
Discrete Mathematics 306 (2006) 1569–1585
www.elsevier.com/locate/disc

On sorting by 3-bounded transpositions

Meena Mahajana,∗, Raghavan Ramab, S. Vijayakumarc,1

aThe Institute of Mathematical Sciences, Chennai 600 113, India
bDepartment of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India

cDepartment of Mathematics, Anna University, Chennai 600 025, India

Received 22 February 2003; received in revised form 10 January 2004; accepted 6 June 2005
Available online 2 May 2006

Abstract

Heath and Vergara [Sorting by short block moves, Algorithmica 28 (2000) 323–352] proved the equivalence between sorting by
3-bounded transpositions and sorting by correcting skips and correcting hops. This paper explores various algorithmic as well as
combinatorial aspects of correcting skips/hops, with the aim of understanding 3-bounded transpositions better.

We show that to sort any permutation via correcting hops and skips, �n/2� correcting skips suffice. We also present a tighter
analysis of the 4

3 approximation algorithm of Heath and Vergara, and a possible simplification. Along the way, we study the class Hn

of those permutations of Sn which can be sorted using correcting hops alone, and characterize large subsets of this class. We obtain
a combinatorial characterization of the set Gn ⊆ Sn of all correcting-hop-free permutations, and describe a linear-time algorithm to
optimally sort such permutations. We also show how to efficiently sort a permutation with a minimum number of correcting moves.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Sorting; Bounded transpositions; Approximation; Genome rearrangement

1. Introduction

A particular type of mutational event occurring in the genomic sequences of certain species is the removal of a
long substring from some location and its subsequent re-insertion in some other location [11]. This event may also
be seen as an exchange of two adjacent non-overlapping substrings. Such an event is called a transposition. It is of
interest to biologists to know how the genomic sequences of two species are related, when one is hypothesized to have
evolved from the other due to a sequence of transpositions in their genomic sequences. In particular, the number of
transpositions that are necessary if it is assumed that Nature operates in an optimal way is of some importance.

Since the substrings involved in a transposition are generally long, the effect of the transposition is felt accordingly
in the gene order in the chromosome. As a first abstraction, different species with the same set of genes, say 1, 2, . . . ,

n − 1, n, may be labelled by the order of these genes in their respective genomes, and transpositions over the genome
sequences may be thought of as transpositions over the corresponding labelling permutations. This motivates the
problem of finding the transposition distance between permutations, namely the shortest number of transpositions that

∗ Corresponding author. Tel.: +91 44 2254 1856; fax: +91 44 2254 1586.
E-mail addresses: meena@imsc.res.in (M. Mahajan), ramar@iitm.ac.in (R. Rama), vjyvjy@yahoo.com (S. Vijayakumar).

1 This work was done when this author was with the Department of Mathematics, IIT Madras, India.

0012-365X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2005.06.035

http://www.elsevier.com/locate/disc
mailto:meena@imsc.res.in
mailto:ramar@iitm.ac.in
mailto:vjyvjy@yahoo.com

1570 M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585

will transform one permutation into another. Computing the transposition distance is easily seen to be equivalent to the
problem of transforming a permutation into the identity permutation, i.e. sorting permutations with transpositions.

The problem of sorting by transpositions, as well as its bounded variation, first appeared in a list of genome rearrange-
ment problems presented by Kececioglu and Sankoff [10]. Bafna and Pevzner [2] first gave a 3

2 -approximation algorithm
for sorting permutations with a minimum number of transpositions. This was followed by simpler 3

2 -approximation
algorithms by Christie and Hartman [4,7]. Heath and Vergara studied bounded variations of this problem [8,9]. For
sorting by 3-bounded transpositions, they gave a 4

3 -approximation general algorithm, and polynomial-time algorithms
for special classes of permutations. The computational complexity of both these problems remains open. Related work
appears in [1,3,5,6,13]; the reader is referred to [12] for an overview.

In [8], Heath and Vergara showed that while sorting by 3-transpositions, correcting moves—moves which do not
introduce new inversions—suffice. A correcting 3-transposition is either a correcting hop (an element moves to a
position two places away) or a correcting skip (an element moves to a position one place away), and as shown in [8],
it suffices to minimize the number of correcting skips used.

In this paper we consider only correcting moves. Our study comprises of roughly four parts, organized as follows.
In Section 3, we study the class Hn, consisting of permutations that can be sorted with correcting hops alone. We

find efficient recognizers for Ln and Rn, the subsets of Hn which can be sorted by correcting left hops alone and
correcting right hops alone, respectively (Theorem 3.6). We also describe how to optimally sort such permutations, and
we determine the cardinalities of Ln and Rn. (It is easy to see that Hn is larger than Ln ∪ Rn. In Section 6, we extend
some of the proof ideas to identify larger subsets of Hn.)

In Section 4, we focus mainly on the class Gn, consisting of correcting-hop-free permutations, and its subset CGn

consisting of connected permutations. We obtain combinatorial characterizations of Gn and CGn (Theorems 4.3 and
4.7), and determine the cardinality of Gn (Theorem 4.4). Using the combinatorial characterizations, we describe linear-
time algorithms to compute the length of an optimal 3-transposition sorting sequence when � ∈ Gn (Theorem 4.14),
and to describe an optimal sequence of correcting skips/hops (Theorem 4.16). (The optimal sequence length need not
be O(n); however, it has a succinct O(n) sized description.) The optimal sequences we construct have an interesting
property: they consist of the minimum number of correcting skips all of which are applied initially in parallel to obtain
a permutation in Ln ∪ Rn.

In Section 5, we establish an upper bound: we show (Theorem 5.2) that �n/2� correcting skips suffice to sort any
permutation via 3-transpositions, and hence the optimal 3-transposition sorting sequence has at most (#inv(�) +
�n/2�)/2 moves, where #inv(�) is the number of inversions in �. This bound, although incomparable with the
�(n

2

)
/2� bound of [8], is better for a very large class of permutations. Our bound, along with the characterization of

CGn, provides a tighter analysis (Theorem 5.6) of the 4
3 approximation algorithm of [9] and a simplification (Algorithm

GREEDYHOPS-3).
We consider correcting moves in Section 7. We observe that minimizing the number of correcting skips/hops is

equivalent to minimizing the number of odd correcting moves over sequences of correcting moves. We show that the
minimum number of correcting moves required to sort a permutation is efficiently computable; in fact, an optimal
sequence of such moves can also be efficiently computed.

2. Preliminaries and notation

Here we formally define the basic terms/notions/notation used in this paper. We denote by [i, j] the set {i, i+1, . . . , j}
and by [n] the set [1, n] = {1, 2, . . . , n}. We denote by |s|1 the number of 1s in a string s ∈ {0, 1}∗. The symmetric
group over n elements is denoted Sn, and a permutation � ∈ Sn is a linear order of the elements of [n]. An inversion in
� is a pair of elements {�i , �j } that are not in correct relative order (i < j and �i > �j). By Inv(�) we denote the set of
inversions in �, and the size of this set is denoted #inv(�). We denote by idn the identity permutation on n elements.

A component of a permutation � is a minimal substring �i ...�j , i�j such that (1) �l < i for l < i, (2) i��l �j for
i� l�j , and (3) �l > j for l > j . A permutation is said to be connected if it has exactly one component.

A transposition �(i,j,k) : Sn → Sn, 1� i�j < k�n, is defined in the following way: �.�(i,j,k) = �1 . . . �i−1�j+1 . . .

�k�i . . . �j�k+1 . . . �n; i.e., �(i,j,k) when applied on � exchanges the adjacent substrings �i . . . �j and �j+1 . . . �k .
We say that a transposition �(i,j,k) is b-bounded for a given constant b if k − i + 1�b; i.e., the total length of the
two substrings involved in the transposition is bounded by b. Let t (�) denote the length of any shortest sequence of

M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585 1571

transpositions sorting � and tb(�) denote the length of any shortest sequence of b-bounded transpositions sorting �. In the
literature, these terms are also referred to block moves (transpositions), short block moves (b-bounded transpositions),
MinBk(�)(=t (�)) and MinBkb (�)(=tb(�)).

A move of �i in � is a transposition where one of the involved substrings is a single element, i.e., it is a transposition
between �i and an adjacent substring lying to its left or right. A correcting move is a move which does not introduce
any new inversions. In particular, a correcting move of �i over a substring � implies that all elements of � are less
(greater) than �i if � lies to the right (left, respectively) of �i .

A 3-bounded transposition in �, by definition, is either an exchange of two adjacent elements or an exchange of an
element and an adjacent substring of length two. Hence these transpositions may equivalently be seen as a move of
some element �i in � past one element (a skip) or past two elements (a hop), to the left or right. Correcting skips/hops
are similarly defined.

Let m(�) denote the length of a shortest sequence of moves sorting �, and let csh(�) denote the length of any shortest
sequence of correcting skips and correcting hops sorting �. The following result was proved by Heath and Vergara
in [8]:

Theorem 2.1 (Heath and Vergara [8, Theorem 5]). For all � ∈ Sn, t3(�) = csh(�). That is, to optimally sort using
3-transpositions, correcting skips/hops suffice.

This result indicates that a complete understanding of correcting skips/hops will suffice to resolve questions about
t3(.). Clearly, csh(�)�#inv(�), since starting with i = 1 and going up to i = n, we can repeatedly move i left via
correcting skips alone to its correct place. On the other hand, a correcting hop (skip) reduces the number of inversions
by exactly two (one, respectively), and #inv(idn) = 0. Thus it follows that

⌈
#inv(�)

2

⌉
�csh(�)�#inv(�). (1)

Any sequence of s correcting skips and h correcting hops sorting � satisfies s + h�csh(�) and s + 2h = #inv(�).
If the sequence is optimal, then s + h = csh(�). Thus one can see that every optimal sequence has the same number
of correcting skips, say cs(�), and that no sorting sequence (optimal or otherwise) has fewer correcting skips. Hence
computing csh(�) is equivalent to computing cs(�); in fact,

csh(�) = #inv(�) + cs(�)

2
. (2)

We denote by Hn the set of those permutations � ∈ Sn for which cs(�) = 0, or equivalently, the set of permutations
that can be sorted using correcting hops alone. We denote by Gn the set of all correcting-hop-free permutations in Sn,
and by CGn its subclass of connected correcting-hop-free permutations.

3. Permutations sortable by correcting hops

One implication of Theorem 2.1 and Eq. (2) is that computing t3(�) is equivalent to computing cs(�). This then
naturally suggests a partition of Sn into classes based on cs(.). Here we concentrate on the class Hn of those permutations
for which cs(�) = 0 (i.e. permutations that can be sorted using correcting hops alone). Note that for � ∈ Hn, t3(�) =
csh(�) = #inv(�)/2.

We define below certain structures associated with each permutation. These structures will allow us to identify large
subclasses of Hn.

Definition 3.1. Let � be any permutation in Sn. For u ∈ [n],

(1) left(u, �) is the set of elements v greater than u appearing to the left of u in �. left(u, �) = {v > u | (u, v) ∈
Inv(�)}. p(u, �) = |left(u, �)|mod 2.

(2) right(u, �) is the set of elements w less than u appearing to the right of u in �. right(u, �)={w < u | (u, w) ∈
Inv(�)}. q(u, �) = |right(u, �)|mod 2.

1572 M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585

Table 1
How correcting hops/skips affect p() and q()

Initial position Correcting left hop
(w < u; w < v)

Correcting right hop
(u > v; u > w)

Correcting skip
(u > v)

Element u v w w u v v w u v u

p(x,�) p1 p2 p3 p3 p1 p2 p2 p3 p1 p2 p1
q(x,�) q1 q2 q3 q3 q1 q2 q2 q3 q1 q2 q1

(3) p(�) = p(�1, �)p(�2, �) . . . p(�n, �). q(�) = q(�1, �)q(�2, �) . . . q(�n, �).

Note that Inv(�) = ⋃
u left(u, �) = ⋃

v right(v, �).

Proposition 3.2. For � ∈ Sn and i ∈ [n], �i + |left(�i , �)| = i + |right(�i , �)|.

Proof. Let �i = a, |left(a, �)| = k, and |right(a, �)| = l. Of the i − 1 elements to the left of a, k are larger than
a, so the remaining i − 1 − k are smaller than a. Thus, of the a − 1 elements less than a, i − 1 − k are already to the
left of a. The remaining (a − 1) − (i − 1 − k) form the set right(a, �), giving the claimed equality. �

Hops can be either to the left or to the right, and left hops and right hops affect the underlying permutation differently.
Let � be the permutation resulting from the application of a correcting hop or skip to �. For elements u not involved
in the move, p(u, �) = p(u, �) and q(u, �) = q(u, �). For elements involved in the move, the Table 1 summarizes the
effect of the move on p() and q(). The entries are self-explanatory.

Lemma 3.3. For all � ∈ Hn, the quantities #inv(�), |p(�)|1 and |q(�)|1 are even.

Proof. A correcting hop decreases the number of inversions exactly by two. And idn has no inversions. So if � can be
transformed to idn via correcting hops alone, then #inv(�) must be even.

As can be seen from Table 1, if a correcting hop is applied to � yielding �, then |p(�)|1 = |p(�)|1 + x and
|q(�)|1 = |q(�)|1 + y where x, y ∈ {−2, 0, 2}. (For instance, in p(�) and p(�), a correcting left hop leaves the two
underlying bits unaltered whereas a correcting right hop flips the two underlying bits, and, in both the cases, the bit
that hops remains unaffected.) But |p(idn)|1 = |q(idn)|1 = 0. The result follows. �

This result is not a characterization: for the permutation �= 4 1 5 2 6 3, all of #inv(�), |p(�)|1 and |q(�)|1 are even,
but � /∈ Hn.

We consider the following questions: “which permutations can be sorted using correcting left hops alone?” and
“which can be sorted with correcting right hops alone?” Let us denote by Ln the set of all permutations of length n
which can be sorted using correcting left hops alone and by Rn the set of all permutations which can be sorted with
correcting right hops alone. That Ln
= Rn is obvious. In fact, 2 3 1 4 . . . n ∈ Ln − Rn, 3 1 2 4 . . . n ∈ Rn − Ln, and
3 4 1 2 5 . . . n ∈ Ln∩Rn. It follows from the definitions that Ln∪Rn ⊆ Hn; this inclusion is proper, for 4 1 2 5 3 6 . . . n ∈
Hn − (Ln ∪ Rn). Even though the classes Ln and Rn are distinct, nevertheless they are symmetric in their properties.
In the rest of this section, we explicitly prove results for either Ln or Rn but not for both.

Lemma 3.4. p−1(0n) ⊆ Ln, and q−1(0n) ⊆ Rn.

Proof. Let � ∈ p−1(0n). Then every �i has an even number of larger elements to its left in �. This is in particular
true for 1. Hence 1 can be moved to the extreme left through a sequence of correcting left hops. From Table 1, the p()

string for the resulting permutation is still 0n. So 2 can be moved to the immediate right of 1 via correcting left hops.
Repeatedly, after having positioned elements 1, 2, . . . i correctly via correcting left hops, there are an even number of
larger elements to the left of i +1 (and to the right of i). So, i +1 can be taken to the immediate right of i via a sequence
of correcting left hops.In this manner the permutation can be transformed to idn. �

Lemma 3.5. For every � in Ln, p(�) = 0n. For every � in Rn, q(�) = 0n.

M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585 1573

Proof. As we can see from Table 1, if a correcting left hop is applied to � yielding �, then |p(�)|1 = |p(�)|1. Using
this, we see that if � is in Ln, then |p(�)|1 = |p(idn)|1. But |p(idn)|1 = 0, hence p(�) = 0n. �

These lemmas give us the following characterization of the sets Ln and Rn.

Theorem 3.6. Ln = p−1(0n) and Rn = q−1(0n).

Though the classes Ln and Rn appear rather restrictive, the following theorem shows that each of them is actually
fairly large. Hence the class Hn, which contains Ln ∪ Rn, is also fairly large.

Theorem 3.7. |p−1(0n)| = |q−1(0n)| = (�n − 1/2�)!(�n + 1/2�)!.

Proof. A permutation � which is constructed from the empty string � by inserting successive smaller elements, starting
downward from n, in such a way that they have an even number of larger elements to their left, is obviously in
p−1(00...00). It is also obvious that every � ∈ p−1(00...00) has such a (unique) construction. To count |p−1(0n)|, we
just need to count the number of ways in which such a construction can be carried out.

Consider such an incremental construction of a permutation � in p−1(0n). We start with s0 being the empty string
�. After i stages, we have a string si which has the elements n − i + 1, n − i + 2, . . . , n. At the (i + 1)th stage, for
i ∈ [n], we insert the element n − i into the string si to obtain the string si+1. If at this stage we ensure that n − i has
an even number of larger elements to its left in si+1, then n − i will have an even number of larger elements to its left
in sn as well, since all subsequent insertions are of elements smaller than n − i and do not affect this property.

At the (i +1)th stage, since |si |= i, there are i +1 slots in which a new element may be inserted. Exactly �(i +1)/2�
of these will allow n − i to have an even number of larger elements to its left. Thus the construction can be carried out
in

∏n−1
i=0 �(i + 1)/2� ways, giving the theorem. �

4. Correcting-hop-free permutations

We know permutations which do not have any correcting hops at all: 2 1 and 3 1 4 2 are such. Here we analyse the class
Gn ⊆ Sn of all correcting-hop-free permutations, and its subset CGn of connected correcting-hop-free permutations.
As stated below, this class is essentially disjoint from the class Hn considered in the previous section.

Proposition 4.1. Gn ∩ Hn = {idn}.

Proof. Permutations in Gn −idn have no correcting hops at all, to start with. So, it is necessary that we use a positive
number of correcting skips to sort them. �

4.1. Characterizing Gn and CGn

We consider the classes Gn ={� ∈ Sn | � is correcting-hop-free} and CGn ={� ∈ Gn | � is connected}. Recognizing
Gn itself is trivial: there are 2n − 4 possible hops in a permutation in Sn (�1 and �2 can only hop right, �n−1 and
�n can only hop left, all other elements can hop both left and right), and in O(n) time we can check whether any
of them is a correcting hop. Recognizing CGn is equally straightforward; check if � is in Gn and check if it is
connected.

However, these recognition procedures do not help us to optimally sort such permutations using correcting hops/skips.
In this subsection, we analyse the kinds of permutations that are in Gn and in CGn and obtain a combinatorial
characterization. This characterization will be used in the next subsection to efficiently sort these permutations using
correcting hops/skips.

Definition 4.2. Let � ∈ Sn.

(1) � has the increasing-even-sequence property, IES, if �2 < �4 < . . .; that is, the even-positioned elements form an
increasing sequence.

1574 M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585

(2) � has the increasing-odd-sequence property, IOS, if �1 < �3 < . . .; that is, the odd-positioned elements form an
increasing sequence.

(3) � has the odd-dominates-next-2-even property, ODN2E, if �2k−1 > �2k and �2k−1 > �2k+2 for all appropriate k;
that is, each odd-positioned element is larger than the succeeding two even-positioned elements.

Theorem 4.3. A permutation is correcting-hop-free if and only if it has the IES and the IOS properties.

Proof. First, assume that � ∈ Sn has the IES and IOS properties. Then it is clear that there is no correcting hop, because
any hop moves some element �i over two of its neighbours, and by the IES and IOS properties, a move of �i over �i−2
or over �i+2 introduces an inversion.

Now, suppose � fails either the IES or the IOS property. Then there is an index i such that u = �i > �i+2 = v. Let
w = �i+1, so that uwv is a substring of �. If w > u, then w > v and so moving v left is a correcting hop. If w < u, then
moving u right is a correcting hop. Either way, � has a correcting hop and so is not in Gn. �

Theorem 4.4. The number of correcting-hop-free permutations on n elements is exactly
(

n
�n/2�

)
.

Proof. Theorem 4.3 gives a simple procedure to generate all permutations in Gn: choose any subset S ⊆ [n] of size
�n/2�, arrange the elements of S in increasing order, arrange the elements of [n]\S in increasing order, and then take
the perfect shuffle of the two sequences so obtained, starting with the smallest element of S. The number of ways in

which this can be done is precisely
(

n
�n/2�

)
. �

Lemma 4.5. For a correcting-hop-free permutation � ∈ Gn, for each i ∈ [n],

�i � i �i � i

|left(�i , �)| i − �i 0
|right(�i , �)| 0 �i − i

Proof. Since � ∈ Gn, by Theorem 4.3 it has the IES and IOS properties. So left(�i , �) ⊆ {. . . , �i−3, �i−1}
and right(�i , �) ⊆ {�i+1, �i+3, . . .}. Furthermore, if left(�i , �)
= ∅, then �i−1 > �i and due to IES and IOS,
right(�i , �) = ∅. Similarly, if right(�i , �)
= ∅, then left(�i , �) = ∅.

Now we use Proposition 3.2. If �i = i, then |left(�i , �)| = |right(�i , �)|. But left(�i , �) and right(�i , �)

cannot both be non-empty; so they must both be empty. If �i < i, then |left(�i , �)| > |right(�i , �)|. Since at least
one of these two sets is empty, it must hold that |right(�i , �)|=0, and then |left(�i , �)|=i−�i . Similarly, if �i > i,
then |left(�i , �)| < |right(�i , �)|, and so it must hold that |left(�i , �)| = 0 and |right(�i , �)| = �i − i. �

Lemma 4.6. If a permutation � ∈ Sn, n > 1, is connected and correcting-hop-free (that is, � ∈ CGn), then n is even.

Proof. For permutations of S2 the lemma is vacuously true. The only connected permutations of S3 are 3 2 1, 3 1 2, and
2 3 1, and each of these has a correcting hop. Let � ∈ Sn, n�4, be connected and correcting-hop-free. We establish
that n is necessarily even. We first prove a claim about connected correcting-hop-free permutations.

Claim 1. If � in CGn, then it does not have a monotone substring (increasing or decreasing) of length 3.

Proof of claim. We will show that every internal element �i , 1 < i < n, in � is flanked either by two smaller elements
or by two larger elements.

Suppose one of �i−1 and �i+1 is smaller and the other is larger than �i for some 1 < i < n . From Theorem 4.3, it
cannot be true that �i−1 > �i+1. So assume that �i−1 < �i < �i+1. From connectedness, either there is a k < i such that
�k > �i or there is k > i such that �k < �i (or both). Let us assume that the former is true (the other case is symmetric).
Then the rightmost such �k has two smaller elements to its immediate right and so � has a correcting right hop, which
is a contradiction. Hence the claim. �

M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585 1575

Since � is connected and correcting-hop-free, it is necessary that �2 = 1 and �n−1 = n. Therefore, from the above
claim, it follows that every �2i is flanked by two larger elements. But �n−1 = n is necessarily flanked by two smaller
elements; so n − 1 cannot be even or n cannot be odd. �

Theorem 4.7. A permutation � ∈ Sn, with n > 1, is connected and correcting-hop-free if and only if it satisfies the
following properties: (1) � has the IES and IOS properties, (2) n is even, and (3) � has the ODN2E property.

Proof. First, let us see why these conditions suffice. Let � satisfy all three conditions. Condition (1) implies, by
Theorem 4.3, that � is correcting-hop-free. By condition (3), every even i satisfies �i < �i−1, so a component cannot
begin at such an i. For every odd i > 1, by condition (2), there is a succeeding element �i+1, and by condition (3),
�i+1 < �i−2. So a component cannot begin at such an i. Thus � has only one component beginning at position 1; i.e. it
is connected.

Now we show that these conditions are necessary. Let � be a connected correcting-hop-free �. By Theorem 4.3, �
satisfies the first condition. By IES and IOS, n ∈ {�n−1, �n}. Also, by Lemma 4.6, � satisfies the second condition, so
n is even.

Suppose � does not satisfy the ODN2E property. Then there is an index 2j − 1 where this property is violated.
Consider the largest such index 2i − 1. If 2i − 1 = n − 1, then �n−1 < �n. Since n ∈ {�n−1, �n}, it must be that n = �n,
making �n a component of �. This contradicts the fact that � is connected. So 2i − 1 < n − 1. Since n is even while
2i −1 is odd, we have in fact 2i −1 < n−2; that is, n�2i +2. Let �2i−1 =a, �2i =b, �2i+1 =c, and �2i+2 =d. By IES
and IOS, a < c and b < d. By choice of i, a < d < c. So the correct ordering of these 4 elements is either a < b < d < c

or b < a < d < c. By IES and IOS, it follows that a component of � begins at position 2i + 1, contradicting the fact that
� is connected. So no such index can exist, and � must satisfy ODN2E. �

Corollary 4.8. A permutation � is connected and correcting-hop-free if and only if it can be constructed in the
following way: (1) choose an even number n, (2) set �2 = 1, (3) for 2� i�n/2 choose a value for �2i from the set
{�2i−2 + 1, . . . , 2i − 2}, and (4) fill up the odd positions with the unused elements of [n] in increasing order.

Proof. If a permutation � is constructed in this way, then it obviously satisfies the first two conditions of the theorem
above. To see why it satisfies ODN2E, note that for each i > 1, of the elements [1, 2i −2], exactly i elements are placed
in the even positions 2, 4, . . . , 2i. So at most i − 2 elements from this set are available to fill up the odd positions. But
there are i odd positions to the left of �2i . So the last two of these, 2i − 3 and 2i − 1, must use an element outside
this set, i.e. it must hold that �2i−1 > �2i−3 > 2i − 2��2i > �2i−2. Thus ODN2E holds. Hence by the above theorem,
� ∈ CGn.

Conversely, if � is in CGn, then by Theorem 4.7, n is even. Since � has IES and IOS and ODN2E properties,
1 ∈ {�1, �2} and �1 > �2, so �2 = 1. Furthermore, for each index 2i > 2, the elements �2i−3 and �2i−1 are larger than
�2i by ODN2E, and then by IES and IOS, all elements to the right of �2i are also larger than �2i . Thus there are at most
2i − 3 elements smaller than �2i , so �2i−2 < �2i �2i − 2. �

4.2. Sorting permutations in Gn optimally

For permutations in Gn, Theorem 19 of [9] implies that optimal sorting using correcting skips/hops can be done
efficiently. A permutation � ∈ Sn is said to be a woven double-strip permutation if there is a set S ⊆ [n] such that
(1) the elements {�i | i ∈ S} appear in correct relative order in �, and (2) the elements {�i | i /∈ S} appear in correct
relative order in �. Corollaries 24 and 25 of [9] establish that for a woven double-strip permutation �, csh(�) (and hence
cs(�)) can be computed in O(n2) time and an optimal sorting sequence can be found in O(n3 log n) time. Note that by
Theorem 4.3, every permutation in Gn is a woven double-strip permutation and so these bounds apply. In this section,
we improve these bounds for permutations in Gn by establishing a combinatorial result about cs(�) when � ∈ Gn. We
show that for � ∈ Gn, an optimal sorting sequence can be found in O(n) time.

Proposition 4.9. For any � in Gn, and for any i ∈ [n],
left(�i , �)
= ∅ ⇒ [�i−1 ∈ left(�i , �) ∧ left(�i−1, �) = ∅].
right(�i , �)
= ∅ ⇒ [�i+1 ∈ right(�i , �) ∧ right(�i+1, �) = ∅].

1576 M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585

Proof. Letleft(�i , �)
= ∅. By Theorem 4.3, � has the IES and IOS properties, so none of the elements �i−2, �i−4, . . .

belong to left(�i , �). Of the remaining elements to the left of �i , �i−1 is the largest, so if left(�i , �) is non-empty,
it must contain �i−1. So �i < �i−1. But this, along with the IES and IOS properties, implies that left(�i−1, �) is
empty. The proof for right() is symmetric. �

Lemma 4.10. ∀� ∈ Gn, cs(�)� min{|p(�)|1, |q(�)|1}. Furthermore, there is a sorting sequence where min{|p(�)|1,
|q(�)|1} correcting skips are applied initially, in parallel, to obtain a permutation in Ln ∪ Rn.

Proof. For any i ∈ [n], let p(�i , �) = 1. Clearly, left(�i , �)
= ∅. By Proposition 4.9, left(�i−1, �) = ∅ and so
p(�i−1, �) = 0. Thus every 1 in p(�) is preceded by a 0.

We now describe a sorting sequence, where |p(�)|1 correcting skips are applied initially, in parallel, to obtain a
permutation in Ln. For any i ∈ [n], let p(�i , �) = 1. From Proposition 4.9, �i−1 > �i , so moving �i one position left
is a correcting skip. From Table 1, such a correcting (left) skip will convert the 01 at positions i − 1, i to a 00. Thus,
after applying correcting (left) skips to each �i satisfying p(�i , �) = 1, we get a permutation in p−1(0n) = Ln.

The proof for |q(�)|1 correcting skips is symmetric. �

Corollary 4.11. For � ∈ Gn, max{|p(�)|1, |q(�)|1}��n/2�.

Proof. It follows from definition that p(�1, �) = 0 (and q(�n, �) = 0). And the proof of Lemma 4.10 establishes that
every 1 in p(�) is preceded by a 0 (and every 1 in q(�) is followed by a 0). �

To obtain a corresponding lower bound, we use the results about Gn and CGn from the previous subsection, and a
result from [9]. First, we present some notation, also from [9]. For any � ∈ Sn, the permutation graph G� is the directed
graph G� = (V�, A�) where V� = [n] and A� = {(�i , �j) | i < j ∧ �i > �j }. We say that arcs (a, b) and (c, d) are
right-compatible (left-compatible) if b = d (a = c, respectively). A pair of arcs (a, b), (c, d) is said to be compatible if
it is either right-compatible or left-compatible. An element x is an obstacle for a pair of compatible arcs (a, b), (c, d) if
(1) a = c, b < x < d, and in �, these elements occur in relative order a, b, x, d, or (2) b = d, a < x < c, and in �, these
elements occur in relative order a, x, c, b. A pair of arcs is feasible if it is a compatible pair with no obstacle. The arc
graph Ga

� is an undirected graph with vertex set V a
� = A�, and ((a, b), (c, d)) ∈ Ea

� exactly when (a, b), (c, d) is a
pair of feasible arcs.

The following result appears in [9]; for completeness, we sketch the proof here.

Lemma 4.12 (Heath and Vergara [9, Lemma 14]). For every � ∈ Sn, csh(�)� |M| + |U | where M is a maximum
matching in Ga

� and U is the vertices of Ga
� left unmatched by M.

Proof. Note that correcting moves do not introduce arcs in G�. Every correcting skip erases exactly one arc from G�,
every correcting hop erases exactly two compatible arcs. If two compatible arcs are not feasible, then they cannot be
erased by a single correcting hop, since the obstacle in between will never go away. (Correcting moves never introduce
inversions.) So every correcting hop erases exactly two feasible arcs.

Consider an optimal sequence � of h correcting hops and s correcting skips sorting �. This sequence erases all the
arcs from G�, so 2h+ s =|A�|=#inv(�). Each skip erases a single arc, each hop erases a pair of feasible arcs. Define
M ′ ⊆ Ea

� as follows:

M ′ = {((a, b), (c, d)) | some correcting hop in � erases both (a, b) and (c, d)}.

Clearly, M ′ is a matching of size h. The arcs left unmatched by M ′ are precisely the arcs erased by correcting skips, so
|U ′| = s. Thus the length of the sequence, s + h, is precisely |M ′| + |U ′|.

Let M be a maximum matching in Ga
�, and let U be the vertices unsaturated by it. Then 2|M|+|U |=|A�|=2|M ′|+|U ′|.

Since |M|� |M ′|, it follows that csh(�) = s + h = |M ′| + |U ′| = 2|M ′| + |U ′| − |M ′| = 2|M| + |U | − |M ′| = (|M| +
|U |) + (|M| − |M ′|)� |M| + |U |. �

We can now establish a lower bound on cs(�) when � ∈ Gn.

M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585 1577

Lemma 4.13. ∀� ∈ Gn, cs(�)� max{|p(�)|1, |q(�)|1}.

Proof. Since Ga
� has exactly #inv(�) vertices, it follows from Lemma 4.12 and Eq. (2) that for every � ∈ Sn,

cs(�)� |U | where U is the vertices left unmatched by a maximum matching M in Ga
�. It thus suffices to prove that when

� is in Gn, for any matching M in Ga
�, |U |� |p(�)|1 and |U |� |q(�)|1.We present the argument for |U |� |p(�)|1, that

for |q(�)|1 is symmetric.
No correcting hop/skip involves elements from more than one connected component of the underlying permutation.

We say that a sequence 〈a1, . . . , an〉 is isomorphic to a permutation � = �1 . . . �n if there is a constant k such that
for every 1� i�n, �i = ai − k. Then a permutation � is in Gn if and only if each of its connected components is
isomorphic to a permutation in CGm, for some m�n. If a component of � is isomorphic to some permutation �, then
p(�) is exactly the corresponding substring of p(�). Note that connected components of � correspond to connected
components of the permutation graph G�. Hence it suffices to prove that for each � ∈ CGn, |U |� |p(�)|1.

If � is in CGn, then by Theorem 4.7, it has the IES, IOS and ODN2E properties. Let (�i , �j) be an arc in G�. By
the above properties, i must be odd and j must be even. If (�i , �k) and (�j , �k) are arcs in G�, then every (�l , �k)

where l is an odd number between i and j must also be in G�. Thus all the incoming arcs into an even position are
from consecutive odd positions. Note that left(�i , �) = {�j | (�j , �i) is an arc in G�}. Hence p(�i , �) = 0 if i is
odd, and p(�i , �) = indegree(�i)mod 2 if i is even. Also, all compatible pairs are of the form ((�i , �j), (�i+2, �j)) or
((�j , �i), (�j , �i+2)).

We show that there is a maximum matching in Ga
� in which every matched pair of arcs is right-compatible. Let M be

any matching in Ga
�. If no arcs matched by M are left-compatible, we are done. Otherwise, choose the largest j such that

M contains a left-compatible pair with left-endpoint �j ; let this pair be (�j , �k), (�j , �k+2) for some k > j . Note that j
must be odd and k must be even. Let B = {(�l , �k) | l odd, j < l < k} and let C = {(�l , �k) | l odd, j < l < k + 2}. As
argued above, B ∪C ⊆ E�. Exactly one of B and C is odd. Assume that B is odd, the argument when C is odd is similar.
Each arc in B is a vertex in Ga

�. If it is matched by M, then it must be matched with a right-compatible arc, which is
also in B, since (by our choice of j) no arcs in M are left-compatible beyond j. So we can now restructure M as follows:
remove from M the left-compatible pair (�j , �k), (�j , �k+2) and all arc pairs within B (at most (|B| − 1)/2; add to M
the following (|B| + 1)/2 feasible arc pairs ((�j+4t , �k), (�j+4t+2, �k)) for 0� t �(k − j − 3)/4. (By ODN2E, all
these pairs are indeed feasible.) This gives a new matching of the same size as M and with one less left-compatible
pair. Repeat this process until there are no left-compatible pairs left.

Now let M be a maximum matching in Ga
� where no matched arcs are left-compatible. For each even position

i, M can pick at most �indegree(�i)/2� feasible pairs of arcs right-compatible at �2i . Thus, if indegree (�i) is odd
(i.e. p(�i , �) = 1), then at least one vertex of Ga

� of the form (�k, �i) is left unsaturated by M. Hence |U |� |p(�)|1,
proving the theorem. �

From Lemmas 4.10 and 4.13, we have the following characterization.

Theorem 4.14. ∀� ∈ Gn, cs(�) = |p(�)|1 = |q(�)|1.

From Lemma 4.10 and Theorem 4.14, we have the following.

Corollary 4.15. Each permutation � ∈ Gn has cs(�) correcting skips applying which in parallel results in a permu-
tation in Hn.

From Theorem 4.3, we see that testing if � is in Gn can be done in O(n) time. If � ∈ Gn, then by Lemma 4.5,
computing |p(�)|1 can also be done in O(n) time. With this information, a sorting sequence of length |p(�)|1 can be
described in additional O(n) time as follows: first apply |p(�)|1 correcting skips at appropriate positions, as described
in the proof of Lemma 4.10, to obtain a permutation in Ln. Then, for a going from 1 to n − 1, apply �|left(a, �)|/2�
left hops to a; the proof of Lemma 3.4 shows that all these hops are correcting. From Theorem 4.14, this sequence
is optimal. We thus have the following result. (Note that csh(�) itself need not be O(n); but the csh(�) correcting
hops/skips have an O(n) sized description.)

Theorem 4.16. Given a permutation � ∈ Gn, we can find an optimal sorting sequence of correcting hops/skips in
O(n) time.

1578 M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585

5. Improved upper bounds for general permutations

In this section, we extend the techniques developed to obtain some results for general permutations. We first obtain
an upper bound for cs(�) based on the strings p(�) and q(�). We then use this bound, along with the combinatorial
characterization of CGn, to present a tighter analysis of the 4

3 -approximation algorithm for csh(�) [9]. Our results, in
particular, simplify the above mentioned algorithm.

5.1. An upper bound for cs(�)

Using the techniques developed in Section 3, we obtain an upper bound for cs(�) based on the strings p(�) and q(�).
Let s be a bit string s ∈ {0, 1}n. A 1-block of s is a maximal substring of 1s. An odd (even) 1-block is a 1-block of odd
(even, respectively) length. For instance, if s = 001101110100011, then s has four 1-blocks, of which the first and last
are even and the other two are odd.

Lemma 5.1. For � ∈ Sn, let m1 denote the number of odd 1-blocks in p(�), and let m2 denote the number of odd
1-blocks in q(�). Then cs(�)� min(m1, m2).

Proof. We prove that cs(�)�m1; the upper bound of m2 is proved in a symmetric way.
Note that p(�1) is always 0. Let j �1 be the smallest index such that p(�j+1) = 1, and let k�j denote the smallest

index such that p(�k+1)= 0. (That is, the first 1-block in p(�) occurs in positions j + 1, . . . , k.) As argued in the proof
of Lemma 3.4, the portion �1 . . . �j can be sorted with correcting left hops alone. Let us denote the permutation that
results from sorting this prefix by �. Then p(�) = p(�). Since p(�j+1, �) = 1, it holds that left(�j+1, �)
= ∅. But
�j is the largest element to the left of �j+1, so �j+1 < �j .

We argue inductively that this holds for every element in this 1-block; i.e. �l < �j for each j +1� l�k. For l =j +1
we have shown this above. Now assume that this is true for j + 1� i < l, and now consider l. Since p(�l , �) = 1,
left(�l , �)
= ∅. If for some t ∈ [j + 1, l − 1], �t > �l , then �l < �t < �j by induction. Otherwise left(�l , �)

contains no elements in the positions j + 1, . . . , l − 1. Since it is non-empty, it must contain an element in position
1, . . . , j . But �j is the largest such element, so �j > �l .

Thus �j is larger than all the elements in the 1-block beginning at position j + 1. We move �j to the right of this
block using only correcting hops if the 1-block is even, and using correcting hops and one correcting skip if the 1-block
is odd. Let � be the resulting permutation. From Table 1, we can see that p(�) differs from p(�) in that the first 1-block
is replaced by 0s. (A correcting right move flips the underlying bits.)

The argument can be repeated to sequentially remove each of the remaining 1-blocks. One correcting skip is required
for every odd 1-block encountered. So all 1-blocks are removed using exactly m1 correcting skips. This gives a
permutation in p−1(0n), which, by Lemma 3.4, is in Ln. �

Since the maximum number of odd 1-blocks that can be packed into an n-bit string where the first (or last) bit is 0
is �n/2�, we have the following upper bound.

Theorem 5.2. For any � ∈ Sn, cs(�)��n/2� and csh(�)�#inv(�) + �n/2�
2 .

Note that Theorem 18 of [8] establishes another upper bound; it shows that for all � ∈ Sn, csh(�)��(n
2

)
/2�.

Our bound is incomparable with this; for some permutations our bound is tighter whereas for some it is weaker. For
instance, for the reversal permutation revn = nn − 1 . . . 2 1, p(revn) has �n/2� odd blocks of 1s, so our bound
shows that �n/2� correcting skips suffice and csh(revn)�(

(
n
2

)+�n/2�)/2. But the bound of Heath and Vergara gives
csh(revn)��(n

2

)
/2� (in fact, Heath and Vergara establish that csh(revn) = �(n

2

)
/2�), and since #inv(revn) =

n(n − 1)/2, at most one correcting skip is required. On the other hand, for permutations � ∈ Gn, due to the IES and

IOS properties, we have #inv(�)�
(

n
2

)−2
(

n/2
2

)
, so our bound is significantly better. Essentially, our bound is better

whenever
(

n
2

) − #inv(�) exceeds n/2.

Corollary 5.3. For any � ∈ Sn, if either p(�) or q(�) has only even-length blocks of 1s, then � is in Hn.

M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585 1579

5.2. A tighter analysis of the 4
3 approximation algorithm of [9]

In [9], Heath and Vergara present a greedy algorithm for sorting by correcting hops/skips, and show that it achieves
an approximation factor of 4

3 . To describe the algorithm, we first present some notation, following [9].
Let �i , �i+1 form a component of �. Then it must hold that �i = i + 1 and �i+1 = i. To sort �, a correcting skip

exchanging �i and �i+1 is essential. Such a skip, that sorts a component of size 2, is called a lone skip. For every
permutation �, cs(�) is at least as large as the number of lone skips already present in �. However, an algorithm to sort
� may also introduce lone skips; since the goal is to minimize skips, a sub-goal is to minimize such introductions.

A mushroom in � is a substring of contiguous elements a b c d such that b < d < a < c. A correcting skip exchanging
a and b, followed by a left correcting hop of d, sorts the mushroom.

The following points are proved in [9]: (1) if a permutation has correcting hops, then there are correcting hops
introducing zero or one new lone skip, (2) if an unsorted permutation has no lone skip and no correcting hop, then it
has a mushroom, and (3) performing a lone skip, or sorting a mushroom with one skip and one hop as described above,
does not introduce lone skips. Using these, the greedy algorithm GREEDYHOPS is formulated as follows.

Algorithm GREEDYHOPS-1

1. While there are lone skips, perform lone skips.
2. While there are correcting hops, perform a correcting hop that introduces the fewest number of lone skips and go

to step 1.
3. If unsorted, locate a mushroom, sort it with one skip and one hop, and go to step 1.

Each skip used in this algorithm is either essential (a pre-existing lone skip), or introduced by a correcting hop at
step 2, or followed by a correcting hop at step 3. So the non-essential skips can be matched with correcting hops, giving
the 4

3 factor.
It is easy to see that performing the lone skips can be postponed to the end of the algorithm, since each lone skip

acts on a component of size 2 and does not affect the rest of the permutation. Thus, the algorithm can be restated as:

Algorithm GREEDYHOPS-2

1′. While there are correcting hops, perform a correcting hop that introduces the fewest number of lone skips.
2′. If there is a mushroom, pick any one mushroom, sort it with one skip and one hop, and go to step 1′.
3′. While there are lone skips, perform lone skips.

(Algorithms GREEDYHOPS-1 and GREEDYHOPS-2 require the same number of skips and hops; only the order in which
lone skips are performed is changed.)

We use our understanding of Gn and CGn to tighten the analysis of this algorithm. Notice that step 2′ is executed
only on Gn, correcting-hop-free permutations. Since a mushroom is necessarily within a single component, step 2′
acts on a connected correcting-hop-free permutation, in CGk for some k. If step 2′ is executed again on this part of the
permutation, then just before this execution, this portion of the permutation is in Gk . And in the intervening sequence,
exactly one skip and some hops have been performed on this part.

We show below that if � ∈ CGn, then any correcting skip applied to �, followed by any sequence of correcting hops
leading to a permutation in Gn, will lead to the same permutation, say �, in Gn. Recall that from Theorem 4.7, n must
be even, say 2m, and � has the IES, IOS and ODN2E properties.

Lemma 5.4. For m > 1, let � ∈ CG2m. Denote by oi and ei the ith odd and even position elements, respectively;
then � = o1e1o2e2 . . . omem. If � is obtained from � through a sequence of one correcting skip followed by zero or
more correcting hops, and if � ∈ G2m, then � = e1e2o1e3o2e4 . . . om−2emom−1om; therefore |p(�)|1 = |p(�)|1 − 1.
Furthermore, � is reached from � by one correcting skip and exactly m − 1 correcting hops.

Before proving this lemma, we show how it helps us to analyse GREEDYHOPS-2.

Lemma 5.5. Algorithms GREEDYHOPS-1 and GREEDYHOPS-2 perform at most �n/2� correcting skips.

1580 M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585

Proof. Consider a sorting sequence constructed by GREEDYHOPS-2. Let it be of length acsh(�) (approximate csh),
with acs correcting skips and ach correcting hops. Since correcting skips are performed only when the permutation is
in Gn, and the skip affects only the component involved, Lemma 5.4 tells us that from one skip to the next, the number
of 1s in p(.) decreases exactly by 1. Thus, if � is the permutation just before the application of the first correcting skip,
and if |p(�)|1 = k, then acs = k. But � ∈ Gn, so |p(�)|1 ��n/2�. Hence acs��n/2�. �

Theorem 5.6. On any permutation � ∈ Sn, algorithm GREEDYHOPS of [9] produces a sorting sequence of length at
most

min

{
4

3
,

(
1 + n

2 · #inv(�)

)}
· csh(�).

Proof. The 4
3 bound is established in [9]. To see the other bound, note that

acsh(�) = #inv(�) + acs

2

� #inv(�) + �n/2�
2

�
(
#inv(�) + n/2

#inv(�)

)
·
(
#inv(�)

2

)

�
(

1 + n

2 · #inv(�)

)
· csh(�). �

Note that whenever#inv(�) > 3n/2, we have 4
3 > 1+n/2·#inv(�) and so we improve the approximation factor. In

fact, when #inv(�) ∈ �(n2), the approximation factor achieved is O(1+1/n), very close to 1. When #inv(�)�3n/2,
the permutation is, in some sense, already close to being sorted. An algorithm which works well for such permutations
can be coupled with algorithm GREEDYHOPS for the remaining permutations to obtain a better approximation factor.
Thus, to improve the approximation factor from 4

3 to 5
4 , say, it suffices to devise an algorithm that achieves this factor

when #inv(�)�2n.
Another noteworthy point is that when GREEDYHOPS-2 first uses a correcting skip, the permutation in hand is in Gn.

But we know how to sort such permutations optimally. So an alternative greedy algorithm, with approximation factor
at least as good as GREEDYHOPS-1 or GREEDYHOPS-2, is as follows:

Algorithm GREEDYHOPS-3

(1) While there are correcting hops, perform a correcting hop that introduces the fewest number of lone skips.
(2) The permutation is now in Gn. Sort it optimally according to Theorem 4.16.

We now prove Lemma 5.4.

Proof of Lemma 5.4. Let � = o1e1o2e2 . . . omem ∈ CG2m. By Theorem 4.7, we have ei−1 < ei < oi−1 < oi for every
1 < i�m. We want to show that after any one correcting skip, followed by enough correcting hops to re-enter Gn,
the resulting permutation is sorted if m = 2, and if m > 2, then the smallest two elements (which are from the even
subsequence) move to the extreme left, the two largest elements (which are from the odd subsequence) move to the
extreme right, and the remaining elements of the odd and even subsequences appear in a perfect shuffle in the middle.

We consider three cases depending on where the first correcting skip is applied.
Case 1. The correcting skip applied on � exchanges o1 and e1. This gives the permutation e1o1o2e2 . . . omem which

has exactly one correcting hop: move e2 left. By a simple induction, we can show that after the first skip and i correcting
hops, the only correcting hop available is: move ei+3 left. Thus to reach Gn again, we must perform m − 1 hops,
resulting in the permutation e1e2o1e3o2e5 . . . om−2emom−1em−1.

Case 2. The correcting skip applied on � exchanges (om, em). This case is similar to Case 1.
Case 3. The correcting skip exchanges oi, ei for some 1 < i < m. This gives rise to a permutation � = o1e1 . . . oi−1

ei−1 eioi oi+1ei+1 . . . omem.

M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585 1581

We now establish by induction that after performing k correcting hops on �, the permutation is of the form
(oe)∗ ee (oe)k−1 oo (oe)∗, with the elements from the original even (odd) subsequence in correct relative order.

To see the basis, when k = 1, note that � has two correcting hops: move oi−1 right, and move ei+1 left. Applying the
right hop of oi−1 on � gives permutation �1 = o1e1 . . . oi−2ei−2 ei−1ei oi−1oi oi+1ei+1 . . . omem, and now applying
the left hop of ei+1 on � gives permutation �2 = o1e1 . . . oi−1ei−1 eiei+1 oioi+1 oi+2ei+2 . . . omem. Thus both �1 and
�2 are of the form (oe)∗ ee oo (oe)∗, with the elements from the original even (odd) subsequence in correct relative
order.

Assume that the claim is true after k − 1 correcting hops, so we have a permutation � of the form (oe)∗ ee (oe)k−2

oo (oe)∗. The elements marked o are in correct relative order, so are the elements marked e, and oi−1 > ei . If k = m,
then � = ee (oe)k−2 oo, and from Theorem 4.3 we can see that there are no more correcting hops available. If k < m,
then let � = (oe)p ee (oe)k−2 oo (oe)q , where p + k + q = m. If p = 0, there is only one correcting hop, transforming
the suffix oo (oe)q to oe oo (oe)q−1. The resulting permutation is of the form (oe)p ee (oe)k−2 oe oo (oe)q−1, satisfying
the claim. If q = 0, the argument is symmetric. If neither is zero, the kth hop could either transform the suffix oo (oe)q

to oe oo (oe)q−1 or transform the prefix (oe)p ee to (oe)p−1 ee oe. In either case, the resulting permutation has the form
� = (oe)p

′
ee (oe)k−1 oo (oe)q

′
, satisfying the claim.

Thus to reach Gn, we must perform m − 1 hops, after which the resulting permutation is as claimed. �

6. The Class T won

From Lemma 3.3 we know that for permutations in Hn, |p(�)|1 and |q(�)|1 are both even. The subclass of Hn where
either of these numbers is 0 is well-understood (the classes Ln and Rn). Thus, a first non-trivial extension of Ln ∪ Rn

within Hn may be considered to be permutations with two 1s in p(�) or in q(�). In this section, we explore such
permutations. Let LT won ={� ∈ Sn | |p(�)|1 =2}, RT won ={� ∈ Sn | |q(�)|1 =2}, and T won =LT won ∪RT won.
We attempt to understand T won ∩ Hn. While we cannot yet characterize this intersection, we identify fairly large
subsets of T won which lie in Hn. Finally, we sketch a procedure to extend these ideas to permutations in Sn.

We will prove results for LT won ∩Hn; analogous results hold for RT won ∩Hn. Let � be a permutation in LT won.
We identify sufficient properties for � to be in Hn. The first sufficient property follows from Corollary 5.3.

Lemma 6.1. For � ∈ LT won, if the two 1s in p(�) are adjacent, then � ∈ Hn.

Lemma 6.2. For � ∈ LT won, let p(�i , �) = p(�j , �) = 1 for i < j . If �i > �j , then � ∈ Hn.

Proof. If j = i +1, then the result follows from Lemma 6.1. Otherwise, let �i =a and b. As in the proof of Lemma 3.4,
the elements of � to the left of a can be sorted via correcting left hops. This brings c = max{�l | l < i} to the immediate
left of a, with c > a, and the p(.) string is unaltered. Now, scan the string between a and b from left to right. Whenever
an element d < a is encountered, move it left via correcting hops as long as possible. Since all elements between a and
d are greater than a (by the time we reach d, we have already moved out smaller elements), and since d < a < c, these
hops will take d to the left of a (and possibly to the left of c as well). When we reach b, which by assumption is less
than a, we move it left via correcting hops until it is adjacent to a (it may be to the left or right of a). By Lemma 6.1,
this permutation is in Hn, and to reach this permutation from � we used only correcting hops.Hence � ∈ Hn. �

Lemma 6.3. For � ∈ LT won, let p(�i , �) = p(�j , �) = 1 for i < j . If i < j − 1 and �j+1 < �i < �j < �j−1, or if
i < j − 2 and �j−1 < �i < �j < �j−2, then � ∈ Hn.

Proof. If �i > �j , then Lemma 6.2 gives the result. Otherwise, in the first case, perform a right hop of �j−1 to obtain
permutation �. The bits of p(�) at positions j − 1, j, j + 1 remain as 010, with the 1 at �j = �j+1 < �i = �i . In the
second case, perform a right hop of �j−2 to obtain permutation �. The bits of p(�) at positions j − 2, j − 1, j change
from 001 to 100 in p(�), with the 1 at �j−2 = �j−1 < �i = �i .

In either case, after this one right hop, Lemma 6.2 is applicable. �

Lemma 6.4. For � ∈ LT won, let p(�i , �) = p(�j , �) = 1 for i < j . If i < j − 3 and there exists a i + 1 < k < j − 1
such that �k < �i < �j < �k+1 < �k−1, then � ∈ Hn.

1582 M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585

Proof. The substring �k−1, �k, �k+1 lies between �i and �j . Perform a right hop of �k−1 to get permutation �. This
creates two new 1s in p(�) (which were 0s in p(�)); these 1s are at �k−1 = �k and �k = �k+1.

Now the prefix of � up to position k − 1 can be sorted using only hops, according to the strategy of
Lemma 6.2, since there are two 1s at i and k−1 and �i > �k−1. The resulting permutation � again satisfies the premise of
Lemma 6.2 and hence is in Hn. �

Lemma 6.5. For � ∈ LT won, let p(�i , �) = p(�j , �) = 1 for i < j , and let c = max{�l | l < i}. If �l < c for i� l�j ,
and if any of the following conditions holds, then � ∈ Hn.

(i) j − i is odd.
(ii) �l < �i for some l > i.

(iii) Some element smaller than �j occurs to the right of �j ; the first such element occurs at position l > j where
l − j − 1 is odd.

Proof. If j = i + 1 or if �j < �i , then the result follows from Lemma 6.1 or 6.2.
Otherwise, as in the previous proof, let �i = a and �j = b. Sort the prefix of � to the left of a using correcting left

hops. This brings c to the immediate left of a.
First assume that condition (i) holds. Since j − i is odd, the substring �i . . . �j is of even length. Since furthermore,

all elements between a and b are smaller than c, c can be moved to the immediate right of b using correcting right
hops. From Table 1, we see that this changes the p(.) sequence only in the positions i − 1, i, . . . , j , from 010j−i−11
to 01j−i−100. Since j − i − 1 is even, by Corollary 5.3 the resulting permutation is in Hn. Since no skips were needed
to get to Hn, it follows that � ∈ Hn.

If condition (i) does not hold but condition (ii) holds, then j − i is even and for some l > i, �l < a.
Case 1. Such an index appears between i and j. Let d = min{�l < a | i < l < j}. Then d can be moved left via

correcting hops until it is to the left of a (and possibly to the left of c as well). This gives a permutation in LT won

satisfying condition (i) above, and so it is in Hn.
Case 2. All elements between a and b are greater than a (but less than c). For some l > j , �l < a. Let d =min{�l < a |

j < l}. Then d can be moved left via correcting hops until it is between a and b. This too gives a permutation in LT won

satisfying condition (i) above, and so it is in Hn.
If neither condition (i) nor condition (ii) holds but condition (iii) holds, then let t =�l . By performing correcting left

hops, we can bring t to the left of b but to the right of a. This gives a permutation in LT won satisfying condition (i)
above, and so it is in Hn. �

Lemma 6.6. For � ∈ LT won, let p(�i , �)=p(�j , �)=1 for i < j . If there exist indices k < l < i such that �k > �l > �j

and �s < �j for all s ∈ [k + 1, i − 1]\{l}, then � ∈ Hn.

Proof. If �i > �j , then by Lemma 6.2 � ∈ Hn. Otherwise, let a = �i , b = �j , c = �l and d = �k . The permutation � is
of the form � d 	 c
 a � b � where a < b < c < d, and all elements of 	 and
 are less than b.

First, as above, sort � using correcting left hops.
Now scan the elements of 	 in increasing order and move them left via correcting left hops as far as possible. When

an element r is scanned, all elements between d and r are greater than r (by the time we reach r, we have already moved
out smaller elements). If r goes to the left of d via correcting hops, we now re-sort the prefix to the left of d. If r stops
to the immediate right of d, then it means that r exceeds the largest element before d (because we maintain the property
that the prefix to the left of d is sorted). But this means that left(r, �) = {d} and p(r, �) = 1 where � is the current
permutation. But in obtaining � from � we have used only correcting left hops, so p(x, �) = p(x, �) for all x ∈ [n].
And p(r, �) = 0. So r will go to the left of d.

When we finish scanning 	, we have the permutation 	′ d c
 a � b � where 	′ is the merged sorted sequence of
elements from � and 	.

In a similar procedure, we can move
 to the left of d to get
′ d c a � b � where
′ is the merged sorted sequence of
elements from 	′ and
. At this stage, the p(.) sequence is still p(�), since only correcting left hops have been used.

Now we perform a correcting right hop of d. This gives the permutation � =
′ c a d � b �. Since d hops over c and
a, by Table 1 we see that p(c, �) and p(a, �) have flipped (compared to their values in �). So in p(�), there will be

M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585 1583

exactly two 1s, at c and b, with c > b and c to the left of b. By Lemma 6.2, � ∈ Hn. Since � was obtained from � via
correcting hops alone, � ∈ Hn. �

Lemma 6.7. For � ∈ LT won, let p(�i , �) = p(�j , �) = 1 for i < j . If there exist indices k < i and i < l < j such that
�k > �l > �j , �s < �j for all s ∈ [k + 1, l − 1]\{i}, and l − 1 − i is even, then � ∈ Hn.

Proof. Let �i = a, �j = b, �l = c and �k = d . If a > b, then by Lemma 6.2 � ∈ Hn. Otherwise, we have a < b < c < d

and their relative order in � is d, a, c, b. As in the preceding proof, all elements between d and a can be moved left
of d, via left correcting hops. Let this permutation have the form � d a 	 c
 b �, where |	| = l − i − 1 is even and all
elements of 	 are less than b. Now we perform right hops of d until it goes to the right of c, giving � a 	 c d
 b �. The
string p() flips from 010|	|0 in the d a 	 c section to 01|	|10 in the a 	 c d section. The prefix � a 	 has bit string p()

of the form 0∗1|	|, and since |	| is even, it can be sorted using correcting hops by Corollary 5.3. This gives another
permutation in LT won, with the two 1s at c and b.Now Lemma 6.2 is applicable to this permutation to sort it using
correcting hops alone. �

The results of this section identify some subsets of LT won which are also in Hn. Unfortunately, they do not
constitute a recognizer for LT won ∩ Hn. However, they are still of some use: for many permutations of Sn, we can
show membership in Hn by carefully pairing the 1s in their p-strings in a balanced parenthesis structure, and by
repeatedly locally applying one of the above results to an innermost pair of 1s (as in Lemma 6.4). Thus these results
may be useful in designing a heuristic for approximate optimal sorting.

7. Sorting with correcting moves

In this section, we show how the problem of sorting by skips and hops can be rephrased as the problem of sorting by
special types of correcting moves. We also give a simple procedure for optimally sorting permutations by correcting
moves.

Recall that a move picks up a single element and places it elsewhere in the string. The length of a move may be
defined as the number of elements past which the moving element goes. Based on its length, a move can be labelled
either odd or even. Let m(�) and cm(�) denote the minimum number of moves and the minimum number of correcting
moves, respectively, required to sort � ∈ Sn. Let ocm(�) denote the minimum number of odd correcting moves, over
all sequences of correcting moves sorting �. The following result is established in [8]:

Theorem 7.1 (Heath and Vergara [8, Theorem 1]). For all � ∈ Sn, m(�) = n − |LIS(�)|, where |LIS(�)| is the length
of a longest increasing subsequence of �.

Thus m(�) can be computed efficiently (standard algorithmic techniques using dynamic programming can be used
to compute |LIS(�)|). We now consider computing cm(�) and ocm(�). We show that cm(�) can be computed exactly,
while computing ocm(�) is equivalent to computing cs(�).

Theorem 7.2. For all � ∈ Sn, cm(�) = m(�).

Proof. By definition, m(�)�cm(�). It thus suffices to show, from Theorem 7.1, that cm(�)�n − |LIS(�)|, where
|LIS(�)| is the length of any longest increasing subsequence of �. We describe a sequence of n − |LIS(�)| correcting
moves sorting �.

Let l =|LIS(�)|, and let �i1 . . . �il be a longest increasing subsequence LIS of �. Assume for notational convenience
that �0 =�i0 =0 and �n+1 =�il+1 =n+1. For each j =0, 1, . . . , l, and for ij < k < ij+1, we have �k < �ij or �k > �ij+1 ,
since otherwise including �k gives a longer increasing subsequence. Thus the LIS partitions S into l + 1 intervals, each
of which is stuffed with the wrong members. Ignore the presence of these wrong entries and concentrate instead on
the entries which are missing in each of these intervals. Do a forward pass over these l + 1 intervals, starting from
the leftmost, bringing and placing in order all the missing elements which are to the right of the interval. Next do a
backward pass, starting from the rightmost interval, bringing and placing in order all the missing elements in order, in
order also with the elements already placed inside the interval in the forward pass.

1584 M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585

Formally, the sorting procedure may be described as follows:

For j = 0 to l /* forward pass*/
For k = �ij + 1 to �ij+1 − 1
If k occurs to the right of �ij+1 ,
then move it as far left as a correcting move will allow.

For j = l down to 1 /* backward pass*/
For k = �ij+1 − 1 down to �ij + 1
If k occurs to the left of �ij ,
then move it as far right as a correcting move will allow.

Given the order in which elements are processed, this procedure will end in idn. Since each element not in the LIS is
moved exactly once (in the forward pass if it is to the right of its target interval, in the backward pass otherwise), the
number of correcting moves is exactly n − l. �

Theorem 7.3. ocm(�) = cs(�).

Proof. Every sequence of s correcting skips and h correcting hops is a sequence of correcting moves as well, in
which s moves are odd. Hence ocm(�)�s. Since there is a sorting sequence with cs(�) correcting skips, we have
ocm(�)�cs(�).

Each correcting move can be broken up into a sequence of correcting hops, followed by one last correcting skip if
the move is of odd length. Thus from a correcting move sequence with ocm(�) odd moves, we can extract a correcting
hop/skip sequence with exactly ocm(�) skips. Hence cs(�)�ocm(�). �

Theorems 7.2 and 7.3 suggest two natural variants of computing ocm(�): (1) minimize the number of odd correcting
moves over shortest sequences of correcting moves, (2) minimize the number of odd correcting moves over those
sequences of correcting moves which leave the elements of some longest increasing subsequence untouched. While
these problems may be of some combinatorial interest, they are not algorithmically useful, since these restricted minima
do not even provide a provably good approximation for ocm(�). (For permutations like �=4 5 1 2 3 9 10 6 7 8 . . .

n−1 n n−4 n−3 n−2, ocm(�)=0 but the number of odd correcting moves under either of the above two restrictions
grows linearly.)

8. Conclusion

The complexity of optimal sorting using 3-transpositions has been an open problem for a few years. This paper
presents an upper bound which is incomparable with previously known bounds. It also presents a tighter analysis
of the best-known approximation algorithm for this problem, due to Heath and Vergara. To obtain these results, a
good combinatorial understanding is developed of how optimal sorting is achieved for several classes of permutations
(Ln, Rn, Gn), and some sufficient conditions for optimal sorting in larger subclasses are presented.

Acknowledgement

The authors are indebted to anonymous referees, whose comments helped immensely in improving the presentation
of this paper.

References

[1] V. Bafna, P. Pevzner, Genome rearrangements and sorting by reversals, SIAM J. Comput. 25 (1996) 272–289.
[2] V. Bafna, P. Pevzner, Sorting by transpositions, SIAM J. Discrete Math. 11 (1998) 224–240.
[3] D. Christie, Genome rearrangement problems, Ph.D. Thesis, University of Glasgow, 1998.
[4] D.A. Christie,A 3

2 -approximation algorithm for sorting by reversals, in: Proceedings of NinthACM–SIAM Symposium on DiscreteAlgorithms,
ACM, 1998, pp. 244–252.

[5] N. Eriksen, (1 + �)-approximation of sorting by reversals and transpositions, Theoret. Comput. Sci. 289 (2002) 517–529.
[6] H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, J. Wästlund, Sorting a bridge hand, Discrete Math. 241 (2001) 289–300.

M. Mahajan et al. / Discrete Mathematics 306 (2006) 1569–1585 1585

[7] T. Hartman, A simpler 1.5 approximation algorithm for sorting by transpositions, in: Proceedings of 14th Annual Symposium on Combinatorial
Pattern Matching, Lecture Notes in Computer Science, vol. 2676, Springer, Berlin, 2003, pp. 156–169.

[8] L.S. Heath, J.P.C. Vergara, Sorting by bounded block moves, Discrete Appl. Math. 88 (1998) 181–206.
[9] L.S. Heath, J.P.C. Vergara, Sorting by short block moves, Algorithmica 28 (2000) 323–352.

[10] J. Kececioglu, D. Sankoff, Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement,Algorithmica
13 (1995) 180–210.

[11] P.D. Palmer, L.A. Herbon, Plant mitochondrial dna evolves rapidly in structures, J. Molecular Evolution 28 (1988) 87–97.
[12] P. Pevzner, Computational Molecular Biology: An Algorithmic Approach, MIT Press, Cambridge, MA, USA, 2000.
[13] J.P.C. Vergara, Sorting by bounded permutations, Ph.D. Thesis, Virginia Polytechnic Institute and State University, 1997.

	On sorting by 3-bounded transpositions
	Introduction
	Preliminaries and notation
	Permutations sortable by correcting hops
	Correcting-hop-free permutations
	Characterizing Gn and CGn
	Sorting permutations in Gn optimally

	Improved upper bounds for general permutations
	An upper bound for cs(pi)
	A tighter analysis of the 43 approximation algorithm of bib9[9]

	The Class Twon
	Sorting with correcting moves
	Conclusion
	Acknowledgement
	References

