On acyclic edge-coloring of the complete bipartite graphs $K_{2 p-1,2 p-1}$ for odd prime p

Ayineedi Venkateswarlu ${ }^{\text {a,* }}$, Santanu Sarkar ${ }^{\text {b }}$
${ }^{\text {a }}$ Computer Science Unit, Indian Statistical Institute - Chennai Centre, MGR Knowledge City Road, Taramani, Chennai - 600113, India
${ }^{\text {b }}$ Department of Mathematics, Indian Institute of Technology Madras, Chennai - 600036, India

ARTICLE INFO

Article history:

Received 1 January 2015
Accepted 20 July 2015
Available online 13 August 2015

Keywords:

Acyclic edge-coloring
Acyclic chromatic index
Perfect matching
Perfect 1-factorization
Complete bipartite graphs

Abstract

An acyclic edge-coloring of a graph is a proper edge-coloring without bichromatic (2colored) cycles. The acyclic chromatic index of a graph G, denoted by $a^{\prime}(G)$, is the least integer k such that G admits an acyclic edge-coloring using k colors. Let $\Delta=\Delta(G)$ denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by $K_{n, n}$. Basavaraju, Chandran and Kummini proved that $a^{\prime}\left(K_{n, n}\right) \geq n+2=\Delta+2$ when n is odd. Basavaraju and Chandran showed that $a^{\prime}\left(K_{p, p}\right) \leq p+2$ which implies $a^{\prime}\left(K_{p, p}\right)=p+2=\Delta+2$ when p is an odd prime, and the main tool in their proof is perfect 1-factorization of $K_{p, p}$. In this paper we study the case of $K_{2 p-1,2 p-1}$ which also possess perfect 1 -factorization, where p is odd prime. We show that $K_{2 p-1,2 p-1}$ admits an acyclic edge-coloring using $2 p+1$ colors and so we get $a^{\prime}\left(K_{2 p-1,2 p-1}\right)=2 p+1=\Delta+2$ when p is an odd prime.

(C) 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a finite and simple graph. A proper edge-coloring of G is an assignment of colors to the edges so that no two adjacent edges have same color. So it is a map $\theta: E \rightarrow \mathcal{C}$ with $\theta(e) \neq \theta(f)$ for any adjacent edges $e, f \in E$, where \mathcal{C} is the set of colors. The chromatic index, denoted by $\chi^{\prime}(G)$, is the minimum number of colors needed to properly color the edges of G. A proper edge-coloring of G is acyclic if there is no two colored cycle in G. The minimum number of colors required in an acyclic edge-coloring of G is the acyclic edge chromatic number (also called acyclic chromatic index) and is denoted by $a^{\prime}(G)$. The notion of acyclic coloring was first introduced by Grünbaum [7] in 1973, and the concept of acyclic edge-coloring was first studied by Fiamčík [6]. Let $\Delta=\Delta(G)$ be the maximum degree of a vertex in G. It is obvious that any proper edgecoloring requires at least Δ colors. Vizing [16] proved that there always exists a proper edge-coloring with $\Delta+1$ colors. Since any acyclic edge coloring is proper, we must have $a^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta$. On the other hand, in 1978, Fiamčík [6] (also Alon, Sudakov and Zaks [1]) posed the following conjecture:
for any graph $G, a^{\prime}(G) \leq \Delta+2$.
In [1], it was proved that there exists a constant c such that $a^{\prime}(G) \leq \Delta+2$ for any graph with girth is at least $c \Delta \log \Delta$. It was also proved in [1] that $a^{\prime}(G) \leq \Delta+2$ for almost all Δ-regular graphs. Later Něsetřil and Wormald [15] improved this bound and showed that $a^{\prime}(G) \leq \Delta+1$ for a random regular graph G. In another direction, there have been many results

[^0]giving upper bounds on $a^{\prime}(G)$ for arbitrary graphs or a class of graphs. Recently, Ndreca et al. obtained $a^{\prime}(G) \leq 9.62 \Delta$ [14] which is currently the best upperbound for an arbitrary graph G. See [17, Section 3.3] for a nice account of recent results.

The above conjecture (1) was shown to be true for some special classes of graphs. Burnstein [5] showed that $a^{\prime}(G) \leq 5$ when $\Delta=3$. Hence the conjecture is true when $\Delta \leq 3$. Muthu, Narayanan and Subramanian proved that the conjecture holds true for grid-like graphs [11] and outerplanner graphs [12]. It has been observed that determining $a^{\prime}(G)$ is a hard problem from both theoretical and algorithmic points of view [17, p. 2119]. In fact, we do not yet know the values of $a^{\prime}(G)$ for some simple and highly structured graphs like complete graphs and complete bipartite graphs in general. Fortunately, we can get the exact value of $a^{\prime}(G)$ for some cases of complete bipartite graphs, thanks to the perfect 1 -factorization.

Let $K_{n, n}$ be the complete bipartite graph with n vertices on each side. The complete bipartite graph $K_{n, n}$ is said to have a perfect 1 -factorization if the edges of $K_{n, n}$ can be decomposed into n disjoint perfect matchings such that the union of any two perfect matchings gives a Hamiltonian cycle. It is known that when $n+2 \in\left\{p, 2 p-1, p^{2}\right\}$, where p is an odd prime, or $n+2<50$ and odd, then $K_{n+2, n+2}$ has a perfect 1-factorization (see [4]). One can easily see that if $K_{n+2, n+2}$ has a perfect 1 -factorization then $a^{\prime}\left(K_{n, n}\right) \leq a^{\prime}\left(K_{n+1, n+1}\right) \leq n+2$. And also we have

$$
a^{\prime}\left(K_{n, n}\right) \geq n+2=\Delta+2 \quad \text { when } n \text { is odd }
$$

due to Basavaraju, Chandran and Kummini [3]. Hence $a^{\prime}\left(K_{n, n}\right)=n+2=\Delta+2$ when $n+2 \in\left\{p, 2 p-1, p^{2}\right\}$. The main idea here is to give different colors to the edges in different 1-factors in $K_{n+2, n+2}$, and removal of two vertices on each side and their associated edges gives the required edge-coloring of $K_{n, n}$. Similarly, by a result of Guldan [8, Corollary 1], we can also get $a^{\prime}\left(K_{n+1, n+1}\right)=n+2=\Delta+1$ when $n+2 \in\left\{p, 2 p-1, p^{2}\right\}$. But a different approach is needed to deal with $K_{n+2, n+2}$ when $n+2 \in\left\{p, 2 p-1, p^{2}\right\}$. In 2009, Basavaraju and Chandran [2] proved that $a^{\prime}\left(K_{p, p}\right)=p+2=\Delta+2$ for any odd prime p. The main tool in their approach is again perfect 1 -factorization of $K_{p, p}$. In the remaining two cases, namely, $n+2 \in\left\{2 p-1, p^{2}\right\}$ the value of $a^{\prime}\left(K_{n+2, n+2}\right)$ is not yet known. In this paper we study the case of $K_{2 p-1,2 p-1}$ which also possesses a perfect 1 -factorization, where p is odd prime. We show that $K_{2 p-1,2 p-1}$ admits an acyclic edge-coloring using $2 p+1$ colors.

2. Our result

We state our main result as follows.
Theorem 1. $a^{\prime}\left(K_{2 p-1,2 p-1}\right)=2 p+1=\Delta+2$, where p is an odd prime.
We follow the proof technique of [2] to present the proof of Theorem 1. Accordingly we first consider a perfect 1 -factorization of $K_{2 p-1,2 p-1}$. Next we consider another perfect matching which satisfies certain conditions. Then we present an edge-coloring of $K_{2 p-1,2 p-1}$ using $2 p+1$ colors and show that it is acyclic. In general, for odd n if $K_{n, n}$ possesses a perfect 1-factorization, the difficulty is to identify a suitable perfect matching that can help to get an acyclic edge-coloring of $K_{n, n}$ using only $n+2$ colors. The main contribution of this paper is to identify such a suitable perfect matching and provide an acyclic edge-coloring of $K_{2 p-1,2 p-1}$ using $2 p+1$ colors, where p is an odd prime.

Proof of Theorem 1. We label the vertices of $K_{2 p-1,2 p-1}$ on each side with elements of the set $I=\{1,2, \ldots, 2 p-1\}=$ $\mathbb{Z}_{2 p} \backslash\{0\}$, and so a perfect matching (1-factor) can be represented by a permutation of the label set I. Let us now present a perfect 1-factorization of $K_{2 p-1,2 p-1}$ using permutations of the label set I. Let M_{j} be the perfect matching corresponding to the permutation π_{j} for $j \in I$ which we define below. In the definitions of π_{j} below, $k \in I\left(=\mathbb{Z}_{2 p} \backslash\{0\}\right)$ and the operations are understood to be done modulo $2 p$ (that is in $\mathbb{Z}_{2 p}$).

For $i=1,2, \ldots, p-1$, define

$$
\pi_{2 i}(k)= \begin{cases}2 i & \text { if } k=2 i \\ i+p & \text { if } k=i \\ i & \text { if } k=i+p \\ 2 i-k & \text { otherwise }\end{cases}
$$

For $i=0,1,2, \ldots, p-1$ and $i \neq \frac{p-1}{2}$, define

$$
\pi_{2 i+1}(k)= \begin{cases}2 i+1 & \text { if } k=2 i+1 \\ k-(2 i+1) & \text { if } k \neq 2 i+1 \text { and } k \text { is odd } \\ k+(2 i+1) & \text { if } k \text { is even. }\end{cases}
$$

Also

$$
\pi_{p}(k)=2 p-k=-k
$$

A perfect 1-factorization of $K_{2 p-1,2 p-1}$ is presented in [13, p. 31] applying Laufer's technique [10] on the formulation of perfect 1-factorization of the complete bipartite graph $K_{2 p}$ given by Kobayashi [9]. The formulation presented above is a simple modification of the formulation given in [13, p. 31] to suit our representation. So the decomposition of the edges into
$\left\{M_{j}: j \in I\right\}$ forms a perfect 1-factorization of $K_{2 p-1,2 p-1}$. That is $M_{j_{1}} \cup M_{j_{2}}$ forms a Hamiltonian cycle in $K_{2 p-1,2 p-1}$ for any $j_{1}, j_{2} \in I$ with $j_{1} \neq j_{2}$.

We now consider another perfect matching M satisfying the following condition: for $j \in I$ there is exactly one edge common to M and M_{j}. The perfect matching M that we consider is described below.

The multiplicative group $\mathbb{Z}_{2 p}^{*}$ can be represented by the set $\{1,3,5, \ldots, p-2, p+2, p+4, \ldots, 2 p-1\}$. Let x be a generator of $\mathbb{Z}_{2 p}^{*}$ and let y be its inverse in $\mathbb{Z}_{2 p}^{*}$. Note that $\left|\mathbb{Z}_{2 p}^{*}\right|=\operatorname{order}(x)=\operatorname{order}(y)=p-1$. Let M be the perfect matching corresponding to the permutation π given by

$$
\pi(k)= \begin{cases}k+p & \text { if } k \text { is even } \\ p & \text { if } k=p \\ k y+p & \text { if } k \in \mathbb{Z}_{2 p}^{*}\end{cases}
$$

Claim 1. We have $\left|M \cap M_{j}\right|=1$ for $j \in I$.
Proof. We need to show that for each $j \in I$, there is exactly one $k \in I$ such that $\pi(k)=\pi_{j}(k)$. By a careful analysis of the different cases we can check that it is indeed true and the value of k corresponding to each $j \in I$ is as given below:

$$
\begin{array}{rllll}
\pi(p) & = & p & =\pi_{p}(p) & \\
\pi(i) & = & i+p & =\pi_{2 i}(i) & \text { for } i \in\{2,4, \ldots, p-1\} \\
\pi(i+p) & = & i & =\pi_{2 i}(i+p) & \text { for } i \in\{1,3, \ldots, p-2\} \\
\pi\left(\frac{(2 i+1) x}{x-1+p}\right) & = & \frac{(2 i+1)}{x-1+p}+p & =\pi_{2 i+1}\left(\frac{(2 i+1) x}{x-1+p}\right) & \text { for } i \in\{0,1, \ldots, p-1\} \backslash\left\{\frac{p-1}{2}\right\} .
\end{array}
$$

An edge-coloring of $K_{2 p-1,2 p-1}$ using $2 p+1$ colors:
Let $M^{\prime}=M \backslash\{(p, p)\}$ and color the edges of $K_{2 p-1,2 p-1}$ as follows to get a coloring θ using $2 p+1$ colors:

- the edges in $M_{j}^{*}=M_{j} \backslash M^{\prime}$ are colored with c_{j} for $j \in I$;
- the edges in $M^{*}=M^{\prime} \backslash\{(1, y+p)\}$ are colored with $c_{2 p}$;
- the edge $(1, y+p)$ is colored with $c_{2 p+1}$.

Claim 2. The edge-coloring θ is acyclic.
Proof. Obviously θ is a proper edge-coloring. Note that $M_{j_{1}} \cup M_{j_{2}}$ forms a Hamiltonian cycle for $j_{1}, j_{2} \in I$ with $j_{1} \neq j_{2}$ as $\left\{M_{j}: j \in I\right\}$ is a perfect 1 -factorization of $K_{2 p-1,2 p-1}$. One can easily see that the union $M_{j_{1}}^{*} \cup M_{j_{2}}^{*}$ of the color classes $c_{j_{1}}$ and $c_{j_{2}}$ is a 'proper' subset of $M_{j_{1}} \cup M_{j_{2}}$. Therefore there cannot be a cycle involving the edges from the color classes $c_{j_{1}}$ and $c_{j_{2}}$ for $j_{1}, j_{2} \in I$ with $j_{1} \neq j_{2}$. Note also that there cannot be any bichromatic cycle involving the color $c_{2 p+1}$ since there is only one edge colored with $c_{2 p+1}$. So the remaining part is to prove that for $j \in I$ there is no cycle in the induced subgraph of the union $M^{*} \cup M_{j}^{*}$ of the color classes $c_{2 p}$ and c_{j}. For this purpose we now analyze the cycles in the induced subgraph of

$$
M \cup M_{j}= \begin{cases}M^{*} \cup M_{p}^{*} \cup\{(1, y+p)\} & \text { if } j=p \\ M^{*} \cup M_{j}^{*} \cup\{(1, y+p),(p, p)\} & \text { otherwise }\end{cases}
$$

for $j \in I$. Observe that $\left|M \cup M_{j}\right|=4 p-3$. In order to the prove the remaining part we show that:

- there is exactly one cycle C_{j} of length $4(p-1)$ in the induced subgraph of $M \cup M_{j}$, and the other edge which is not in the cycle is the edge in $M \cap M_{j}$;
- the edge (p, p) is in the cycle C_{j} of $M \cup M_{j}$ for $j \in I$ with $j \neq p$, and in the case where $j=p$ the edge $(1, y+p)$ is in the cycle C_{p} of $M \cup M_{p}$.
First note that the union $M \cup M_{j}$ (of two perfect matchings) forms a collection of disjoint cycles, and the cycles of $M \cup M_{j}$ can be seen from the permutation $\pi^{-1} \circ \pi_{j}$ for $j \in I$. The inverse permutation of π is given by

$$
\pi^{-1}(k)= \begin{cases}k+p & \text { if } k \in \mathbb{Z}_{2 p}^{*} \\ p & \text { if } k=p \\ k x+p & \text { if } k \text { is even }\end{cases}
$$

We now present some useful identities and then present the cycle structure of the permutations $\pi^{-1} \circ \pi_{j}$ from which we can see the cycles of $M \cup M_{j}$, by dividing j 's into four groups.

Since x is a generator of $\mathbb{Z}_{2 p}^{*}$ we get that $(p-2)$ is the least positive integer such that

$$
1+x+\cdots+x^{p-2} \equiv 0 \quad(\bmod 2 p)
$$

Since x is a generator of $\mathbb{Z}_{2 p}^{*}$, there exists some $t \in\{1,2, \ldots, p-2\}$ such that

$$
x^{t} \equiv 2+p \quad(\bmod 2 p)
$$

So we get

$$
2 x^{p-1-t} \equiv 1+p \quad(\bmod 2 p)
$$

Then we have

$$
x^{t} \equiv 2 \quad(\bmod p) \quad \text { and } \quad 2 x^{p-1-t} \equiv 1 \quad(\bmod p)
$$

We will use the above identities in the discussion below whenever needed. To present the cycle structure of $\pi^{-1} \circ \pi_{j}$, a mapping $\pi^{-1} \circ \pi_{j}\left(v_{s}\right)=v_{s+1}$ is described with a line

$$
v_{s} \stackrel{\pi_{j}}{\mapsto} u_{s} \stackrel{\pi^{-1}}{\longmapsto} v_{s+1} .
$$

This corresponds to one edge $\left(v_{s}, u_{s}\right) \in M_{j}$ and another edge $\left(v_{s+1}, u_{s}\right) \in M$. The next line starts with v_{s+1} and it is given by

$$
v_{s+1} \stackrel{\pi_{j}}{\mapsto} u_{s+1} \stackrel{\pi^{-1}}{\longmapsto} v_{s+2} .
$$

So a cycle ($v_{0} v_{1} v_{2} \ldots, v_{\ell-1}$) of length ℓ in $\pi^{-1} \circ \pi_{j}$ corresponds to a cycle of length 2ℓ in the graph $K_{2 p-1,2 p-1}$. Note that the operations on the elements of I are done modulo $2 p$ in the definition of π_{j} 's and π.
Case 1: $j=p$.
In this case $M \cap M_{p}=\{(p, p)\}$ and so we get $\pi^{-1} \circ \pi_{j}(p)=p$, that is p is the only fixed element in $\pi^{-1} \circ \pi_{p}$. Let us look at the cycle containing 1 in $\pi^{-1} \circ \pi_{p}$.

$$
\begin{array}{rccll}
1 & \stackrel{\pi_{p}}{\longmapsto} & -1 & \stackrel{\pi^{-1}}{\longmapsto} & -1+p \\
-1+p & \stackrel{\pi_{p}}{\longmapsto} & 1+p & \stackrel{\pi^{-1}}{\longmapsto} & (1+p) x+p \equiv x \quad(\bmod 2 p) \\
x & \stackrel{\pi_{p}}{\longmapsto} & -x & \stackrel{\pi^{-1}}{\longmapsto}-x+p \\
-x+p & \stackrel{\pi_{p}}{\longmapsto} & x+p & \stackrel{\pi^{-1}}{\longmapsto}(x+p) x+p \equiv x^{2} \quad(\bmod 2 p) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x^{p-2} & \stackrel{\pi_{p}}{\longmapsto} & -x^{p-2} & \stackrel{\pi^{-1}}{\longmapsto} & -x^{p-2}+p \\
-x^{p-2}+p & \stackrel{\pi_{p}}{\longmapsto} x^{p-2}+p=y+p & \stackrel{\pi^{-1}}{\longmapsto} x^{p-1} \equiv 1 \quad(\bmod 2 p) .
\end{array}
$$

Observe that $\left\{x^{r}: 0 \leq r \leq p-2\right\}=\mathbb{Z}_{2 p}^{*}$ as x is a generator of $\mathbb{Z}_{2 p}^{*}$, and so $\left\{x^{r},-x^{r}+p: 0 \leq r \leq p-2\right\}=I \backslash\{p\}$. Therefore the cycle is of length $2(p-1)$, and so the corresponding cycle C_{p} in the graph $K_{2 p-1,2 p-1}$ is of length $4(p-1)$. Note also that the edge $(1, y+p) \in M$ is in the cycle C_{p}.
Case 2: $j=2 i$ for $i \in\{2,4, \ldots, p-1\}$.
In this case $M \cap M_{2 i}=\{(i, i+p)\}$ and so we get $\pi^{-1} \circ \pi_{2 i}(i)=i$, that is i is the only fixed element in $\pi^{-1} \circ \pi_{j}$. Let us look at the cycle containing p in $\pi^{-1} \circ \pi_{j}$.

$$
\begin{aligned}
& i x^{t}+p \equiv 2 i+p \quad(\bmod 2 p) \quad \stackrel{\pi_{2 i}}{\longmapsto} \quad p \quad \stackrel{\pi^{-1}}{\longmapsto} p .
\end{aligned}
$$

Observe that $S_{1}=\left\{i x^{r}+p(\bmod 2 p): 0 \leq r \leq p-2\right\}=\mathbb{Z}_{2 p}^{*}$ as i is even. One can check that $S_{2}=\left\{2 i-i x^{r}(\bmod 2 p)\right.$: $1 \leq r \leq p-2$ and $r \neq t\}$ are distinct even numbers and also $\left|S_{1} \cup S_{2} \cup\{2 i, p\}\right|=2(p-1)$. Therefore the cycle is of length $2(p-1)$, and so the corresponding cycle $C_{2 i}$ in the graph $K_{2 p-1,2 p-1}$ is of length $4(p-1)$. Note also that the edge $(p, p) \in M$ is in the cycle $C_{2 i}$.
Case 3: $j=2 i$ for $i \in\{1,3, \ldots, p-3\}$.
In this case $M \cap M_{2 i}=\{(i+p, i)\}$ and so we get $\pi^{-1} \circ \pi_{j}(i+p)=i+p$, that is $i+p$ is the only fixed element in $\pi^{-1} \circ \pi_{j}$. Let us look at the cycle containing p in $\pi^{-1} \circ \pi_{j}$.

$$
\begin{aligned}
& p \xrightarrow{\stackrel{\pi_{2 i}}{\longmapsto}} 2 i-p \quad \stackrel{\pi^{-1}}{\longmapsto} 2 i \\
& 2 i \stackrel{\pi_{2 i}}{\longmapsto} \quad 2 i \quad \stackrel{\pi^{-1}}{\longmapsto} \quad 2 i x+p \equiv i x^{t+1} \quad(\bmod 2 p) \\
& i x^{t+1} \quad \stackrel{\pi_{2 i}}{\longmapsto} \quad 2 i-i x^{t+1} \quad \stackrel{\pi^{-1}}{\longmapsto} \quad 2 i-i x^{t+1}+p \\
& 2 i-i x^{t+1}+p \quad \stackrel{\pi_{2 i}}{\longmapsto} i x^{t+1}+p \quad \stackrel{\pi^{-1}}{\longmapsto} i x^{t+2} \\
& i x^{p-2} \stackrel{\pi_{2 i}}{\longmapsto} 2 i-i x^{p-2} \quad \stackrel{\pi^{-1}}{\longmapsto} \quad 2 i-i x^{p-2}+p \\
& 2 i-i x^{p-2}+p \quad \stackrel{\pi_{2 i}}{\longmapsto} \quad i x^{p-2}+p \quad \stackrel{\pi^{-1}}{\longmapsto} \quad i x^{p-1} \equiv i \quad(\bmod 2 p) \\
& i \stackrel{\pi_{2 i}}{\longmapsto} \quad i+p \quad \stackrel{\pi^{-1}}{\longmapsto}(i+p) x+p \equiv i x \quad(\bmod 2 p) \\
& i x \xrightarrow{\pi_{2 i}} 2 i-i x \quad \stackrel{\pi^{-1}}{\longmapsto} 2 i-i x+p \\
& 2 i-i x+p \quad \stackrel{\pi_{2 i}}{\longmapsto} \quad i x+p \quad \stackrel{\pi^{-1}}{\longmapsto} \quad i x^{2} \\
& i x^{t-1} \xrightarrow{\stackrel{\pi_{2 i}}{\longmapsto}} 2 i-i x^{t-1} \xrightarrow{\stackrel{\pi^{-1}}{\longmapsto}} 2 i-i x^{t-1}+p \\
& 2 i-i x^{t-1}+p \underset{\pi_{2 i}}{\stackrel{\pi_{2 i}}{\Vdash}} i x^{t-1}+p \underset{\pi^{-1}}{\stackrel{\pi^{-1}}{\longrightarrow}} i x^{t} \\
& i x^{t} \equiv 2 i+p \quad(\bmod 2 p) \quad \stackrel{\pi_{2 i}}{\longmapsto} \quad p \quad \stackrel{\pi^{-1}}{\longmapsto} p .
\end{aligned}
$$

Observe that $S_{1}=\left\{i x^{r}: 0 \leq r \leq p-2\right\}=\mathbb{Z}_{2 p}^{*}$ as i is odd. One can check that $S_{2}=\left\{2 i-i x^{r}+p: 1 \leq r \leq p-2\right.$ and $\left.r \neq t\right\}$ are distinct even numbers and also $\left|S_{1} \cup S_{2} \cup\{2 i, p\}\right|=2(p-1)$. Therefore the cycle is of length $2(p-1)$, and so the corresponding cycle $C_{2 i}$ in the graph $K_{2 p-1,2 p-1}$ is of length $4(p-1)$. Note also that the edge $(p, p) \in M$ is in the cycle $C_{2 i}$.
Case 4: $j=2 i+1$ for $i \in\{0,1, \ldots, p-1\}$ with $i \neq \frac{p-1}{2}$.
In this case $M \cap M_{2 i+1}=\left\{\left(\frac{j x}{x-1+p}, \frac{j}{x-1+p}+p\right)\right\}$ and so we get $\pi^{-1} \circ \pi_{j}\left(\frac{j x}{x-1+p}\right)=\frac{j x}{x-1+p}$, that is $\frac{j x}{x-1+p}$ is the only fixed element in $\pi^{-1} \circ \pi_{j}$. Let us now look at the cycle containing p in $\pi^{-1} \circ \pi_{j}$.

$$
\begin{array}{rccll}
p & \stackrel{\pi_{j}}{\mapsto} & p-j & \stackrel{\pi^{-1}}{\longmapsto} & (p-j) x+p \equiv-j x \quad(\bmod 2 p) \\
-j x & \stackrel{\pi_{j}}{\mapsto} & -j x-j & \stackrel{\pi^{-1}}{\longmapsto} & (-j x-j) x+p=-j\left(x^{2}+x\right)+p \\
-j\left(x^{2}+x\right)+p & \stackrel{\pi_{j}}{\mapsto} & -j\left(x^{2}+x+1\right)+p & \stackrel{\pi^{-1}}{\longmapsto}-j\left(x^{3}+x^{2}+x\right) \\
-j\left(x^{3}+x^{2}+x\right) & \stackrel{\pi_{j}}{\mapsto} & -j\left(x^{3}+x^{2}+x+1\right) & \stackrel{\pi^{-1}}{\longmapsto}-j\left(x^{4}+x^{3}+x^{2}+x\right)+p \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-j\left(x^{p-4}+\cdots+x\right) & \stackrel{\pi_{j}}{\mapsto} & -j\left(x^{p-4}+\cdots+1\right) & \stackrel{\pi^{-1}}{\longmapsto}-j\left(x^{p-3}+\cdots+x\right)+p \\
-j\left(x^{p-3}+\cdots+x\right)+p & \stackrel{\pi_{j}}{\mapsto} & -j\left(x^{p-3}+\cdots+1\right)+p & \left.\stackrel{\pi^{-1}}{\longmapsto}-j\left(x^{p-2}+\cdots+x\right) \equiv j \quad(\bmod 2 p)\right) \\
j & \stackrel{\pi_{j}}{\mapsto} & j & \stackrel{\pi^{-1}}{\longmapsto} j+p \\
j+p & \stackrel{\pi_{j}}{\mapsto} & 2 j+p & \stackrel{\pi^{-1}}{\longmapsto} 2 j \\
2 j & \stackrel{\pi_{j}}{\mapsto} & 3 j & \stackrel{\pi^{-1}}{\longmapsto} 3 j+p \\
3 j+p & \stackrel{\pi_{j}}{\mapsto} & 4 j+p & \stackrel{\pi^{-1}}{\longmapsto} & 4 j \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
(p-2) j+p & \stackrel{\pi_{j}}{\mapsto} & (p-1) j+p & \stackrel{\pi^{-1}}{\longmapsto}(p-1) j \\
(p-1) j & \stackrel{\pi_{j}}{\mapsto} & p j \equiv p(\bmod 2 p) & \stackrel{\pi^{-1}}{\longmapsto} p .
\end{array}
$$

Observe that the elements in $S_{1}=\{j+p, 2 j, 3 j+p, 4 j, \ldots,(p-2) j+p\}=\{r(j+p) \bmod 2 p: 1 \leq r \leq p-1\}$ are the distinct even numbers in I. Also the other elements $S_{2}=\left\{-j x,-j\left(x^{2}+x\right)+p,-j\left(x^{3}+x^{2}+x\right), \ldots,-j\left(x^{p-3}+\cdots+x\right)+\right.$ $\left.p,-j\left(x^{p-2}+\cdots+x\right)=j, p\right\}$ are distinct (all are odd numbers). The missing element in this list is $\frac{j x}{x-1+p}$ which is the fixed element in $\pi^{-1} \circ \pi_{j}$. Therefore the cycle is of length $2(p-1)$, and so the corresponding cycle $C_{2 i+1}$ in the graph $K_{2 p-1,2 p-1}$ is of length $4(p-1)$. Note also that the edge $(p, p) \in M$ is in the cycle $C_{2 i+1}$. Hence the proof.

Remark 1. For an odd prime p, if G is a graph obtained by removing just one edge from $K_{2 p-1,2 p-1}$ then $a^{\prime}(G)=2 p=\Delta+1$. This is also true even if one deletes any number of edges between 1 and $2 p-3$ from $K_{2 p-1,2 p-1}$. The proof is similar to the proof of [2, Theorem 2].

References

[1] N. Alon, B. Sudakov, A. Zaks, Acyclic edge coloring of graphs, J. Graph Theory 37 (2001) 157-167.
[2] M. Basavaraju, L.S. Chandran, A note on acyclic edge coloring of complete bipartite graphs, Discrete Math. 309 (2009) 4646-4648.
[3] M. Basavaraju, L.S. Chandran, M. Kummini, d-regular graphs of acyclic chromatic index at least $d+2$, J. Graph Theory 63 (2010) 226-230
[4] D. Bryant, B.M. Maenhaut, I.M. Wanless, A family of perfect factorizations of complete bipartite graphs, J. Combin. Theory A98 (2002) $328-342$.
[5] M.I. Burnstein, Every 4-valent graph has an acyclic 5-coloring, Soobšč Akad Nauk Gruzin SSR 93 (1979) $21-24$ (in Russian).
[6] J. Fiamčík, The acyclic chromatic class of a graph, Math. Slovaca 28 (1978) 139-145 (in Russian).
[7] B. Grünbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973) 390-408.
[8] F. Guldan, Acyclic chromatic index and linear arboricity of graphs, Math. Slovaca 41 (1991) 21-27.
[9] M. Kobayashi, On perfect one-factorization of the complete graph $K_{2 p}$, Graphs Combin. 5 (1989) 351-353.
[10] P. Laufer, On strongly Hamiltonian complete bipartite graphs, Ars Combin. 9 (1980) 43-46.
[11] R. Muthu, N. Narayanan, C.R. Subramanian, Optimal acyclic edge coloring of grid like graphs, in: COCOON, 2006, pp. 360-367.
[12] R. Muthu, N. Narayanan, C.R. Subramanian, Acyclic edge coloring of outerplanner graphs, in: Algorithm Aspects in Information and Management, 2007, pp. 144-152.
[13] S. Nanda, Graph theoretic modeling: Case studies in redundant arrays of independent disks and network defense (Ph.D. thesis), University of Central Florida, 2007, Available at http://etd.fcla.edu/CF/CFE0001919/Nanda_Sanjeeb_200712_PhD.pdf (Accessed on 30-07-2015).
[14] S. Ndreca, A. Procacci, B. Scoppola, Improved bounds on coloring of graphs, European J. Combin. 33 (4) (2012) 592-609.
[15] J. Něsetřil, W.C. Wormald, The acyclic edge chromatic number of a random d-regular graph is $d+1$, J. Graph Theory 49 (2005) 69-74.
[16] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret Anal 3 (1964) 25-30 (in Russian).
[17] W. Wang, Y. Bu, On coloring problems, in: Handbook of Combinatorial Optimization, second ed., 2013, pp. 2095-2190.

[^0]: * Corresponding author.

 E-mail addresses: venku@isichennai.res.in (A. Venkateswarlu), santanu@iitm.ac.in (S. Sarkar).
 http://dx.doi.org/10.1016/j.disc.2015.07.010
 0012-365X/© 2015 Elsevier B.V. All rights reserved.

