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This paper aims to study amplitude death in time delay coupled oscillators using the occasional coupling
scheme that implies the intermittent interaction among the oscillators. An enhancement of amplitude death
regions (i.e., an increment of the width of the amplitude death regions along the control parameter axis)
can be possible using the occasional coupling in a pair of delay-coupled oscillators. Our study starts with
coupled limit cycle oscillators (Stuart-Landau) and coupled chaotic oscillators (Rössler). We further examine
coupled horizontal Rijke tubes, a prototypical model of thermoacoustic systems. Oscillatory states are highly
detrimental to thermoacoustic systems such as combustors. Consequently, a state of amplitude death is always
preferred. We employ the on-off coupling (i.e., a square wave function), as an occasional coupling scheme,
to these coupled oscillators. On monotonically varying the coupling strength (as a control parameter), we
observe an enhancement of amplitude death regions using the occasional coupling scheme compared to the
continuous coupling scheme. In order to study the contribution of the occasional coupling scheme, we perform
a detailed linear stability analysis and analytically explain this enhancement of the amplitude death region
for coupled limit cycle oscillators. We also adopt the frequency ratio of the oscillators and the time delay
between the oscillators as the control parameters. Intriguingly, we obtain a similar enhancement of the
amplitude death regions using frequency ratio and time delay as the control parameters in the presence of
the occasional coupling. Finally, we use a half-wave rectified sinusoidal wave function (motivated by practical
reality) to introduce the occasional coupling in time-delay coupled oscillators and get similar results.

The occasional coupling scheme (OCS) is a fa-
miliar topic in the purview of synchronization.
Recently, the effect of OCS has been studied in
the context of amplitude death in diffusively cou-
pled oscillators. We extend the investigation and
employ the OCS in time delay coupled oscilla-
tors. Time delay coupled oscillator models are
beneficial in studying various real-life events, and
consequently, such models are used in different
disciplines like physics, biology, and engineering.
Towards this, we initially choose two different
examples of low-dimensional oscillators: Stuart-
Landau (a limit cycle oscillator) and Rössler (a
chaotic oscillator). We further examine thermoa-
coustic systems (coupled horizontal Rijke tubes)
wherein amplitude death is a state of prefer-
ence. In the present study, we employ the on-off
coupling (that introduces the occasional coupling
through a square wave function) to these three
models of coupled oscillators and observe that the
amplitude death regions enhance along the con-
trol parameter axes in the presence of the OCS.
The reason of this enhancement is studied analyt-
ically using a local stability analysis for coupled
limit cycle oscillators. We choose the coupling
strength parameter, frequency ratio, and time de-
lay as the control parameters. We further employ
a different mathematical form (a half-wave rec-
tified sinusoidal wave function) of the OCS and
reach a similar conclusion.

a)Electronic mail: anupamghosh0019@gmail.com (A. G.)

I. INTRODUCTION

The coupled oscillator model is widely used to study
the collective dynamics of various phenomena in differ-
ent fields such as physics, mathematics, engineering, and
biology1,2. Various nonlinear phenomena, viz., synchro-
nization, chimera state, pattern formation, swarming,
and amplitude death, have been studied extensively us-
ing this model3,4. Here, we use this model to study one
such nonlinear phenomenon: amplitude death (AD)5.

AD, a homogeneous steady state, implies the complete
suppression of oscillations of the coupled oscillators due
to the coupling between them5,6. In other words, all the
interacting oscillators reach the same stable fixed point
during AD. The steady state exists in the uncoupled os-
cillators as an unstable state, and quenching is detected
as the steady state becomes stable because of the cou-
pling among the oscillators7. Rayleigh first reported the
evidence of AD in a physical system where he had placed
two organ pipes side by side8,9. Subsequent studies re-
port that AD has been achieved in various mathematical
models5,7 and experimental setups10–12. In addition, AD
in coupled oscillators can be induced through numerous
methods, and some of them are the following: param-
eter mismatch5, time delay coupling13,14, dynamic cou-
pling15, conjugate coupling16, mean-field diffusion17, and
nonlinear coupling18.

Although AD has been detected in nature and stud-
ied extensively, the occurrence of AD has many practical
applications. AD finds its application in many physi-
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cal systems, e.g., controlling vibration19 in mechanical
engineering, suppressing thermoacoustic20,21 and aeroe-
lastic instability22,23 in aerospace engineering. In such
systems, oscillations are undesirable, and AD is utilized
to suppress the unwanted oscillations23–26. Besides, AD
could be a beneficial strategy to prevent the widespread
of harmful neural activities, which may further lead to
various psychological diseases like epilepsy, schizophre-
nia, and Parkinson’s disease27. Therefore, an enhance-
ment of the AD region is the top priority in the afore-
mentioned systems. Recently, Sun et al28 have employed
the occasional coupling scheme29 (the on-off coupling30,
to be specific) to the interacting oscillators with param-
eter mismatch and ascertained that the AD regions en-
hance along the coupling strength parameter axis using
the OCS than that using the continuous coupling scheme
(CCS).

OCS involves intermittent interactions of the coupled
oscillators and is advantageous over CCS in attaining
synchrony at the larger values of coupling strength29–31.
This occasional interaction between the oscillators de-
pends explicitly either on the evolution time or on the
phase space coordinates29. OCS was first introduced in
the context of chaotic synchronization in 199332. Subse-
quent studies report different examples of occasional cou-
pling schemes leading to chaotic synchronization29. This
occasional interaction is either deterministic or stochas-
tic. For the stochastic on-off coupling scheme33, the
switching on (or off) of the coupling term is random. On
the other hand, this interaction is deterministic in the on-
off coupling scheme30. The notion of occasional coupling
has been extended in a complex network with delay cou-
pling to study synchronization34. A non-synchronizable
network can be made synchronizable using the OCS35.
In a complex network of multiple layers, synchronization
has been studied using time-varying inter-layer links36.
The OCS has also been used to overcome measure desyn-
chronization observed in coupled Hamiltonian systems37.
Synchronization in circadian oscillators in single cells of
fungal systems has been studied using the stochastic in-
termittent coupling38. It has been reported that peri-
odically time-varying switching of coupling among the
neuron oscillators can enhance synchronization39. The
broken symmetry in coupled Josephson junctions can be
restored using the OCS40. However, we use the on-off
coupling scheme in this paper. By construction, using
this scheme, the coupling among the interacting oscilla-
tors activates (or deactivates) periodically. We discuss
this scheme elaborately in Sec. II A.

Although OCS is mostly scrutinized to study synchro-
nization in coupled oscillators, Sun et al28 studied the
effect of OCS in the context of amplitude death in dif-
fusively coupled oscillators. The AD region is shown to
extend along the coupling strength parameter axis in the
presence of the OCS28. Deriving motivation from this
study, we examine the enhancement of AD regions with
OCS, however, in the presence of time delay in the cou-
pling.

Time delay in coupling is quite natural in practical
systems. This time delay arises because of the finite
speed of information transfer in physical systems41. In
the literature, the time-delay coupled oscillator models
have been used to study various experimental observa-
tions, viz., candle oscillators12, electronic circuits42, and
thermo-optical oscillators43. Reddy et al.13 first reported
the observation of AD in time-delay coupled oscillators
studying coupled Stuart-Landau (SL) oscillators. All
these studies, however, have used the CCS. To the best
of our knowledge, the effect of OCS has not been studied
for delay-coupled oscillators. Therefore, in this paper, we
investigate the effect of OCS on the phenomenon of AD
in delay-coupled oscillators.

In what follows, we employ the OCS to three pairs of
delay coupled oscillators: SL, Rössler44, and the horizon-
tal Rijke tube21,45 (a prototypical model of a thermoa-
coustic system). Initially, the coupling strength param-
eter is chosen as the required control parameter. Then,
deriving motivation from the physical systems, we choose
frequency detuning and time delay as the control parame-
ters. Such parameters are important in practical systems
and, therefore, play crucial roles in the present study. We
show that the AD region is enhanced with the employ-
ment of OCS.

This paper is structured as follows: first, we discuss
the general notion of occasional coupling in the context
of two interacting oscillators (in Sec. II A). Subsequently,
we choose two examples of low-dimensional oscillators:
coupled SL oscillators and coupled Rössler oscillators and
study the effect of OCS on AD (in Secs. II B and IIC).
Finally, we extend our investigation to a mathematical
model of coupled horizontal Rijke tubes (in Sec. II D).
In Sec. III, the results, using the half-wave rectified si-
nusoidal wave as a coupling function, are presented. Fi-
nally, the major conclusions of this study are summarized
in Sec. IV.

II. RESULTS

A. A general model

In order to study AD, we use two methods — parame-
ter mismatch and time delay coupling — simultaneously
to couple the oscillators. In most practical situations, we
do not have any liberty to use the methods separately
and therefore, we need to incorporate them simultane-
ously24,46. A slight mismatch in any mechanical param-
eter between two physical oscillators is inevitable. Fur-
thermore, a finite value of time is required for the propa-
gation of information from one oscillator to another, giv-
ing rise to a time delay in coupling. These two attributes
might be unavoidable in practical oscillators and there-
fore, they are simultaneously employed. Thus, the gen-
eral form of equations of motion of two coupled oscillators
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using diffusive and time delay couplings are as follow:

ẋ1 = F(x1, µ1) + αd · (x2 − x1) + ατ · (x2τ − x1),(1a)

ẋ2 = F(x2, µ2) + αd · (x1 − x2) + ατ · (x1τ − x2).(1b)

The vectors x1(t) ∈ R
m (where m is an integer with

m > 1) and x2(t) ∈ R
m are the m-dimensional phase

space coordinates of the first and second oscillators, re-
spectively. The dots represent the time derivative and
F(·) is the functional form of the oscillator. µ1 and
µ2 are, respectively, parameters of the interacting os-
cillators. αd and ατ are respectively the diffusive cou-
pling strength and time-delay coupling strength. Finally,
x1τ := x1(t − τ) and x2τ := x2(t − τ), and the scalar
τ introduces time delay in the coupling terms. Thus,
the second and third terms of either equation (Eq. 1a or
1b) are respectively the diffusive and time-delay coupling
terms.

t
0

1

(t)

T

FIG. 1. The schematic diagram depicts the variation of the
occasional coupling function χ(t) with the increment of time
t using the on-off coupling scheme (Eq. 2).

The on-off coupling scheme30, a type of OCS, implies
that the interaction between the oscillators x1(t) and
x2(t) is controlled using a square wave whose amplitude
switches between 0 and 1. The coupling between x1(t)
and x2(t) is activated when the amplitude of the square
wave is one, and both the oscillators evolve independently
for zero amplitude of the square wave. Mathematically,
we can define the function as follows:

χ(t) :=

{

1, nT < t ≤ (n+ θ)T,

0, (n+ θ)T < t ≤ (n+ 1)T,
(2)

where n is an integer. T and θ ∈ (0, 1) are the on-off
period and the on-off rate, respectively. Intuitively, θ
measures the fraction of the time period T over which
the coupling term is activated. In other words, T and
θ, respectively, imply the time period and duty cycle of
the square wave. The variation of χ(t) using the on-off
coupling (Eq. 2) is depicted schematically in Fig. 1. In
order to employ the on-off coupling, we need to choose
the parameters T and θ appropriately. In the literature,
the average inter-peak separation of the isolated oscilla-
tor is recommended as the typical order of T 47. More
explicitly, we plot one of the phase space coordinates as

a function of time and point out the time between two
consecutive local maxima (or minima), and calculate the
average inter-peak interval. However, on the other hand,
no such guideline is available for θ in the literature. Note
that θ = 1 indicates that both the oscillators are always
coupled, i.e., the CCS is activated between x1(t) and
x2(t) — whereas θ = 0 represents the uncoupled state,
i.e., x1(t) and x2(t) are mutually independent. Thus,
after incorporating OCS, Eq. 1 reduces to

ẋ1 =F(x1, µ1) + αd · χ(t) · (x2 − x1)

+ατ · χ(t) · (x2τ − x1), (3a)

ẋ2 =F(x2, µ2) + αd · χ(t) · (x1 − x2)

+ατ · χ(t) · (x1τ − x2). (3b)

Having described the general model, we turn our atten-
tion to the different examples of coupled oscillators and
study the effect of OCS on AD. Note that the fourth-
order Runge–Kutta method, with the smallest time step
of 0.01 and the maximum evolution time of 2000, is
used in this paper to integrate of differential equations.
The time-delayed terms are considered as inactive (i.e.,
ατ = 0 in Eqs. 1 and 3) up to t = τ .

B. Coupled SL oscillators

We start our discussion with an example of coupled SL
oscillators. SL oscillator, a type of limit cycle oscillator, is
a two dimensional, autonomous dynamical system. The
corresponding equations of motion are as follow13,48,49:

Ż1 =
(

1 + iω1 − |Z1|2
)

Z1 + αd · χ(t) · (Z2 − Z1)

+ατ · χ(t) · (Z2τ − Z1), (4a)

Ż2 =
(

1 + iω2 − |Z2|2
)

Z2 + αd · χ(t) · (Z1 − Z2)

+ατ · χ(t) · (Z1τ − Z2), (4b)

where Zj = (xj + iyj), i =
√
−1, and j = 1, 2. Thus, for

the example in hand, x1 = (x1, y1) and x2 = (x2, y2).
The parameters ωj are the natural frequencies of the re-
spective SL oscillators. In the case of coupled SL oscilla-
tors, for simplicity, we choose αd = ατ = α (say).

In order to confirm the AD region numerically, we run
our code long enough, skip the transient, and take the
final 10% data. When the condition |x1(t)| < ε satisfies,
we calculate the distance lτ0 = |x1(t)−x1(t− τ0)|, where
ε(= 10−6) is an arbitrary small number and τ0 = 0.2.
Thus, we get an array consists of different values of lτ0
with total number of elements of Nτ0 . Finally, we take
the average distance

l = (1/Nτ0)

Nτ0
∑

j=1

(lτ0)j . (5)

If l ≤ ε, we consider it as AD state; otherwise, it is con-
sidered as an oscillatory state. Note that a similar value
of l is possible to calculate using either of the other three



4

0 2
0.0

0.7

(x
′ 1)

rm
s

a

Forward
+ +Backward

2 1

1 2

1990 2000
t

0.5

0.5

x 1
(t)

b

FIG. 2. Transitions between LCO and AD are detected in
coupled SL oscillators as we increase α monotonically. The
time delay (τ) and natural frequencies (ω1 and ω2) remain
fixed in both subplots at τ = 0.1, ω1 = 4, and ω2 = 8. (a)
Bifurcation diagram of the coupled SL oscillators is plotted
using the variable x1(t). (b) The variable x1(t) is plotted for
two different values of α: 0.5 (black line plot) and 1.9 (gray
dashed-line plot).

phase space coordinates (i.e., x2, y1, and y2) of Eq. 4.
In all cases, we arrive at the same conclusion. Also, an
AD state is independent of τ0; in principle, any value
of τ0 should work. The only caution we have to con-
sider is for the periodic motion, and τ0 must differ from
the time period of oscillations. However, we use the dis-
cussed technique to ascertain the AD state numerically
throughout the paper.

We adopt the initial conditions (0.10, 0.01, 0.02, 0.10)
for the numerical simulation of Eq. 4. Using the CCS
(i.e., θ = 1 in Eq. 2) with the parameter values ω1 = 4,
ω2 = 8, and τ = 0, the AD region is observed within
the range [α1, α2], i.e., α1 ≤ α ≤ α2, where α1 = 0.5
and α2 = 1.3. Note that τ = 0 implies that two SL os-
cillators are coupled through the diffusive coupling with
twice the coupling strength (i.e., 2α). However, in this
paper, our main focus is to deal with coupled oscillators
in the presence of time-delay (i.e., τ > 0). The bifur-
cation diagram of coupled SL oscillators at τ = 0.1 is
depicted in Fig. 2a. In order to get Fig. 2a, we plot
the root mean square (rms) values of the variable x′

1(t)
(where x′

1(t) = x1(t) − 〈x1(t)〉, 〈·〉 is the standard alge-
braic mean) after removing the initial 90% data as tran-
sient for a particular value of α. The dashed-line and
plus-marker (+) have been used to show the forward and
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FIG. 3. (Color online) The on-off coupling is employed in
coupled SL oscillators (Eq. 4). Using two different measures:
l (first column) and λmax (second column), we have studied
the AD in the presence and absence of time delay. The width
of the AD region enhances more significantly for τ = 0.1 than
τ = 0.0 at smaller values of θ. For all subplots, the on-off
period T = 1. The horizontal dashed-lines in subplots (d)–(f)
correspond to λmax = 0. Both measures (l and λmax) yield
the same conclusion.

backward variations of α, respectively. Figure 2b infers
that individual SL oscillator exhibits limit cycle oscilla-
tions (LCO) in the regions α < α1 and α > α2. Thus,
at α = α1 and α = α2, we observe transitions between
a fixed point and LCO as we vary α monotonically —
implying the occurrence of Hopf bifurcation2. More ex-
plicitly, as the bifurcations are without exhibiting any
hysteresis, these kinds of bifurcations are called super-
critical Hopf bifurcations. In passing, plotting a bifurca-
tion diagram using either of the three variables (x2, y1,
and y2) yields the same conclusion.

Now, we are interested in employing the on-off coupling
scheme (Eq. 2) to couple SL oscillators. Hence, we first
have to choose an appropriate combination of scheme pa-
rameters T and θ. The average inter-peak separation of
the SL oscillators is 1.57 with α = 0. Thus, following
the rule of thumb31,47, we may choose any value for T
within the range [1, 10), and without loosing generality,
for coupled SL oscillators, we choose T as 1 and θ ar-
bitrarily. Here, we are interested in observing the effect
of OCS in coupled SL oscillators. Our numerical exper-
iment starts with τ = 0, and the AD region enhances
along the α-axis after employing the OCS (Fig. 3a). We
can clearly observe in Fig. 3b that as θ decreases, the
width of the AD region (i.e., α2 − α1) increases. Similar
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results are obtained with a non-zero value of τ . The red
dashed-line plot in Fig. 3c depicts the enhancement of
AD region in the presence of time delay. It is apparent
that the enhancement of the AD region along α-axis is
more significant in the presence of delay coupling.

The calculation of the maximum Lyapunov exponent
(λmax) of coupled oscillators is also a suitable measure to
confirm the AD state5. A negative value of λmax implies
the AD state. For coupled SL oscillators, we have cal-
culated λmax at different values of α. Figures 3d and 3e
correspond to τ = 0. In the absence of OCS (i.e., θ = 1
in Eq. 2), λmax is negative within the range [0.5, 1.3],
and thus, we get AD regions withing the aforementioned
range of α (Fig. 3d). After the employment of OCS, at
θ = 0.5, the region within which λmax remains negative
enhances to [1.1, 6.5] (Fig. 3e). Hence, we observe an
enhancement of AD region along α-axis in the presence
of OCS. Finally, we make the time delay τ non-zero in
Fig. 3f with θ = 0.5, and compare the effectiveness of
OCS in enhancing the AD regions with that while τ = 0
(Fig. 3e). We have seen that OCS is more effective in the
presence of time delay. Therefore, in conclusion, using
two different measures we have established that OCS is
beneficial in enhancing the AD regions. In the rest of
this paper, without losing generality, we have adopted
the first measure (Eq. 5) to confirm the AD region.

Now, we study this enhancement of the AD region in
the presence of the OCS using a local stability analysis
and try to determine the reason for this enhancement
analytically. The uncoupled SL oscillator has a stable
fixed point at Zj = 0. We can linearize Eq. 4 around
Zj = 0 for the condition Ts ≫ T (Ts is the system time-
scale), and the corresponding characteristic equation is
given by13,49:

det(J − λI) = 0, (6)

where λ is the eigenvalue, I is the identity matrix, and J
is the Jacobian. The explicit form of J is as follows:

J =

[

a+ iω1 Ke−λτ

Ke−λτ a+ iω2

]

, (7)

where a = (1 − 2K) and K = αθ. Using this explicit
form of J , Eq. 6 can be rewritten as:

λ2 − 2(a+ iω) + (b1 + ib2)−K2e−2λτ = 0. (8)

In Eq. 8, b1 = (a2−ω2+∆2/4), b2 = 2aω, ∆ = |ω1−ω2|,
and ω = (ω1 + ω2)/2. It (Eq. 8) is a transcendental
equation with infinite roots, and here we are interested
in studying how the eigenvalues change in the parametric
space (α,∆). Generally, eigenvalue λ = (u + iv) is a
complex number, and a negative value of u infers the AD
regions. In order to get the boundaries of the AD regions,
we prescribe u = 0, i.e., λ = iv in Eq. 8, and then after
separating the coefficients of real and imaginary parts,
we get:

(v − ω)2 − ∆2

4
− a2 +K2 cos(2vτ) = 0, (9a)

2a(v − ω)−K2 sin(2vτ) = 0. (9b)
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FIG. 4. Bifurcation diagrams of coupled SL oscillator at τ =
0. (a) The boundary of the AD region in the α–∆ plane at
θ = 1. (b) The width of the AD region (Eq. 11) is plotted as
a function of θ at ∆ = 4. (c) The boundary of the AD region
in the α–∆ plane at θ = 0.5. The horizontal dashed-lines in
subplots (a) and (c) correspond to ∆ = 4.

First, we consider that the time delay is absent50 (i.e.,
τ = 0 in Eq. 4). Substituting τ = 0 in Eq. 9b, we
get the conditions α = 1/2θ and v = ω. Further-
more, substituting τ = 0 and v = ω in Eq. 9a, we get
α = (1/2θ)(1+∆2/4). The explicit form of the eigenvalue
from Eq. 8 for τ = 0 is given by:

λ = 1− 2αθ ±
√

α2θ2 − ∆2

4
+ iω. (10)

On a monotonically increase in α from 0, when ∆ > 2,
the Hopf bifurcation occurs at α = 1/2θ. For ∆ > 2, as
α > 1/2θ, a pair of eigenvalues with negative real parts
are generated — implying the AD region. On further
increase in α, this AD region continues existing up to
α = (1/2θ)(1 + ∆2/4). In contrast, no AD region is
detected for ∆ < 2. Hence, for the example in hand, this
AD region is bounded by the curves α1 = 1/2θ and α2 =
(1/2θ)(1 + ∆2/4) in the α–∆ plane with the condition
∆ ≥ 2. In Fig. 4, we have plotted the boundaries of the
AD region in the α–∆ plane for two different values of
θ. We recall that θ = 1 corresponds to the CCS, and
the AD region using the CCS is depicted in Fig. 4a. The
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width of the AD region along α-axis is given by:

α2 − α1 =
∆2

8θ
. (11)

This width (Eq. 11) is plotted as a function of θ for ∆ = 4
in Fig. 4b. It is clearly visible in Fig. 4b that with the
decrease in θ, α2 − α1 increases. Finally, for θ = 0.5,
the AD region is depicted in Fig. 4c. In Figs. 4a and 4c,
the horizontal dashed lines correspond to ∆ = 4. Thus,
analytically, we have established the enhancement of the
AD region in the presence of OCS.
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5.0

10.0

=4

=1
AD

a

0 15 30
0.2

5.0

10.0 =0.5

=4

AD
b

FIG. 5. Bifurcation diagrams of coupled SL oscillator at τ =
0.08 and ω = 6. It is clearly visible that for a fixed value
of ∆, the width of the AD region along α-axis is larger in
subplot (b) compared to that in subplot (a). Thus, with the
decrease in θ, an enhancement of the AD region is depicted.
The horizontal dashed-lines in both subplots correspond to
∆ = 4.

Next, we make the time delay τ non-zero and study
Eq. 4. In order to get the boundary of the AD region, we
introduce a new function F (v) as follows:

F (v) :=
(v − ω)

sin(2vτ)
. (12)

Here, F (v) is a piecewise continuous function of v with
singularities at vn = nπ/2τ , where n is an integer. In
terms of F (v), Eq. 9 can be rewritten as:

α =
−2F ±

√

2F (2F + 1)

θ
, (13a)

∆2 = 4α2θ2 cos(2vτ) + 4(v − ω)2

−4(1− 2αθ)2. (13b)

In order to calculate α and ∆ from Eq. 13, we adopt v
from the open intervals (vn, vn+1) and other two parame-
ters τ and ω are chosen as fixed. We obtain two different
values of α from Eq. 13a, and let α+ (α−) be the corre-
sponding value of α due to the positive (negative) sign
in Eq. 13a. Consequently, two curves C+ := C+(α+,∆)
and C− := C−(α−,∆) construct the boundary of the AD
region in the α–∆ plane. We have chosen ω1 = 4 and
ω2 = 8; hence, the average frequency ω = 6. Fig. 5 de-
picts the AD regions for τ = 0.08 in the absence (θ = 1.0)
and presence (θ = 0.5) of OCS. We can conclude that,
similar to Fig. 4, OCS is enhancing the AD region along
α-axis for non-zero value of τ . To this end, we mention
that the width of the AD region along α-axis is larger in
the presence of time delay.
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1
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FIG. 6. (Color online) The effect of OCS is studied in coupled
SL oscillators (Eq. 4) by varying the frequency ratio ω2/ω1 at
a fixed value of τ . Here, the red and the black plots correspond
to OCS and CCS, respectively. In all four cases, the width of
the AD regions (α2 −α1) is larger using OCS than that using
CCS. In all four cases, θ is chosen as 0.5.

Thus, we have ascertained that the employment of
OCS is fruitful to enhance the AD region along the cou-
pling strength (α) parameter (Figs. 3, 4, and 5). Addi-
tionally, experiments have shown the suitability of other
system parameters such as time delay or frequency ra-
tio as control parameter26,51–53. Therefore, we use the
frequency ratio (ω2/ω1) as a control parameter, and the
effects of OCS using ω2/ω1 as the control parameter are
depicted in Fig. 6. The red and the black plots cor-
respond to OCS and CCS, respectively. We check the
effect of OCS after varying the ratio ω2/ω1 at a fixed
time delay τ . More explicitly, we calculate the width of
the AD regions (α2 − α1) for different values of ω2/ω1.
Figure 6 supports that the width, α2 − α1, always has
greater values for OCS than that in the case of CCS.
Also, we observe that α2−α1 increases with the increase
in ω2/ω1, and this enhancement is observed for all four
values of τ . Henceforth, we use the same colour code in
all figures: black for CCS and red for OCS, and markers:
star (∗) and cross-mark (×) in plotting the width of the
AD regions and the boundaries of the AD regions as a
function of the control parameter, respectively.

Next, we extend our study to focus on the effect of the
third system parameter τ in Eq. 4. Here, we vary τ mono-
tonically, keeping the frequency ratio (ω2/ω1) unaltered,
and the corresponding results are depicted in Fig. 7. The
enhancement of AD regions along τ -axis is clearly de-
picted for different fixed values of ω2/ω1 in Fig. 7, i.e.,
the AD regions extend along the τ -axis in all cases. Note
that, even with τ = 0, we achieve AD after employing
the OCS in coupled SL oscillators (Fig. 7).

Thus, we have studied the effect of OCS using three
control parameters in coupled SL oscillators. In all three
cases, the employment of OCS is worthwhile in enhanc-
ing the AD regions along the control parameter axis.
However, as the time delay and frequency ratio is more
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FIG. 7. (Color online) The effect of OCS is studied in coupled
SL oscillators (Eq. 4) by varying the time delay (τ) at a fixed
frequency ratio ω2/ω1. The parameter ω2/ω1 has the values
1.87, 2.00, and 2.12 for the subplots (a), (b), and (c), respec-
tively. Subplot (d) is the zoom portion of subplot (c) around
τ = 0.15. The on-off coupling scheme parameter (Eq. 2) θ is
chosen as 0.5. In all three cases, the width of the AD regions
along τ -axis are larger using OCS than that using CCS.

suitable control parameter in experiments12,26,51–53, from
now onward, we use these two parameters, time delay and
frequency ratio, as the control parameters to study the
effect of OCS on AD.

C. Coupled Rössler oscillators

Now, we switch to the second example of this sec-
tion: Rössler oscillator44. It is a three dimensional,
autonomous, chaotic oscillator. Thus, for the coupled
Rössler oscillators, following Eq. 3, x1 = (x1, y1, z1) and
x2 = (x2, y2, z2). The explicit form of the equations of
motion are as follow:

dxj

dt
=−ωj(yj + zj) + αd · χ(t) · (xl − xj)

+ατ · χ(t) · (xlτ − xj), (14a)

dyj
dt

=ωj(xj + 0.15yj) + αd · χ(t) · (yl − yj)

+ατ · χ(t) · (ylτ − yj), (14b)

dzj
dt

=ωj (0.4 + zj(xj − 8.5)) + αd · χ(t) · (zl − zj)

+ατ · χ(t) · (zlτ − zj), (14c)

where l = 1, 2 with l 6= j. We choose the natural fre-
quencies (ωj) as 0.6 and 1.4, respectively28. Similar to
the previous example, we choose ατ = αd = α, and the
initial condition is adopted as (−9, 0, 0,−9.01, 0.01, 0).

The isolated Rössler oscillator, using the parameter
values mentioned in Eq. 14, exhibits chaotic dynamics.
Thus, for this example, we study a transition from the
chaotic dynamics to a fixed point as the coupling strength
(as a control parameter) is increased monotonically. We

0.0 0.7
0.0

7.5

(x
′ 1)
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s
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+ +Backward

2 1

1 2

1900 2000
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15

x 1
(t)

b

FIG. 8. Transitions chaotic dynamics – AD – periodic dy-
namics are detected as we increase α monotonically. The
time delay (τ) and natural frequencies (ω1 and ω2) remain
fixed in both subplots at τ = 0.1, ω1 = 0.6, and ω2 = 1.4. (a)
Bifurcation diagram of the coupled Rössler oscillators is plot-
ted using the variable x1(t). (b) The variable x1(t) is plotted
for two different values of α: 0.02 (black line plot) and 0.6
(gray dashed-line plot). Chaotic and periodic dynamics are
ascertained at α = 0.02 and 0.6, respectively.

use Fig. 8 to understand this transition more clearly.
The bifurcation diagram (Fig. 8a) for coupled Rössler
oscillators is drawn following the algorithm discussed in
Sec. II B. The existence of chaotic dynamics at lower val-
ues of the control parameter is depicted in Fig. 8b. The
transition from chaotic dynamics to AD is ascertained
as we increase the control parameter monotonically. We
observe the periodic dynamics on further increase in the
control parameter. Prasad6 had already discussed in de-
tail the route from an oscillatory state to the AD in delay-
coupled oscillators. The examples of both SL and Rössler
oscillators had been studied there.

For the Rössler oscillators (Eq. 14) with α = 0, the av-
erage inter-peak separation is 4.33. Thus, we may choose
any value of T within the range [1, 10), and similar to the
previous example, we choose (T, θ) = (1, 0.5) to employ
the on-off coupling (Eq. 2) in coupled Rössler oscillators
(Eq. 14), and the results are depicted in Figs. 9 and 10.
In order to study the effect of OCS on coupled Rössler

oscillators, we begin with the frequency ratio as the con-
trol parameter at a fixed value of time delay (Fig. 9).
The width of the AD regions enhances with the increase
in ω2/ω1 in the presence of OCS, whereas using CCS, the
enhancement is comparatively small. Also, we mention
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FIG. 9. (Color online) The effect of OCS is studied in coupled
Rössler oscillators (Eq. 14) as a function of frequency ratio
ω2/ω1 at fixed τ . In all four cases, the width of the AD regions
(α2 − α1) are greater using OCS than that using CCS.
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FIG. 10. (Color online) The effect of OCS is studied in cou-
pled Rössler oscillators (Eq. 14) by varying the time delay (τ)
at three fixed frequency ratio ω2/ω1. The parameter ω2/ω1

has the values 2.0, 2.3, and 3.3 for the subplots (a), (b), and
(c), respectively. In all three cases, the AD region using CCS
is a fraction of that using OCS.

that the width of the AD region increases monotonically
as the control parameter ω2/ω1 increases. We obtain the
same conclusions for four different values of τ . Besides,
we use the time delay τ as the control parameter at fixed
values of ω2/ω1 in Fig. 10. The corresponding results are
shown for three different values of ω2/ω1. The AD region

using CCS (region within the black lines) is a fraction of
the AD region using OCS (region within the red lines).
Therefore, the effectiveness of OCS to enhance the AD
regions is evident in all three cases of Fig. 10.

To summarize, we have taken two low-dimensional
mathematical models of coupled oscillators to study the
effectiveness of OCS. In both the examples, we have ob-
tained an enhancement of AD region along the parameter
axis with OCS. Having established that fact, in Sec. II D,
we adopt a mathematical model representing a thermoa-
coustic system, the horizontal Rijke tube.

D. Model of coupled horizontal Rijke tubes

Second Rijke Tube

First Rijke Tube

L

FIG. 11. The schematic diagram of coupled horizontal Ri-
jke tubes54. Both the Rijke tubes have same length L and
are connected through a connecting tube. The spatial dis-
tance x is normalized by the duct length, i.e., x := x/L. The
connecting tube is situated at the spatial distance xc = 0.5.

In this study, we adopt the example of coupled horizon-
tal Rijke tubes — each tube has a cuboid duct with two
ends open, and an electrically heated wire-mesh is placed
within the duct for heating the flow through it. The
schematic diagram of coupled horizontal Rijke tubes is
depicted in Fig. 11. A horizontal Rijke tube is one of the
simplest thermoacoustic systems exhibiting an oscillatory
instability, known as thermoacoustic instability20,21,55,56.
The positive feedback between heat release and acoustic
field yield this instability21. An earlier study24 supports
the existence of AD in the coupled horizontal Rijke tube
model using time-delay and dissipative couplings. Here,
we study the effect of OCS on AD using this model. In
Appendix A, we present an elaborate discussion on the
governing equations of a single, uncoupled horizontal Ri-
jke tube and the chosen parameters values used for nu-
merical analysis. The equations of motion of two Rijke
tubes subjected to diffusive and time delay couplings (i.e.,
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following Eq. 1) are as follow:

dηjk
dt

= η̇jk, (15a)

dη̇jk
dt

+ 2ζkωkη̇
j
k + ω2

kη
j
k

= −kπKj

[

√

|1
3
+ uf (t− τ1)| −

√

1

3

]

sin(kπxf )

+αd ·
(

η̇lk − η̇jk

)

+ ατ ·
(

η̇lkτ − η̇jk

)

. (15b)

We recall that j = 1, 2, l = 1, 2 with l 6= j, k =
1, 2, · · · , N , and η̇lkτ = η̇lk(t − τ). The corresponding
governing equations of coupled Rijke tubes after incor-
porating OCS become:

dηjk
dt

= η̇jk, (16a)

dη̇jk
dt

+ 2ζkωkη̇
j
k + ω2

kη
j
k

= −kπKj

[

√

|1
3
+ uf (t− τ1)| −

√

1

3

]

sin(kπxf )

+αd · χ(t) ·
(

η̇lk − η̇jk

)

+ ατ · χ(t) ·
(

η̇lkτ − η̇jk

)

.(16b)
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FIG. 12. (a) The transition AD – LCO – AD is observed
in coupled horizontal Rijke tube model. (b) LCO is detected
in the variation of p1(t) at ω2/ω1 = 1. In both plots, rest
parameter values are adopted as τ = 0.5, αd = 0.25, and
ατ = 0.05.

For a physical system, we might not have the lib-
erty to choose an identical value for αd and ατ , there-
fore, in this model, we choose non-identical values of
those coupling strength parameters to study AD24,46.
Thus, for the example in hand, we need to deal with

four system parameters: time delay (τ), frequency ratio
(ω2/ω1), diffusion coupling strength (αd), and time-delay
coupling strength (ατ ). Similar to the previous two ex-
amples, here, we study the transition between the oscil-
latory state and AD in coupled horizontal Rijke tubes
model. We use the same initial conditions, as mentioned
in Appendix A, for both the tubes. A bifurcation dia-
gram (Fig. 12a) is drawn for parameter values τ = 0.5,
αd = 0.25, and ατ = 0.05, and the transition AD – LCO
– AD is observed. Figure 12b depicts the LCO of p′1(t)
at ω2/ω1 = 1. Note that (p′1)rms follow the same paths
during the forward and backward variations of ω2/ω1, im-
plying the occurrence of supercritical Hopf bifurcations.

0.92 1.00 1.08
0.25

0.32

0.40

d LCO

a=0.03

0.92 1.00 1.08
2/ 1

0.25

0.32

0.40

d

b

LCO

=0.05

FIG. 13. (Color online) The effect of OCS is studied in cou-
pled Rijke tubes (Eq. 16) as a function of the frequency ratio
(ω2/ω1) at a fixed time delay τ = 0.5. The width of the AD
region along ω2/ω1-axis is larger using OCS compare to that
of using CCS.

Furthermore, we choose the system parameter K1 =
K2 = 0.92 (representing heater power) in Eq. 1624. For
the uncoupled Rijke tube, i.e., putting αd = ατ = 0 in
Eq. 16, the average inter-peak separation is 1.92, and
we choose T = 2 (and θ = 0.5) to employ the on-off
coupling (Eq. 2) in coupled Rijke tubes model (Eq. 16).
In Fig. 13, we have employed OCS to the coupled Rijke
tubes model using frequency ratio (ω2/ω1) as a control
parameter at a fixed value of time delay τ = 0.524. Un-
like the previous two examples, AD region exists in two
edges of the ω2/ω1-axis, and LCO is ascertained within
the vertical lines. The AD regions are observed to en-
hance and come closer to each other using OCS than that
using CCS (Fig. 13). Two different values of time-delay
coupling strength parameter (ατ ) are chosen in the two
subplots, and we have obtained similar results in both
the cases. Besides, Fig. 14 depicts the effect of time de-
lay (τ) on enhancing the AD region in the presence of a
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FIG. 14. (Color online) The effect of OCS is studied in cou-
pled Rijke tubes (Eq. 16) by varying the time delay (τ) at a
fixed frequency ratio ω2/ω1 = 0.92. The AD region is ascer-
tained within the vertical lines. The width of the AD region
along τ -axis is larger using OCS than that using CCS.

constant diffusive coupling strength (i.e., αd = fixed) and
a frequency ratio (ω2/ω1 = 0.92). Note that AD region
is ascertained within the vertical lines. The two subplots
correspond to αd = 0.12 and 0.16. The width of the AD
regions enhances further along the τ -axis for both values
of αd on using OCS.

In short, the AD region enhances along the parameter
axis of frequency ratio and time delay in the model of
couple Rijke tubes. It is worth reiterating that a state
of AD is preferred in a thermoacoustic system to sup-
press the oscillatory instability since oscillatory instabil-
ities can be catastrophically detrimental to the perfor-
mance and structural integrity of thermoacoustic systems
such as those in rockets and gas turbine engines21. With
the implementation of occasional coupling, a wider range
of parameters can be made available to bring about am-
plitude death in the system.

Thus, we have studied the effect of OCS in coupled os-
cillators models. To be more explicit, we have employed
the on-off coupling (i.e., through square wave function),
an example of OCS, and ascertained that the AD regions
enhances along the control parameter axis in all three
models. Next, we choose a different form of χ(t) (other
than that shown in Eq. 2 or Fig. 1) and study its effect
on AD.

t

0

1

(t)

T

FIG. 15. The schematic diagram depicts the variation of the
occasional coupling function χ(t) with time t using the half-
wave rectified sinusoidal wave (Eq. 17).

III. A DIFFERENT FUNCTIONAL FORM OF OCS:
HALF-WAVE RECTIFIED SINUSOIDAL WAVE

Implementing a square wave function in a mechanical
system may not always be feasible as some finite time
will always be required for the transition from on to off
state for any coupling device (e.g., opening or closing a
valve). Therefore, considering the gradual opening and
closing of the valve, we adopt a half-wave rectified sinu-
soidal wave as the required functional form of χ(t), and
mathematically, we can redefine χ(t) as follows:

χ(t) := sin+(t) =

{

sin(ωt), 2nπ ≤ t < (2n+ 1)π,

0, (2n− 1)π ≤ t < 2nπ,

(17)
where ω = 2π/T is the angular frequency of the sinu-
soidal wave and T is the corresponding time period. Fig-
ure 15 is the schematic diagram that shows the variation
of χ(t) with time t using Eq. 17.

Figure 16 is depicting the effect of OCS using Eq. 17
on AD in all three examples of coupled oscillators dis-
cussed in this paper. The first, second, and third columns
are corresponding to the coupled SL oscillators, coupled
Rössler oscillators, and coupled Rijke tubes, respectively.
Top two rows of each column use the frequency ratio
(ω2/ω1) as the control parameter and the bottom two
rows use the time delay (τ) as the required control pa-
rameter. For coupled SL oscillators and coupled Rössler
oscillators, we have chosen two different τ in the top two
rows and two different ω2/ω1 in the bottom two rows.
In all cases, we obtain the favourable results, i.e., the
employment of OCS enhances the AD regions along the
control parameter axis. In both the examples, we choose
the time period, T = 1 in Eq. 17.

Furthermore, for coupled horizontal Rijke tubes, the
top two rows correspond to τ = 0.5 and two different
values of the time delay coupling strength parameters
(ατ ). We recall that the AD regions are at the two edges
of Figs. 16i and 16j. These AD regions come closer to
each other in the presence of OCS. The bottom two rows
(i.e., Figs. 16k and 16l) correspond to the fixed frequency
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FIG. 16. (Color online) The effect of OCS (Eq. 17) on AD is studied in three coupled oscillator models: SL, Rössler, and Rijke
tube. The time-delay (τ) and frequency ratio (ω2/ω1) are chosen as the control parameters. In all cases, the width of the AD
regions are larger along the control parameter axes using OCS than that using CCS.

ratio ω2/ω1 = 0.92 and two different values of the diffu-
sive coupling strength parameters (αd). The width of the
AD regions is observed to enhance with the increase in
ατ along the τ -axis. Also, at higher ατ , the AD regions
enhance on both sides of the τ -axis. We choose the time
period, T = 2 in Eq. 17 for coupled Rijke tubes model.

IV. CONCLUSION AND DISCUSSIONS

With an objective of enhancing the extent of the am-
plitude death regions along the control parameter axis,
we have employed the OCS in time delay coupled os-

cillators. Towards that, first, the on-off coupling (i.e.,
through square wave function) has been employed. Our
analysis has involved three examples of coupled oscilla-
tors: coupled SL oscillators, coupled Rössler oscillators,
and coupled horizontal Rijke tubes. The horizontal Rijke
tube is a prototypical model of a thermoacoustic system
used to study the onset of thermoacoustic instability. Ini-
tially, the coupling strength parameter is chosen as the
control parameter. It is observed that the AD regions
enhance along the coupling strength parameter axis af-
ter employing the OCS compared to that using the CCS.
We have performed a linear stability analysis for coupled
SL oscillators to understand this enhancement analyti-
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cally. Next, motivated by the practical reality, we have
adopted frequency ratio and time delay as the control
parameters. Intriguingly, we have obtained favorable re-
sults, i.e., the enhancement of the width of the AD re-
gion, using the aforesaid control parameters. Finally, we
have repeated our study with a different functional form
of the OCS (half-wave rectified sinusoidal wave function)
and got similar unaltered results. In short, this paper
shows that the width of the amplitude death regions in-
creases along the control parameter axis using the OCS.
This finding can be helpful for a wide variety of physical
systems such as thermoacoustic and aeroelastic systems,
to name a few, where the presence of oscillations are haz-
ardous.

The linear stability analysis that we have performed for
coupled SL oscillators to understand the enhancement of
the AD region in the presence of the OCS analytically
can not be stretched for coupled chaotic oscillators as
chaotic dynamics are more complex than limit cycle dy-
namics. However, this analysis can be extended for the
prototypical model of coupled Rijke tubes. On the other
hand, all the results have shown with a fixed combina-
tion of the on-off period (T ) and on-off rate (θ). Also, for
simplicity, we choose θ = 0.5 so that the time intervals
over which the coupling is active and inactive become
equal. The reported results may vary for different values
of T and θ. Besides, from the perspective of experiments,
the condition T ≫ Ts is preferable. For a larger value
of T , however, the occasional coupling may not always
be a recommended tool to enhance the amplitude death
regions along the control parameter axis. As a possible
future direction, a detailed study on the effectiveness of
the on-off coupling scheme in time-delay coupled oscilla-
tors using different combinations of (T, θ) is an exciting
direction to pursue.

Furthermore, we may extend our study to the slow-fast
Fitzhugh-Nagumo57 or the Hodgkin-Huxley58 oscillators,
where the dynamics change a lot on short timescales
(spikes). The employment of the on-off coupling in these
oscillators in the context of amplitude death and study-
ing the consequences of different combinations of (T, θ)
are interesting. In such cases, one might need to change θ
or achieve different results, eventually ending up in differ-
ent attractors. Finally, there are several other examples
of the occasional coupling schemes available in the liter-
ature, and a brief review of such schemes has been done
by Ghosh and Chakraborty29. Those schemes have been
reported mostly in the context of synchronization; im-
plementation of such occasional coupling schemes in the
purview of amplitude death may yield interesting results.
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Appendix A: Mathematical model of the horizontal Rijke tube

Here, we focus on the mathematical model of an un-
coupled horizontal Rijke tube55. This model is devel-
oped from the linearized momentum and linearized en-
ergy equations of the acoustic field with the approxima-
tion of zero Mach number and neglecting the mean tem-
perature gradient55. The non-dimensionalized form of
the governing equations are:

γM
∂u

∂t
+

∂p

∂x
= 0, (A1)

∂p

∂t
+ γM

∂u

∂x
+ ζp = (γ − 1) · Q̇(t) · δ(x− xf ), (A2)

where p and u are the pressure fluctuation and the veloc-
ity fluctuation respectively in the duct. The parameters:
γ, M , and ζ, are the ratio of the specific heats in the
medium, the Mach number of the flow, and the damping
coefficient, respectively. Q̇(t) is the source term which is
located at a spatial distance xf , and the dot on Q repre-

sents the time derivative. More explicitly, Q̇(t) measures
the heat release rate per unit area. Lastly, δ(·) represents
the standard Dirac delta function. The explicit form of
Q̇(t) is given by

Q̇(t) =
2Lw(Tw − T̄ )√

3Sc0p̄

√

πλCvu0ρ̄lc

×
[

√

|1
3
+ uf (t− τ1)| −

√

1

3

]

. (A3)

In the above equation (Eq. A3), Lw, Tw, and lc are the
length, temperature, and radius of the wire-mesh respec-
tively; S, c0, and p̄ are the cross-sectional area of the
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tube, velocity of sound, and ambient pressure, respec-
tively; λ, Cv, and u0 are the thermal conductivity of the
medium within the duct, specific heat at constant vol-
ume of the medium within the duct, and steady state
velocity of the flow, respectively; ρ̄ is the mean density
of the medium within the tube. The last term, uf (t−τ1),
physically implies that due to the thermal inertia of the
medium, the heat release rate at the wire-mesh gets de-
layed by a constant time lag (τ1) at the boundary.

We choose the boundary condition that the acoustic
pressure at two ends of the duct are identical with the
ambient pressure, i.e., p(0, t) = p(1, t) = 0. For simplic-
ity, we may transform the partial differential equations
(Eqs. A1 and A2) into ordinary differential equations us-
ing the Galerkin technique59. Following this Galerkin
method, we may write p and u as follow:

u =

N
∑

k=1

ηk cos(kπx), (A4)

p = −
N
∑

k=1

η̇k
γM

kπ
sin(kπx). (A5)

Here, ηk and η̇k represent the coefficients of the acoustic
velocity (u) and acoustic pressure (p), respectively. N is
the total number of modes, and for this example N =
10 is sufficient to get a suitable solution56. Thus, the
equations of motion of the Rijke tube in terms of the
Galerkin modes are given by:

dηk
dt

= η̇k, (A6a)

dη̇k
dt

+ 2ζkωkη̇k + ω2
kηk = −kπK

[

√

|1
3
+ uf (t− τ1)| −

√

1

3

]

× sin(kπxf ), (A6b)

where

uf (t− τ1) =

N
∑

k=1

ηk(t− τ1) cos(kπx), (A7)

and ωk = kπ, the angular frequency of the kth mode.
2ζkωkη̇k is the damping term, and the parameter ζk is
defined as:

ζk =
1

2π

[

c1
ωk

ω1

+ c2

√

ω1

ωk

]

. (A8)

Parameters c1 and c2 are the damping coefficients. K is
the heater power. As we increase K from zero, the Ri-
jke tube goes through a subcritical Hopf bifurcation at
KHopf = 0.6224, i.e., the stable fixed point loses its stabil-
ity and forms a limit cycle. Thus, in this study, we choose
a value of K which satisfy the condition K > KHopf .
Thus, we obtain the equations of motion of the uncou-
pled Rijke tube (Eq. A6). In order to solve Eq. A6
numerically, we have chosen the initial conditions as
η1(0) = 0.01 and η̇1(0) = 0.001; rest nine modes of ηk(t)

TABLE I. The parameter values enlisted in this table are
chosen for the simulation of coupled Rijke tubes24.

Parameter Corresponding value

M 0.01

xf 0.25

c1 0.10

c2 0.06

K 0.92

τ1 0.20

γ 1.40

and η̇k(t) have been adopted as zero initially24. The val-
ues of the parameters chosen in this study are enlisted in
Table I.
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