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The effect of pressure gradient on the stability of two dimensional, laminar, incompressible
boundary layer flow has been investigated numerically using filtered and orthonormalized
integration techniques and the results have been compared with Schlichting’s calculations.

The pressure gradient exerts an important influence on
the stability of boundary layer flow. The effect of pressure
gradient on the stabilitv of boundary layer flow has been
theoretically investigated by Schlichting"? and Ulrich? using
a classical asymptotic expansion method to obtain solution
of the Orr-Sommerfeld equation, although this method
encounters difficulty at the critical laver and is not popular
nowadays. The advent of high speed digital computers has
made the numerical scheme for solving the stability prob-
lems very popular. The recent success®* of numerical meth-
ods in the solution of problems of the stability of boundary
layer flows have made them widely accepted. The purpose
of the present work has, therefore, been to numerically
investigate the effect of pressure gradient on the stability
of two-dimensional, laminar, incompressible boundary layer
flow, and thus to have a check on the earlier analvtical
method due to Schlichting.

The dimensionless Orr-Sommerfeld equation for the pres-
ent problem is

(U= C)(¢" —op) — U9

= — (¢ — 20%" + aip), (1)
aR

where the velocities have been divided by the free stream
velocity 1/, and the distance y, perpendicular to the free
stream direction, has been divided by the boundary layer
thickness §; {/(y) is the mean velocity in the boundary
layer flow; C = C, + iC,, C, being the wave velocity and
C; being the amplification factor; « is the wavenumber, ¢ is
the amplitude of disturbance, and R is the Revnolds num-
ber (U'wé/v), v being the kinematic viscosity.

The corresponding boundary conditions are

¢=¢ =0,
¢ =¢ =0 (2)

The influence of a pressure gradient on stability mani-
fests itself through the form of the mean velocity profile
U(y). A sixth-order polynomial for the mean velocity,
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giving one parameter family of velocity profiles satisfying
the momentum equation and the first compatibility condi-
tion at the wall, has been assumed. These velocity profiles
are known to be sufficiently accurate for favorable pressure

" gradients and moderately large (A < —6) adverse pressure

gradients and arc expressed in dimensionless form as

Uly) = Fiy) + AGY, (3
where
& dU,,
A= -
v dx

Fiy)y = 2y — 5yt 4+ 6y — 2,
and

Gly) = 0.2y — 05y + vt — v 4 0.3y
The positive value of the pressure gradient parameter, A,
indicates a favorable pressure gradient while an adverse
pressure gradient is expressed by a negative value of A.

For the solution of Eq. (1), which is in terms of the
dimensionless distance y (based on the boundary layer
thickness &), the values of {7 and [ can easily be calcu-
lated from Eq. (3). The accuracy of these values depends
on the accuracy with which a sixth-order polvnomial, used
in the present case, can approximate the more accurale
Fulkner-Skan type of profiles. The advantage of the present
method is; however, the case with which the profiles of the
velocity and the velocity derivatives can be obtained as
explicit functions of a single shape parameter A. Equation
(1) can no doubt casily he transformed into a very similar
equation in terms of the FFalkner-Skan local similarity co-
ordinate 7 = (y/x)[0.5(m + 1) Re, ]"?, but the determina-
tion of the profiles of the velocity and the velocity deriva-
tives have to be done separately for each value of either the
pressure parameter 8 = (2x/{7) d{;dx, or the Falkner-
Skan parameter 8 = 2m/(m -+ 1), in which m determines
the distribution of the frec-stream velocity (¢ ~ x™. While
in the present case the main emphasis is on comparison
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TABLE I. Critical Reynolds numbers based on displacement thick-
ness 8* for various values of pressure gradient parameter.

Present Due to
A calculations Schlichting

+6.0 7 400 7 400
+4.0 4 500 4 460
+2.0 1730 1 700
+0.0 540 645
—-1.0 390 385
-3.0 210 193
-5.0 128 122

with Schlichting, the neutral stability curves and the criti-
cal Reynolds number for different positive and negative
values of the shape parameter A, this parameter is also
used to avoid the very tedious calculation of the profiles
of velocity and velocity derivatives in local similarity co-
ordinates as a function of 8 or B. Note that the values of
these and 75, which is the value of 5 at which the flow
velocity approaches the 999, of the free-stream velocity
(definition of the boundary layer thickness), are mostly
available in the literature for selected positive values of 8
or B, as for example by Back,” who calculated these in a
slightly different form for 8 from O to 20. The relations
between A, 8, and f§ are given by the equation:

A =98 = 2928/(2 — B). (4)

1t is, therefore, evident that comparison with other authors
regarding stability calculations in local similarity coordi-
nates as a function of 8 or f is possible in case the data are
available on 5; at these values of 8 or 8.

Obremski ef @l.® have investigated the instability of the
flow and the initial Reynolds number for several different
types of profiles, among others for the Falkner-Skan type
of profiles. A comparison with their result is done to exam-
ine whether the approximation of U’ in the present note is
sufficiently accurate with respect to the Falkner-Skan type
of profile. Their definition of s, however, is the value of 5
at which the flow velocity approaches by 99.999, the free
stream velocity. In addition, they define Reynolds number
with respect to a characteristic length, which is a somewhat
complicated function of the displacement thickness used
here. A comparison of the present results for A = 0 with
those of Obremski ef al.® shows good agreement in the value
of the critical Reynolds number.

The neutral stability curves for various values of the
pressure gradient parameter were obtained by solving the
Orr—Sommerfeld equation numerically. For this purpose,
two programs were developed—one based on the Kaplan
filtering technique” and the other based on the technique of
orthonormalized® integration. While these techniques are
described in detail elsewhere, the principal features of these
techniques follow from the fact that in the Orr-Sommerfeld
equation there can be a linear combination of four inde-
pendent solutions, in which two are rapidly' growing and
two are slowly growing solutions. Only the two slowly grow-
ing solutions, whose initial values at the outer edge of the
boundary layer can easily be estimated, are found by nu-
merical integration, for example by the Runge-Kutta
method, for several steps toward the wall before either of
the techniques are used to reduce or eliminate the parasitic
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FIG. 1. Comparison of neutral stability curves at zero pressure
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FIG.2. Neutralstability curves for various values of pressure gradient

parameter.

computation round-off errors. In the filtration technique
several stored values of third and fourth derivatives of
slowly growing solutions are used, as well as one rapidly
growing solution, from which a very good approximation
of the coefficient for linear combination is obtained. In the
orthonormalization procedure, orthonormalization is done
for the two linear independent solutions. The boundary
conditions at the wall are satisfied by keeping C, constant
and changing the values of a and Re. Although the method
based on orthonormalized integration would be sufficient
for the present work, the method based on filtered integra-
tion, being faster, was employed at lower Reynolds number
(R < 10000) to effect a saving in computer time. Evi-
dently, the technique of filtered integration fails at higher

Research Notes 1911



T T T TTIT

£ 8 IFIG. 3. Variation of
.A: critical Reynolds num-
& ber with pressure gradi-

ent parameter.

T YT

2

10 I 1 | 1 |
-0 -40 -20 0 20 40 6.0
B 52 dim
A= g ]

Revnolds numbers because of difficulties in filtering out
the very rapid growth of parasitic errors. The method could
be used for comparatively high velocities by using Reynolds
numbers based on the displacement thickness, instead of
on the usual boundary layer thickness. The programs were
run on an IBM 360/44 computer. The calculation of one
point on the neutral stability curve, at fairly small Reynolds
number, using filtered integration, takes about 2 min and
requires four iterations, while with orthonormalized inte-
gration the same calculation takes about 3 min and requires
six iterations.

The critical Reynolds numbers for various values of the
pressure gradient parameter obtained by the present calcu-
lations have been presented in Table I and they compare
favorably with Schlichting’s results. Further, the critical
Reynolds number for zero pressure gradient is approxi-
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mately the same as that given in Fig. 2 of Ref. 9, which
was obtained for the Falkner-Skan tvpe of velocity profile.
Obremski ef al.® give a value of critical Revnolds number of
520 at zero pressure gradient.

The neutral stability curves obtained by various methods
for the zero-pressure gradient case have been compared,
in Fig. 1, with other authors,'® and Fig. 2 represents the
neutral stability curves for various values of the pressurce
gradient parameter. A plot of the critical Reyvnolds number
as a function of the pressure gradient parameter is shown
in Fig. 3, which shows the well-known result that a favor-
able pressure gradient stabilizes the flow, while an adverse
pressure gradient has a destabilizing effect.
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