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ers three variations of Q-matrices, typically applicable for singular

matrices. The main result presents a relationship of these notions

(for a Z-matrix) with the nonnegativity of the Moore–Penrose in-

verse of the matrix concerned.
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1. Introduction

A real square matrix A is called a Z-matrix if all the off-diagonal entries of A are nonpositive. It

follows that a Z-matrix A can be written as A = sI − B, where B � 0. Here and in the rest of the

article, we use the notation C � 0 for a real matrix C to denote that all its entries are nonnegative.

A similar definition holds for row and column vectors. A Z-matrix A is called an M-matrix if, in the

above decomposition, we also have s � ρ(B), where ρ(.) denotes the spectral radius. An M-matrix A

is invertible if and only if s > ρ(B) which holds if and only if A−1 � 0. For details we refer to Chapter
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6 of [3], where more than 50 equivalent conditions for a Z-matrix to be an invertible M-matrix are

given.

Asusual, letRm×n denote the spaceof all realmatrices of orderm×n andRn = Rn×1. LetA ∈ Rn×n

and q ∈ Rn be given. The linear complementarity problem denoted by LCP(A, q) is the problem of

determining if there is x ∈ Rn such that x � 0, y = Ax + q � 0 and 〈x, y〉 = xTy = 0. In this

connection, A is called a Q-matrix, if LCP(A, q) has a solution for all q ∈ Rn. If A is a Q-matrix, we also

say that A has theQ-property. Anotherwell knownproperty forms the P-matrix class, whichwe define

next. A ∈ Rn×n is called a P-matrix if all the principal minors of A are positive. A generalization of

the P-matrix notion is P0. A is called a P0-matrix if all the principal minors of A are nonnegative. These

classes of matrices have beenwidely studied in the theory and applications of linear complementarity

problems [5]. We also point out to the recent survey article [4]. Let us just point out a well known

result that if A is a Z-matrix, then A is a P-matrix if and only if A is a Q-matrix (with the additional

property that LCP(A, q) has a unique solution for all q) [3].

Let us set the stage for the main result of this article, by recalling a theorem that has motivated

it. Gowda and Tao [7] proved a result characterizing the Q-property of linear transformations over

Euclidean Jordan algebraswith a proper conehaving the Z-property. For our purposesweonly consider

the following particular case:

Theorem 1.1 [7, Theorem 6]. Let A ∈ Rn×n be a Z-matrix. Then the following conditions are equivalent:

(a) A has the Q-property.

(b) A−1 exists and A−1 � 0.

(c) There exists d > 0 such that Ad > 0.

(d) AT has the Q-property.

(e) (AT )−1 exists and (AT )−1 � 0.

(f) There exists u > 0 such that ATu > 0.

Let us consider the condition given in the statement (b). The variations ofQ-matrices studied in this

article stem from the natural consideration of replacing this condition by the statement:A† � 0,where

A† denotes theMoore–Penrose (generalized) inverse of A (which always exists, for any A, singular, even

rectangular). Recall that the Moore–Penrose inverse A† of A ∈ Rm×n is the unique X ∈ Rn×m which

satisfies the following Penrose equations: AXA = A; XAX = X; (AX)T = AX and (XA)T = XA, where

the superscript T denotes the operation of transposition. We shall also discuss the notion of the group

(generalized) inverse A# for a real matrix A of order n× n, which is defined to be the unique X ∈ Rn×n

(if such an X exists) satisfying the equations: AXA = A; XAX = X and XA = AX . Thus, we shall also

consider the statement: A# � 0.

In trying to obtain necessary and/or sufficient conditions mimicking Theorem 1.1, our efforts nat-

urally lead to (apparently) three distinct classes of singular Q-matrices. Using these definitions, we

present our main result (Theorem 2.14). The version for the group inverse is presented in Theorem

2.18.

In the rest of the introduction, we summarize certain important properties of the two classes of

generalized inverses mentioned above, and include two preliminary results.

For A ∈ Rm×n, the symbols R(A) and N (A) stand for the range space and the null space of A,

respectively. It is well known that the Moore–Penrose A†, defined as above, exists for all matrices

A ∈ Rm×n whereas the group inverse A# need not exist. A well known equivalent condition for its

existence is the condition R(A) = R(A2) which in turn, is equivalent to N (A) = N (A2). Another
necessary and sufficient condition is that R(A) and N (A) are complementary subspaces of Rn. A

square matrix A is called range symmetric (or EP, by some authors) if it satisfies R(A) = R(AT ). A
rather well known result for a range symmetric matrix A is that the Moore–Penrose inverse and the

group inverse coincide. In particular, if A is range symmetric, then AA† = A†A. We shall be using the

following formulas repeatedly in the proofs: R(AT ) = R(A†); N (AT ) = N (A†); R(A) = R(A#);
N (A) = N (A#); If x ∈ R(AT ) then x = A†Ax and if x ∈ R(A) then x = A#Ax. We refer the reader to

the book [1] for proofs of the statements mentioned above.
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The following result is frequently used in the proofs:

Lemma 1.2. Let A ∈ Rm×n and b ∈ Rm. The system Ax = b has a solution if and only if AA†b = b. In

that case, the general solution is given by x = A†b + z for some z ∈ N (A).

We conclude this introductory section with the next result which states that if the Moore–Penrose

inverse of a singular Z-matrix (which is also a P0-matrix), is nonnegative, then the matrix is permu-

tationally similar to the direct sum of an invertible M-matrix and a zero matrix of an appropriate

order.

Theorem 1.3 [8, Theorem 3.9]. Let A be a singular nonzero Z-matrix which is also a P0-matrix. Then the

following statements are equivalent:

(i) A† � 0.

(ii) There exists a permutation matrix S such that SAST =
⎛
⎝ T O

O O

⎞
⎠ where T is a nonsingular Z-matrix.

(iii) rank A=rank A2 and A# � 0.

Furthermore, if one of above condition holds, then A† = A#.

Remarks 1.4. It is important for our purposes to observe that in the statement (ii), the matrix T is a

P-matrix. This will be used later (see the proof of the implication (b′) �⇒ (d) in Theorem 2.14).

2. Variations of Q -property

In this section, firstwepropose three variations of theQ-property, viz.,Ahas the pseudoQ-property

(Definition 2.1), A is a presumably rank deficient Q-matrix of type I (Definition 2.7) and type II (Def-

inition 2.11). Each notion is followed by two examples, one illustrating that a certain matrix satisfies

the specified property and another one not belonging to the class of matrices with that property. We

then proceed to prove themain result of this article, viz., Theorem 2.14 for the Moore–Penrose inverse

version and present a similar result in Theorem 2.18 for the case of the group inverse.

Definition 2.1. Let A ∈ Rn×n. A is said to have the pseudo Q-property if for every q ∈ R(A), LCP(A, q)
has a solution inR(AT ). More precisely, A has the pseudoQ-property if for every q ∈ R(A), there exists
x ∈ R(AT ) such that x � 0, y = Ax − q � 0 and 〈x, y〉 = 0.

Remarks 2.2. While the pseudo Q-property is neither implied by nor implies the Q-property, it is

clear that for an invertible matrix, these notions are equivalent. In the next result, we present a class

of Q-matrices that are also pseudo Q-matrices.

Theorem 2.3. Let A ∈ Rn×n be a range symmetric Q-matrix such that AA† � 0. Then A is a pseudo

Q-matrix.

Proof. Let q ∈ R(A). Since A is a Q-matrix, there exists x ∈ Rn such that x � 0, y = Ax − q � 0

and 〈x, y〉 = 0. Set w = AA†x = A†Ax. Then w � 0 and w ∈ R(AT ). Also Aw = AA†Ax = Ax so that

Aw − q = y � 0. Now, since q ∈ R(A), it follows that y ∈ R(A) so that y = AA†y = A†Ay. Thus, we

have 〈w, y〉 = 〈A†Ax, y〉 = 〈x, A†Ay〉 = 〈x, y〉 = 0. This shows that A is a pseudo Q-matrix. �

Let C =
⎛
⎝ F 0

0 G

⎞
⎠, where F and G are square matrices. It can be shown that C is not necessarily a

Q-matrix, even if F and G are Q-matrices. Worse, even when G is the zero matrix, C need not be a
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Q-matrix. However, the latter is a pseudo Q-matrix, if F is invertible, as we show next (see also the

proof of (b′) �⇒ (d) in Theorem 2.14).

Theorem 2.4. Let C =
⎛
⎝ F 0

0 0

⎞
⎠, where F ∈ Rn×n and the zero blocks are such that C is a square matrix.

If F is an invertible Q-matrix, then C is a pseudo Q-matrix.

Proof. Let q = (q1, q2)T ∈ R(C). Then q2 = 0. Since F is a Q-matrix, there exists x1 � 0 such that

y = Fx1 − q1 � 0 and 〈x1, y1〉 = 0. Set x = (x1, 0) and y = Cx− q. Then x � 0, x ∈ R(CT ) (since F is

invertible) and y = (Fx1 − q1, 0)T � 0. Also 〈x, y〉 = 〈x1, y1〉 = 0. Hence C is a pseudo Q-matrix. �

Example 2.5. Let A = (E, 0), where E is the 2n×nmatrix all of whose entries are 1, and 0 denotes the

2n×nzeromatrix. Letus showthatA isnotaQ-matrixbut is apseudoQ-matrix. First, letq∗ = (e, −e)T ,
where e denotes the row vector with n coordinates all of which are 1. Let x = (u, v)T , with u, v ∈ Rn,

be a solution of LCP(A, q∗). We then have u � 0 and v � 0. Also, Ax + q∗ = ((α + 1)e, (α − 1)e)T ,
whereα = ∑n

i=1 ui. So, the inequality 0 � Ax+q∗ implies thatα � 1. The condition 〈x, Ax+q∗〉 = 0,

reduces to (1 + α)α + (−1 + α)β = 0, where β = ∑n
i=1 vi � 0. This gives α = 0, a contradiction.

Hence A is not a Q-matrix.

On the other hand, if q ∈ R(A), then q = Ez for some z ∈ Rn so that q = γ e2n for some real

number γ . If x = (u, v)T ∈ R(AT ), then v = 0. Also, Ax + q = (α + γ )e2n, where α = ∑n
i=1 ui. The

requirements for x to be a solution now get transformed to the inequalities u � 0, α + γ � 0 and

(α + γ )α = 0. If γ < 0, then we choose u = − γ
n
e so that u � 0 and α + γ = 0. If γ � 0, then

u = 0 is a choice so that we have a solution in either case. Hence A is a pseudo Q-matrix.

Example 2.6. Let B =
⎛
⎝ E 0

−E 0

⎞
⎠, where E is the n × n matrix all of whose entries are 1 and the

zeros denote zero blocks of order n × n. Let q∗ = (e, −e)T , where e is as above. Let x = (u, v)T with

u, v ∈ Rn. Then the inequality 0 � Bx + q∗ = (Eu + e, −Eu − e)T implies that Eu = −e so that

u � 0. Thus B is not a Q-matrix. Since q∗ ∈ R(B), it follows that B is also not a pseudo Q-matrix.

Definition 2.7. Let A ∈ Rn×n with r = rank(A). Then A is called a presumably rank deficient

Q-matrix of type I, if there exists a permutation matrix S such that LCP(SAST , q) has a solution for

all q = (q1, q2)T whenever q2 ∈ Rn−r satisfies q2 � 0. Here, S may be the n × n identity matrix.

Remarks 2.8. First, observe that if A is a Q-matrix, then A is a presumably rank deficient Q-matrix

of type I. This follows from the fact that if A is a Q-matrix then for any permutation matrix S, the

matrix SAST is also a Q-matrix [6]. It is also clear that, for the same reason as above, a presumably

rank deficient Q-matrix A of type I which is also invertible, has the Q-property. Given A ∈ Rn×n, to

verify that A is a presumably rank deficient Q-matrix of type I, only in the worst case, one may have

to consider all the n! matrices of the form SAST . On the other hand, to verify that A is not in this class,

in all cases, one will have to study all the n! matrices of the form SAST . Due to this complexity, in the

next two examples we restrict our attention to 2 × 2 matrices.

Example 2.9. Let A be as given in Example 2.5 (with n = 1). Let us emphasize once again that A

is not a Q-matrix. We show that A is a presumably rank deficient Q-matrix of type I. Observe that

rank(A) = 1. We show that LCP(A, q) has a solution for all q = (q1, q2)
T , where q2 � 0. If q1 � 0,

then we choose x = 0 and if q1 < 0, then we choose x1 = −q1 and x2 = 0. It can be verified that the

vector x = (x1, x2)
T , defined as above is a solution for the given LCP(A, q).

Example 2.10. Let B be as given in Example 2.6 (with n = 1). We show that B is not a presumably

rank deficient Q-matrix of type I. Observe that rank(B) = 1. Let q∗ = (−1, 0)T . We show that
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LCP(SBST , q∗) does not have a solution when S = I or S =
⎛
⎝ 0 1

1 0

⎞
⎠. In the first case, the inequality

0 � Bx + q∗ = (x1 − 1, −x1)
T is clearly infeasible. In the second case, set C = SBST =

⎛
⎝ 0 −1

0 1

⎞
⎠.

Then 0 � Cx + q∗ = (−x2 − 1, x2)
T yields x2 � −1, so that x � 0.

Definition 2.11. Let A ∈ Rn×n. Then A is called a presumably rank deficient Q-matrix of type II, if for

some 0 	= d � 0, the problems LCP(AT , 0) and LCP(AT , d) have precisely one solution inR(A), namely

the zero solution.

Example2.12. LetA = (E, 0)be as given in Example 2.5.We show thatA is a presumably rankdeficient

Q-matrix of type II. We must show that LCP(AT , d) has only x = 0 as a solution in R(A) for some (in

fact, for all) d � 0.

First, let x be a solution of LCP(AT , d) in R(A). Then x = γ e∗ for some γ ∈ R, where e∗ =
(e, e) ∈ R2n, with e being defined as before. Let d = (r, s)T � 0 be arbitrary. Then ATx + d =
(γ e + r, γ e + s)T . Thus, r, s � 0 together with the condition that 0 = 〈x, ATx + d〉 gives rise to

the equation 2nγ 2(n + ∑n
i=1 ri) + 2nγ

∑n
i=1 si = 0, where each term (in particular, each factor)

is nonnegative. Since the second factor of the first term is positive, we conclude that γ = 0. Hence

LCP(AT , d) has only x = 0 as a solution in R(A), as was required to prove.

Example 2.13. Rather interestingly, B defined as in Example 2.6, which has been shown to be not a

pseudo Q-matrix nor a presumably rank deficient Q-matrix of type I, turns out to be a presumably

rank deficient Q-matrix of type II. We omit the details.

We are now in a position to prove the main result of this article. Inspired by Theorem 1.1, among

other things, we show that every Z-matrix A possessing the pseudo Q-property must be a presumably

rank deficient Q-matrix of type II. Also, if A is a Z-matrix having the pseudo Q-property and is a

P0-matrix, then A is a presumably rank deficient Q-matrix of type I.

Theorem 2.14. Let A ∈ Rn×n be a non-zero Z-matrix. Consider the following statements:

(a) A has the pseudo Q-property.

(b) A† � 0.

(c) There exists 0 	= q � 0 such that Aq ∈ Rn+ + N (AT ).
(d) A is a presumably rank deficient Q-matrix of type I.

(e) A is a presumably rank deficient Q-matrix of type II.

Then (a) ⇒ (b) ⇒ (c) ⇒ (e). Consider
(b′) A is a P0-matrix and A† � 0.

Then (b′) ⇒ (d).

Proof. (a) ⇒ (b): Let p � 0 and r = A†p. We must show that r � 0. By Lemma 1.2, we have

p = Ar + z, for some z ∈ N (AT ), so that q := p− z = Ar ∈ R(A). Since A has the pseudo Q-property,

there exists x ∈ R(AT ) such that

x � 0, y = Ax − q � 0 and 〈x, y〉 = 0.

We have 〈q, y〉 = 〈p, y〉 − 〈z, y〉 = 〈p, y〉, since y = Ax− q = A(x− r) ∈ R(A) and z ∈ N (AT ). Since
A is a Z-matrix, we then have

0 � 〈Ax, y〉 = 〈y + q, y〉 =‖ y ‖2 +〈p, y〉.
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Since both the terms on the extreme right are nonnegative, it follows that y = 0 and so q = Ax. Thus

r = A†p = A†(q + z) = A†(Ax + z) = x + A†z = x � 0, where we have used the fact that A†z = 0,

since N (A†) = N (AT ).
(b) ⇒ (c): Let p � 0 and q = A†p. Then q � 0. Also, p = Aq + z for some z ∈ N (AT ), by Lemma

1.2. Thus Aq = p− z ∈ Rn+ +N (AT ). Let us observe that, if necessary, we could choose p such that all

its coordinates are positive, so that 0 	= q � 0 holds (since 0 	= A† � 0).

(c) ⇒ (e): Since (c) holds, there exists q∗ � 0 such that Aq∗ ∈ Rn+ + N (AT ). We show that

LCP(AT , 0) and LCP(AT , q∗) have only zero as a solution in R(A). Let u ∈ R(A) be any solution of

LCP(AT , tq∗), t = 0 or 1. Then u � 0, v = ATu + tq∗ � 0 and 〈u, v〉 = 0. Since A is a Z-matrix, we

have 0 � 〈Av, u〉 = 〈v, ATu〉 = 〈ATu + tq∗, ATu〉 = ‖ ATu ‖2 + t〈q∗, ATu〉 = ‖ ATu ‖2 + t〈Aq∗, u〉.
Since Aq∗ ∈ Rn+ + N (AT ), u � 0 and u ∈ R(A) it follows that 〈Aq∗, u〉 � 0. It now follows that

ATu = 0. This implies that u = 0. Thus A is a presumably rank deficient Q-matrix of type II.

(b′) ⇒ (d): Let A† � 0. Since A is a Z-matrix which is also a P0-matrix, by Theorem 1.3, there exists

a permutation matrix S such that B = SAST =
⎛
⎝ T 0

0 0

⎞
⎠, where T is an invertible M-matrix, that is a

P-matrix. Let q = (q1, q2)T with q2 ∈ Rn−r, q2 � 0. We have r = rank(A) = rank(T). Since T is a

P-matrix and q1 ∈ Rr , there exists x1 ∈ Rr such that

x1 � 0, y1 = Tx1 + q1 � 0 and 〈x1, y1〉 = 0.

Set x = (x1, 0)T and y = Bx + q. Then x � 0 and y = (Tx1 + q1, q2)T � 0. Also 〈x, y〉 = 0. This

shows that A is a presumably rank deficient Q-matrix of type I. �

Remarks 2.15. Let B be as defined in Example 2.10. Then B is not a presumably rank deficientQ-matrix

of type I. Note that B is a Z-matrix and is also a P0-matrix. It can be shown that the Moore–Penrose

inverse B† = 1
2
BT � 0. Hence, the assumption that A† � 0 is indispensable in the implication

(b′) ⇒ (d).

Remarks 2.16. Let us give an alternative proof for the implication (a) ⇒ (b) in Theorem 2.14. A well

known result of Berman and Plemmons [2] (a proof is provided below) states that condition (b) is

equivalent to the statement:

Au ∈ Rn+ + N (AT ), u ∈ R(AT ) ⇒ u � 0.

We show that the statement above holds. Let q = Au ∈ Rn+ + N (AT ) and u ∈ R(AT ). By (a), since

q ∈ R(A), there exists p ∈ R(AT ) such that

p � 0, r = Ap − q � 0 and 〈p, r〉 = 0.

Since A is a Z-matrix, we have

0 � 〈Ap, r〉 = 〈r + q, r〉 =‖ r ‖2 +〈q, r〉.
Let q = q1 +q2 with q1 � 0 and q2 ∈ N (AT ). Then 〈q2, r〉 = 0, since r ∈ R(A) and 〈q, r〉 = 〈q1, r〉 �
0, since r � 0. Thus both the terms on the right in the inequality above are nonnegative. Hence, r = 0

and so Ap = q = Au so that p − u ∈ N (A). Also, p − u ∈ R(AT ) and so u = p � 0.

Next, for the sake of completeness and ready reference, we prove the result of Berman and

Plemmons, mentioned as above.

Theorem 2.17. Let A ∈ Rm×n. Then A† � 0 if and only if Au ∈ Rm+ + N (AT ), u ∈ R(AT ) ⇒ u � 0.

Proof. Let A† � 0. Let Au = v+w, v ∈ Rm+, w ∈ N (AT ) and u ∈ R(AT ). Then u = A†Au = A†v � 0,

proving one way implication. Conversely, suppose that Au ∈ Rm+ + N (AT ), u ∈ R(AT ) ⇒ u � 0.
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Let v � 0 and x = A†v. We must show that x � 0. We have v = Ax + y, y ∈ N (AT ). Thus
Ax = v − y ∈ Rm+ + N (AT ). Also, by definition, x ∈ R(AT ). Hence it follows that x � 0, completing

the proof. �

We conclude this article with an adaptation of Theorem 2.14 for the group inverse.

Theorem 2.18. Let A ∈ Rn×n be a non-zero Z-matrix. Consider the following statements:

(a) For every q ∈ R(A), the problem LCP(A, q) has a solution inR(A).
(b) Suppose that A# exists. Then A# � 0.

(c) There exists q � 0 such that ATq ∈ Rn+ + N (A).
(d) A is a presumably rank deficient Q-matrix of type I.

Then (a) ⇒ (b) ⇒ (c). Suppose now that A# exists. Consider the statement:

(b′) A is a P0-matrix and A# � 0.

Then the implication (b′) ⇒ (d) holds.
Suppose that, in addition, A is range symmetric. Consider the statement:

(e) For some 0 	= d � 0, the problems LCP(A, 0) and LCP(A, d) have precisely one solution in R(A),
namely the zero solution.

We then have the implication: (c) ⇒ (e).

Proof. The proofs for the implications (a) ⇒ (b) ⇒ (c) are similar to those in Theorem 2.14.

(b′) ⇒ (d): If A# exists, and A# � 0, then by Theorem 1.3, we have A# = A† and so the proof

follows from the corresponding implication in Theorem 2.14.

(c) ⇒ (e): Let A be range symmetric, viz.,R(A) = R(AT ). ThenN (AT ) = N (A). From (c), we then

have: There exists q∗ � 0 such that ATq∗ ∈ Rn+ +N (A), sinceN (AT ) = N (A). We claim that the only

solution of LCP(A, tq∗) for t = 0 or 1, inR(A) is the zero solution. Let u ∈ R(A) be any solution. Then

u � 0, v = Au + tq∗ � 0 and 〈u, v〉 = 0. So, as before, we have 0 � 〈Au, v〉 = ‖ Au ‖2 + t〈u, ATq∗〉.
Since ATq∗ ∈ Rn+ + N (A), u ∈ R(A) and R(A) = N (AT )⊥ = N (A)⊥ it follows that 〈u, ATq∗〉 � 0.

Thus Au = 0 and so u = 0, as we set out to prove. �

3. Conclusions

Let us reiterate the fact that themain result (Theorem2.14)wasmotivatedby a characterization the-

orem in [7] for Q-matrices in the class of Z-matrices. The framework considered in [7] was symmetric

cones in Euclidean Jordan algebras. However, we have considered variations of Q-property pertaining

only to classical linear complementarity theory. The reason that we have narrowed our attention in

this article is due to the fact that presentlywe are not aware of an analogue of Theorem1.3 (which is the

main tool in the proof of the implication (b′) �⇒ (d) in Theorem 2.14) for singular Z-transformations

even for the space of real symmetric matrices. Let us conclude by pointing out that such an extension

will be interesting in its own right.
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