degree of each vertex v in G[V \ S] is at most 
f (v).

Proposition 6. (See [7,10].) The f -dependent set problem can be approximated within a factor of 2 + logα, where α = max{ f (v)|
v ∈ V }. If α ∈ {0, 1}, then f -dependent set problem is approximated within a factor of 2.

The f -dependent set problem is a generalization of MinDom and has a similar inapproximability result which is as 
follows.

Proposition 7. (See [10].) Unless NP ⊆ Dtime(nlog log n), for any ε > 0, f -dependent set problem cannot be approximated within a 
factor of (1 − ε) logα, where α = max{ f (v)|v ∈ V } and f (v) ≥ 3 for all v ∈ V .

2.3. Equivalence of MDD(min) and MDD(max)

We now show a result that we will use repeatedly in this paper.

Theorem 8. MDD(max) in a graph G is equivalent to MDD(min) in graph Gc, and vice versa.

Proof. Given an instance G = (V , E) of MDD(max), we construct the graph Gc as an instance of MDD(min). An optimal 
solution to MDD(max) for G for MDD(max) must be an optimal solution to MDD(min) for Gc , since the two operations – 
deletion and complementation – are commutative as far as our problem is concerned. From this observation, the theorem 
statement follows. �

From Theorem 8, it also follows that both MDD(min) and MDD(max) are equivalent with respect to approximation 
preserving reductions.

3. Hardness results

In this section, we show that both MDD(min) and MDD(max) are hard to approximate within a factor smaller than 
O (log n). We prove these results by establishing approximation preserving reductions from MinDom and using the inap-
proximability result from Proposition 3.

Theorem 9. For any ε > 0, MDD(min) cannot be approximated within a factor (1 − ε) log n, unless NP ⊆ Dtime(nlog log n).
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Fig. 1. Construction of H .

Proof. Given an instance G = (V , E) of MinDom, we construct an instance H = (V ′, E ′) of MDD(min) in polynomial time, 
as follows (Fig. 1). Here, we assume that n is the number of vertices in G . First, we construct the complement Gc of G . Then, 
we create a new vertex p and join it to all the vertices in V by introducing n edges (p, v) ∀v ∈ V . Next, we add a complete 
graph K2n+2 over a set T of 2n + 2 new vertices. For each vertex v ∈ V , if the degree of v is x in G , i.e. dG (v) = x, we add x
edges from v to any x vertices of T , to form graph H . Notice that now, ∀v ∈ V (G), dH (v) = n, due to the complementation 
of G in the construction of H . It is easy to observe that H has 3n + 3 vertices as V ′ = V ∪ {p} ∪ T .

We now claim that:

Claim 10. S ⊆ V is a dominating set in G if and only if p is the vertex of minimum degree in H[V ′ \ S] (i.e. S is a solution to MDD(min) 
for H).

Proof. Let S ⊆ V be a dominating set in G . Then for all v ∈ V \ S , v is adjacent to some vertex in S . Therefore, the degree 
of a vertex v in H[V ′ \ S] is at least n − |S| + 1. At the same time, the degree of p in H[V ′ \ S] is n − |S|. The degree of 
each vertex in V ′ \ (V ∪ {p}) at least 2n + 1, by construction. Since degree of p in H[V ′ \ S] is n − |S|, it follows that p is 
the minimum degree vertex in V ′ \ S , and therefore, S is a solution to MDD(min) on H .

Conversely, let S ⊆ V ′ \ {p} be a vertex deletion set in H which makes p the vertex of minimum degree in H[V ′ \ S]. 
Since |T | = 2n + 2 and all vertices in T have large degree, the optimal vertex deletion set in H cannot have size larger than 
|V |. Therefore, an optimal vertex deletion set in H is a subset of V . Based on this observation, we shall assume that any 
vertex deletion set S in H is a subset of V . Since S is a vertex deletion set, dH[V ′\S](p) = n −|S| and dH[V ′\S](u) ≥ n −|S| +1, 
for all u ∈ V ′ \ (S ∪ {p}). Let v ∈ V \ S be any vertex. Since dH[V ′\S] ≥ n − |S| + 1, there exists at least one vertex u ∈ S such 
that v and u are not adjacent in H . This implies that S is a dominating set in G . �

From Claim 10, it follows that the reduction explained is a cost preserving reduction. Since |V ′| = 3(n + 1), which is 
linear in n, and using Proposition 3, it can be observed that for sufficiently large n and for any ε ′ > 0, MDD(min) cannot 
be approximated within a factor of (1 − ε′) log |V ′|, unless NP ⊆ Dtime(nlog log n). Theorem 9 is therefore proved. �

Using Theorem 8, it follows as a corollary that:

Corollary 11. For any ε > 0, MDD(max) cannot be approximated within a factor (1 − ε) log n, unless NP ⊆ Dtime(nlog log n).

We now prove that a similar hardness result holds for MDD(min) even when the input G is restricted to bipartite graphs. 
We do this by establishing a cost preserving reduction from MinSetCover to MDD(min) on bipartite graphs, similar to 
that of Theorem 9.

Theorem 12. For any ε > 0, MDD(min) on bipartite graphs cannot be approximated within a factor (1 − ε) log n, unless NP ⊆
Dtime(nlog log n).

Proof. We prove this theorem by establishing a cost preserving reduction from MinSetCover to MDD(min). Let (U , F)

be an instance of MinSetCover with U = {x1, x2, . . . , xr}, F = {F1, F2, . . . , Ft} (refer Definition 2). Here we assume that 
|U | << |F |. We construct a graph G = (V , E) corresponding to U and F as follows. We introduce a vertex for every element 
in U ∪ F . Let U = {a1, a2, . . . , ar} be the set of vertices corresponding to elements in U , where vertex ai corresponds 
to element xi ∈ U and F = {b1, b2, . . . , bt} be the set of vertices corresponding to the elements in F , where vertex bi
corresponds to subset Fi . The vertex set of G , V = U ∪ F ∪ C ∪ D ∪ {p}, where C and D have t vertices each. Therefore 
|V | = 3t + r + 1. The edge set E is defined as follows. We make a complete bipartite graph Kt,t on C ∪ D with vertex 
bipartition as C and D . We introduce an edge (p, bi), for every bi ∈ F . We add an edge (ai , b j) ∈ E if and only if xi /∈ F j . At 
this stage, if the degree of a vertex bi ∈ F is strictly less than t , then we add sufficient edges from bi to vertices in D in 
order to increase dG(bi) to t . Note that dG(b j) ≥ t ∀ b j ∈ F . Similarly, we add edges from each vertex ai ∈ U to vertices in C
such that dG (ai) ≥ t ∀ ai ∈ U . Clearly, G is a bipartite graph. For a sketch of G see Fig. 2.

We now prove the following claim.
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Fig. 2. MDD(min) for bipartite graphs: construction of the graph G from an instance (U ,F) of set cover.

Claim 13. T = {Fi1 , Fi2 , . . . , Fi� } is a set cover for U if and only if S = {bi1 , bi2 , . . . , bi� } is a solution to MDD(min) for G.

Proof. Note that dG[V \S](p) = t − � and dG[V \S](bi) ≥ t , ∀bi ∈ F \ S . If T is a set cover for U , then for each k ∈ {1, . . . , r}, 
∃ j ∈ {1, 2, . . . , �} such that xk ∈ Fi j . This implies that for every ak ∈ U , ∃ j ∈ {1, 2, . . . , �} such that (ak, bi j ) /∈ E and therefore, 
dG[V \S](ak) ≥ t − � + 1, ∀ak ∈ U . Also, dG[V \S](v) ≥ t for every v ∈ C ∪ D . Thus, p is the unique minimum degree vertex in 
G[V \ S], and so S is a solution to MDD(min) for G .

Next, we show that for a given minimal solution S ⊆ V to MDD(min) for G , we can construct a set cover T for U with 
|T | ≤ |S|. Let S ⊆ V be a minimal solution to MDD(min) for G . Then S ∩ F �= ∅, since we need to necessarily reduce the 
degree of p. This implies that dG[V \S](p) ≤ t − 1. It is intuitive that S ∩ (C ∪ D) = ∅. Suppose S ∩ U �= ∅. Let ak ∈ S ∩ U be 
any arbitrary vertex. Then, for the corresponding element xk ∈ U there exists a set F j ∈ F such that xk ∈ F j . Based on this 
property, we construct a new set S ′ of vertices by replacing each vertex ak ∈ S ∩ U by a vertex b j (where xk ∈ F j ). Therefore, 
it follows that |S ′| ≤ |S| and S ′ ⊆ F . Now we show that the set T = {Fi |bi ∈ S ′} is a set cover for (U , F). If ak ∈ S ∩ U , then 
by construction of S ′ , there exists an F j ∈ T such that xk ∈ F j . For ak ∈ U \ S , we have dG[V \S](ak) > t − |S ∩ F |. This implies 
that there exists at least one b j ∈ S ∩ F such that (ak, b j) /∈ E . From the construction of G , we have that xk ∈ F j . Note that 
S ∩ F ⊆ S ′ and therefore F j ∈ T . Hence, T is a set cover for U . �

The reduction in Claim 13 is cost preserving. Since |V | = O (n), where n = r + t , using Proposition 3, it can be proved 
that for any ε > 0, MDD(min) on bipartite graphs cannot be approximated within a factor of (1 − ε) log |V |, unless NP ⊆
Dtime(nlog log n). Theorem 12 is therefore proved. �

Note that the complement of a bipartite graph is not necessarily bipartite, and so Theorem 8 cannot be used to extend 
Theorem 12 to MDD(max) on bipartite graphs. We use a different reduction to show the hardness of MDD(max) on bipartite 
graphs.

Theorem 14. For any ε > 0, MDD(max) on bipartite graphs cannot be approximated within a factor ( 1
2 − ε) log n, unless NP ⊆

Dtime(nlog log n).

Proof. We prove this theorem by establishing a cost preserving reduction from MinSetCover. Let U = {x1, x2, . . . , xr}, 
F = {F1, F2, . . . , Ft} and |U | << |F |. We construct a bipartite graph G as follows. First, we construct the natural bipartite 
graph representation of (U , F). For this we introduce two sets of vertices as U = {a1, a2, . . . , ar} and F = {b1, b2, . . . , bt}, 
corresponding to elements in U and F , respectively. Here, (ai, b j) is an edge if and only if xi ∈ F j . In the next step, we 
introduce a new vertex p and edges (p, ai), for 1 ≤ i ≤ r. We shall denote the resulting graph as G ′ = (U ∪ F ∪ {p}, E ′). 
In the final step of the construction of G , we introduce a few degree one vertices to G ′ so that dG (v) = t , for each vertex 
v ∈ U ∪{p}. We do this as follows. For each v ∈ U ∪{p}, we introduce a new set of vertices I v of size t −dG ′ (v) to the graph 
G ′ and make v adjacent to all the vertices in I v . Let I = ∪v∈U∪{p} I v . We call the graph finally obtained as G = (V , E) where 
V = U ∪ F ∪ I ∪ {p} and E is the set of edges as defined above. We have that |V | ≤ (|U | + 2)(|F | + 1) ≤ n2, where n = r + t . 
We also observe that G is a bipartite graph, d(v) = t for all v ∈ U ∪ {p} and d(v) < t for every other vertex. For a sketch of 
this construction, refer to Fig. 3.

We now make the following claim.

Claim 15. T = {Fi1 , Fi2 , . . . , Fil } is a set cover for U if and only if S = {bi1 , bi2 , . . . , bil } is a solution to MDD(max) on G.

Proof. For each xi ∈ U there is an Fik ∈ T such that xi ∈ Fik and the corresponding vertex bik ∈ S . This implies that 
dG[V \S](ai) ≤ t − 1, ∀ai ∈ U and d(p) = t (since none of the neighbours of p is deleted). Hence p is the vertex of maxi-
mum degree in G[V \ S] (S is a solution to MDD(max) on G).

For the converse, let S be a minimal solution to MDD(max) on G . Without loss of generality, we can assume that S ⊆ F . 
Suppose S � F and v ∈ S \ F be any vertex. If v = ai ∈ U for some i, then we choose a set F j ∈ F with xi ∈ F j and replace 
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Fig. 3. MDD(max) for bipartite graphs: construction of the graph G from an instance (U ,F) of set cover.

v by b j in S . If v ∈ I p then we simply remove v from S , if v ∈ Iak , for some ak ∈ U , then we replace v by b j in S , where 
F j contains the element xk . It is important to observe that this process of normalizing S does not increase its size. The 
sub-collection T = {Fi : bi ∈ S} corresponding to the vertices of S gives a set cover for U . �

From Claim 15, it is easy to observe that for any solution S to MDD(max) for G , we can find (in polynomial time) 
a set cover T for U with |T | ≤ |S|. Also, if Sopt and Topt are any optimal solutions for MDD(max) and MinSetCover, re-
spectively, then |Sopt | = |Topt |. Suppose, for some ε > 0, there exists a polynomial time algorithm approximating MDD(max)
within a factor of ( 1

2 −ε) log N , on bipartite graphs with N vertices. Let S be such an approximate solution to MDD(max) for 
the bipartite graph G as constructed from an instance (U , F) of MinSetCover. Therefore, |S| ≤ |Sopt |( 1

2 −ε) log |V |. By the 
above discussion we have, |T | ≤ |S| ≤ |Topt |(1 −2ε) log n = |Topt |(1 −ε′) log n, for some ε′ > 0. This contradicts Proposition 3. 
Therefore, Theorem 14 is proved. �

We now consider the complexity of MDD(min) on regular graphs.

Theorem 16. MDD(min) on k-regular graphs is solvable in polynomial time as long as k = O (1).

Proof. Let G = (V , E) be a k-regular graph. We claim that the size of an optimal solution to MDD(min) for the instance 
G is at most 2k − 1. We prove this by exhibiting a feasible solution to MDD(min) on G of size at most 2k − 1. Let 
A = {v ∈ V \ N[p] : N(v) = N(p)} and let S = N(p) ∪ A. We have that |N(p)| = k and |A| ≤ (k − 1) since d(v) = k for all 
v ∈ V . Therefore, |S| ≤ k + (k − 1) = 2k − 1. Now, consider some vertex v ∈ V \ (S ∪ {p}). Then N(v) �= N(p) since v /∈ A. 
Also note that N(v) ∩ A = φ. This implies that v has at least one neighbour in V \ (S ∪ {p}). Therefore, dG[V \S](v) ≥ 1
∀v ∈ V \ (S ∪{p}). Also, dG[V \S](p) = 0. Since dG[V \S](v) ≥ 1 for every v ∈ V \ S , p is the minimum degree vertex in G[V \ S]
and hence S is a feasible solution to MDD(min) on G . Therefore, the size of an optimal solution to G is at most 2k − 1. Let 
A be the collection of all subsets of V \ {p} of size at most 2k − 1. Then any optimal solution belongs to this collection A. 
We have that |A| = ∑2k−1

i=1

(n
i

)
and if this is polynomial in n, then an optimal solution to G can be found in polynomial time 

by explicit enumeration of all possibilities. 
∑2k−1

i=1

(n
i

) ≈ 2nH2( 2k−1
n ) which is a polynomial in n as long as k = O (1), (where 

H2(x) = −(x log2 x + (1 − x) log2(1 − x)), ∀x ∈ [0, 1]). Therefore, in this case, the optimal solution can be found in polynomial 
time. �

From Theorem 8 and Theorem 16, it can be observed that MDD(max) is polynomial time solvable on k-regular graphs 
provided k = n − O (1). However, we shall prove that MDD(max) on k-regular graphs is APX-complete when k = O (1).

Theorem 17. MDD(max) is APX-complete on cubic graphs.

Proof. We exhibit a simple L-reduction [11] from MinDom on cubic graphs to MDD(max) on cubic graphs. Consider a cubic 
graph G = (V , E) and an instance of MinDom. Let G1 be the graph on 6 vertices {p, a, b, c, d, e}, as given in Fig. 4, and let 
V ′ = V ∪ {p, a, b, c, d, e}. We construct an instance (G ′ = (V ′, E ′), p) of MDD(max), where G ′ = G1 ∪ G . Clearly, G ′ is a cubic 
graph. It is easy to see that the optimal solution to MDD(max) for the instance (G1, p) is the set {d, e}. This implies that 
any minimal solution to MDD(max) for G ′ contains both d and e, and none of {a, b, c}. Now, to find a solution for G ′ we 
only need to bound the degree of every vertex in G by 2.

If S is a dominating set for G , then dG[V \S](v) ≤ 2 for every v ∈ V \ S . Therefore, S ′ = S ∪{d, e} is a solution to MDD(max)
for G ′ with |S ′| = |S| + 2. Conversely, let S ′ be a minimal solution to MDD(max) for G ′ . Then S ′ ∩ {a, b, c} = ∅ and {d, e} ⊆
S ′ . This implies that dG ′ [V ′\S ′](p) = 3 and dG ′[V ′\S ′](v) ≤ 2 for every v ∈ V ′ \ S ′ and hence also dG[V \S ′](v) ≤ 2 for every 
v ∈ V \ S ′ . Thus, S ′ \ {d, e} is a dominating set for G and |S ′| = |S| + 2.

If Sopt is a minimum dominating set for G , then Sopt ∪ {d, e} is a minimum solution to MDD(max) for G ′ . Conversely, 
if S ′

opt is a minimum solution to MDD(max) for G ′ , then S ′
opt \ {d, e} is a minimum dominating set for G . Choosing α = 2, 
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Fig. 4. Construction of G ′ = G ∪ G1.

we have that S ′
opt ≤ αSopt . Let S ′ be a minimal solution to MDD(max) for G ′ and let S be the corresponding solution to

MinDom for G . Then for β = 1, we have that |S| − |Sopt | ≤ β(|S ′| − |S ′
opt |). This gives an L-reduction from MinDom on cubic 

graphs to MDD(max) on cubic graphs. From Proposition 4, we see that MDD(max) for cubic graphs is APX-hard. In the 
next section, we provide a constant factor approximation algorithm to MDD(max) on cubic graphs, thereby showing that it 
is APX-complete. �

We also arrive at the following theorem for bicubic (3-regular bipartite) graphs, by a construction similar to that of 
Theorem 17. Note that graph G1 in that construction is bipartite, and so for a bipartite graph G , G ′ = G1 ∪ G would be 
bipartite.

Theorem 18. MDD(max) is APX-complete for bicubic graphs.

Proof. The reduction is similar to that of Theorem 17. The constant approximation ratio comes from an algorithm we 
present in the next section for cubic graphs. �
4. Approximation algorithms

In this section, we show that the vertex weighted version of MDD(max) is approximable within a factor of O (log n), 
on graphs for which the neighbourhood of vertex p satisfies a particular property. Using Theorem 8, we will extend these 
algorithms to MDD(min). Here we shall assume that d(p) = t in the input instance G = (V , E) of MDD(max). We define 
Y = {v|v ∈ V and d(x) ≥ t} and D = N[Y ]. We will first provide approximation algorithms for special cases of the problem 
in Lemma 19 and Lemma 20, when Y ∩ N[p] = ∅, and then move on to a generalization that captures the aforementioned 
property even when Y ∩ N[p] �= ∅.

Lemma 19. If the input instance G for MDD(max) satisfies the condition D ∩ N[p] = ∅ then it can be approximated within a factor 
of 2 + log t.

Proof. Consider the f -dependent set problem with input as G[V \ N[p]] and f (v) = t − dN(p)(v) − 1, for all v ∈ V \ N[p]. 
Let S be an approximate solution to the f -dependent set problem, for this instance, generated by the Okun–Barak Algo-
rithm [10]. We shall show that S is a (2 + log t)-factor approximate solution of MDD(max), for the instance G . From the 
definition of f on V \ N[p], it follows that vertex p is the unique vertex of maximum degree in G[V \ S]. Therefore, S is 
a vertex deletion for MDD(max) for the instance G . Next, we prove that any minimum solution So to MDD(max) for the 
instance G , So ∩ N(p) = ∅. Suppose, A = So ∩ N(p) �= ∅. Let S ′

o = So \ A. Then S ′
o is also a vertex deletion set. In the process 

of deleting the vertices of A from So , we increase the degree of vertex p by |A| and vertices in N(A) ∩ [V \ (S ′
o)] by at most 

|A|. Since degree of each vertex in A is at most t − 1, it follows that p has maximum degree in G[V \ S ′
o]. �

Lemma 20. If the input instance G for MDD(max) satisfies the conditions Y ∩ N[p] = ∅ and D ∩ N[p] �= ∅ then it can be approximated 
within a factor of 2 + log t.

Proof. Similar to the proof of Lemma 19. Note here that ∀ v : v ∈ D ∩ N[p], v will never be part of the solution to
MDD(max). �

We are now interested in a more general (but not the most general) case, when Y ∩ N[p] �= ∅. Let G = (V ∪ {p}, E) be 
an instance of MDD(max) with Y ∩ N(p) �= ∅. For such an instance we construct a set L ⊆ N(p) as given in Algorithm 1.

Theorem 21. Let G be an instance of MDD(max) with |L| = O (log n). Then MDD(max) can be approximated within a factor of 
O (log n).

Proof. From the definition of L it follows that for every vertex v ∈ N(p) \ L, dG[V \L](v) < d(p) − |L|. Let S be any solution 
to MDD(max) for G . Then dG[V \S](p) > dG[V \S](u), for all u ∈ V \ S .
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Algorithm 1: Construction of the set L.

Input: A graph G = (V , E) and p ∈ V with Y ∩ N(p) �= ∅;
Output: L ⊆ N(p);
L = ∅;
while ∃ a vertex u ∈ (N(p) \ L) with |N(u) \ L| ≥ |N(p) \ L| do

L = L ∪ {u};
end
return(L);

Next we show that any minimal vertex deletion set S in G does not contain any vertex from N(p) \ L. Suppose S ∩
(N(p) \ L) = A �= ∅. Let |A| = α. Now consider the set S ′ = S \ A. We show that S ′ is a vertex deletion set. Since, dG[V \S](p) >
dG[V \S](u), for all u ∈ V \ S , dG[V \S ′](p) = dG[V \S](p) + α > dG[V \S ′](u) = dG[V \S](u) + α, for all u ∈ V \ S . As dG[V \L](v) <
d(p) − |L|, for all v ∈ A, we have dG[V \S ′](p) > dG[V \S ′](v), for all v ∈ A.

From above arguments it follows that any optimal vertex deletion set So in G does not contain any vertex from N(p) \ L.
Next, we present a polynomial time algorithm that computes an O (log n)-factor solution to MDD(max) for the input 

instance G with |L| = O (log n).
Since |L| = O (log n), Algorithm 2 runs in polynomial time. Let Ko = So ∩ L. Let S Ko be the f -dependent set computed in 

Algorithm 2 for the set Ko . It is not hard to observe that w(So \ Ko) = w(So, f ,Ko ), where So, f ,Ko is an optimal f dependent 
set for the instance considered in the algorithm associated with set Ko . Since the algorithm is choosing the least weight 
vertex deletion set, we have

w(S)

w(So)
≤ w(Ko) + w(S Ko )

w(So)
= w(Ko) + w(S Ko )

w(Ko) + w(So \ Ko)
≤ w(S Ko )

w(So \ Ko)
= w(S Ko )

w(So, f ,Ko )

≤ O (log n). �
Theorem 22. For any ε > 0, MDD(max) cannot be approximated within a factor (1 − ε) log n, unless NP ⊆ Dtime(nlog log n), even on 
graphs with L = ∅.

Proof. Follows from Theorem 9 and Theorem 8. Note that in the reduction in the proof of Theorem 9, the size of L is 
zero. �

Algorithm 2: Computation of O (log n) factor solution S for MDD(max).

Input: A graph G = (V , E), p ∈ V with Y ∩ N(p) �= ∅ and |L| = O (logn), w : V → Z
+;

Output: A vertex deletion set S for MDD(max) on G;
S = ∅;
wt = ∞;
for each subset K of L do

Compute an f -dependent set S ′ using Okun–Barak’s algorithm [10] with input as G[V \ K ], w ′(v) =
{ ∞ for v ∈ N(p) \ K

w(v) for v ∈ V \ N(p),
and 

f (v) = d(p) − |K | − 1 for v ∈ V \ K ;
S ′ = S ′ ∪ K ;
if w(S ′) < wt then

S = S ′ and wt = w(S ′);
end

end
return(S);

From Theorem 21 and Theorem 22, we see that Algorithm 2 approximates the problem when L = O (log n), which is also 
a logn hard problem, to the best possible extent unless NP ⊆ Dtime(nlog log n).

From Theorem 21 and since L ⊆ N(p), it follows that if d(p) = O (log n) then the same algorithm gives an O (log n)

approximate solution. As a corollary to Theorem 21 we have the following result using Theorem 8.

Corollary 23. MDD(min) can be approximated within a factor of O (logn) provided d(p) ≥ n − O (log n).

We now consider algorithms for MDD(max) on regular graphs. We arrive at the following lemma:

Lemma 24. Let G = (V , E) be a k-regular graph with |V | = n and S be any solution to MDD(max) for G. Let (S, V \ S) be the set of 
edges across the sets S and V − S and f = |N(p) \ S|. Then |S| ≥ (k− f +1)n−1 ≥ n−1 .
2k− f +1 k+1
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Proof. By using estimations on |(S, V \ S)|, we see that

k|S| ≥ |(S, V \ S)| ≥ (k − f ) + (k − f + 1)(n − |S| − 1). (1)

Note that the leftmost term represents the maximum number of edges that can arise out of S , and that the rightmost term 
is a lower bound on the number of edges arising out of V \ S . From (1), the proof of the lemma follows. �

From Lemma 24, we have

Theorem 25. MDD(max) can be approximated within a factor of (k + 1) on k-regular graphs.

However, it is possible to improve this approximation bound for MDD(max) on cubic graphs. For this, we use the 
algorithms for MinDom and MinDissoVD (Minimum Dissociation Vertex Deletion) given by Halldórsson [8] and Tu and 
Yang [13], respectively. Dissociation number of a given graph is the size of a maximum induced sub-graph of G whose 
maximum degree is 1. MinDissoVD is the vertex deletion problem corresponding to dissociation number – the minimum 
number (or weight) of vertices to be deleted such that the remaining graph has maximum degree 1.

Proposition 26. (See [8].) MinDom on unweighted cubic graphs can be approximated within a factor of 1.583.

Proposition 27. (See [13].) MinDissoVD on unweighted cubic graphs can be approximated within a factor of 1.57.

Theorem 28. MDD(max) for unweighted cubic graphs can be approximated within a factor of 1.583.

Proof. Let S be a minimal solution to MDD(max) for G . It is easy to observe that if dG[V \S](p) = 0 then S = V \ {p}. Also, it 
is easy to observe that for any feasible solution S to G , dG[V \S](p) �= 1. There are only two other choices left for dG[V \S](p)

which are 2 and 3. We shall try to find a solution in each of the cases and choose the smallest of these three kinds of 
solutions.

First we compute a solution S to MDD(max) for G such that dG[V \S](p) = 3. In this case, it is important to observe that 
1 ≤ |N(x) ∩ (V \ N[p])| ≤ 2, for all x ∈ N(p).

We now construct the graph G ′ from G as follows. First, take a copy G ′ of G . Remove N[p] from G ′ . For each x ∈
N(p) with exactly two neighbours a and b in V \ N[p], we introduce two new vertices x1 and x2 and four new edges 
(x1, a), (x1, b), (x2, a), (x2, b) into G ′ . For each vertex x ∈ N(p) with exactly one neighbour a in V \ N[p], we introduce 
exactly one new vertex x1 and a new edge (x1, a) to G ′ . We shall refer to this resulting graph as G ′ = (V ′, E ′) and denote 
X as the set of vertices that are added to the vertex set V \ N[p]. Let Xv be the set of vertices which are introduced with 
respect to the vertex v ∈ N(p), so that V ′ = (V \ N[p]) ∪ X = (V \ N[p]) ∪ (∪v∈N(p) Xv). By construction, 1 ≤ |Xv | ≤ 2 ∀
v ∈ N(p).

Let D ′ be a dominating set in G ′ . If D ′ ∩ X = ∅, then it can be observed that D ′ is a solution to MDD(max) for G with 
dG[V \D ′](p) = 3. If D ′ ∩ X �= ∅, then we construct a set D with D ∩ X = ∅ and |D| ≤ |D ′| as follows. For any v ∈ N(p) if 
D ′ ∩ Xv �= ∅, then replace Xv ∩ D ′ by |Xv ∩ D ′| vertices from NG ′ (Xv), choosing vertices which were not already in D ′ . We 
shall denote the resulting new vertex set as D . Using the fact that one vertex from NG ′ (Xv) is enough to dominate the 
vertices of Xv , we can conclude that this new vertex set D is a dominating set for G ′ . We claim that D is also a solution 
to MDD(max) for G . Now, since D is a dominating set for G ′ , then every vertex in V (G ′) \ D has at least one neighbour 
in D . This implies that every vertex in (V \ {p}) \ D has at least one neighbour in D . This means that dG[V \D](v) ≤ 2 for 
every v ∈ V \ (D ∪ {p}), while dG[V \D](p) = 3. Hence D is a solution to MDD(max) for G . Conversely, if S is a solution to
MDD(max) for G with dG[V \D](p) = 3, then S is a dominating set for G ′ .

Suppose there exists a solution S to MDD(max) for G with dG[V \S](p) = 2. Then the two neighbours of p in G[V \ S]
(say y and z) are not adjacent. It is also necessary that N({y, z}) \ {p} ⊆ S . Let x ∈ N(p) ∩ S and let X∗ = N(p) \ {x} = {y, z}. 
Now consider the graph G∗ = G[V ∗] with V ∗ = V \ (N[X∗] ∪ {x}). If T is a solution to MinDissoVD for G∗ , then (it is easy 
to prove that) T ∪ {x} ∪ (N(X∗) \ {p}) is a solution to MDD(max) for G . Conversely, if S is a solution to MDD(max) for G
with dG[V \S](p) = 2 and x ∈ S ∩ N(p), then S \ ({x} ∪ N(X∗)) is a solution to MinDissoVD for G∗ .

Using this idea, we give an algorithm for MDD(max) on cubic graphs as in Algorithm 3. Let S1 = V \ {p}, S2 = Dopt and 
S3 = Topt , where Dopt and Topt are optimal solutions to MinDom for G ′ and MinDissoVD for G∗ , respectively. Then the set 
Sopt defined as a smallest of S1, S2 and S3 gives an optimal solution to MDD(max) for G . Conversely, if Sopt is an optimal 
solution to MDD(max) for G , then either Sopt = S1, or Sopt is an optimal solution to MinDom for G ′ or an optimal solution 
to MinDissoVD for G∗ .

Now, let S be the solution returned by Algorithm 3. If Sopt = Dopt , then

|S|
|Sopt | = |S|

|Dopt | ≤ |D|
|Dopt | ,

where D is the approximate solution to MinDom for G ′ . Then by Proposition 26, S is an approximate solution within a factor 
of 1.583.
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Algorithm 3: Computation of 1.583 factor solution to MDD(max) on cubic graphs.

Input: A 3-regular graph G = (V , E) and p ∈ V ;
Output: A solution S to MDD(max);
S = V \ {p};
if there is no x ∈ N(p) such that N[x] = N[p] then

Compute a dominating set D for the graph G ′ as in the proof of Theorem 28;
if |D| < |S| then S = D;

end
for each x ∈ N(p) do

Let N(p) − {x} = {y, z};
if (y, z) /∈ E then

Compute a solution T to MinDissoVD for the input graph G[V \ ({x} ∪ N[{y, z}])];
end
S ′ = T ∪ {x} ∪ N(y, z);
if |S ′| < |S| then S = S ′;

end
return(S);

Suppose Sopt ∩ N(p) = {x} and Sopt = Topt ∪ {x} ∪ N(X∗). Let T be an approximate solution to MinDissoVD for G∗ . Let 
α = |{x} ∪ N(X∗)|. Then we have

|S|
|Sopt | = |S|

|Topt | + α
≤ |T | + α

|Topt | + α
≤ |T |

|Topt | .

Therefore, by Proposition 27, S is an approximate solution within a factor of 1.57. Hence, the approximate solution returned 
by Algorithm 3 is within a factor of 1.583. �
5. Conclusion

We have shown that both MDD(min) and MDD(max), even when restricted to bipartite graphs, cannot be approximated 
within a factor O (log n) unless NP ⊆ Dtime(nlog log n). An approximation within a factor of O (log n) is seen if d(p) ≤ O (log n)

or d(p) ≥ n − O (log n) for MDD(max) and MDD(min), respectively. Better approximation results for MDD(min) and
MDD(max) on bipartite graphs remain unknown and we conjecture that on general graphs, it is hard to approximate 
both problems within a factor O (2log1−ε n), for any ε > 0.
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