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Abstract

Background: Clustering techniques are routinely used in gene expression data analysis to

organize the massive data. Clustering techniques arrange a large number of genes or assays into a

few clusters while maximizing the intra-cluster similarity and inter-cluster separation. While

clustering of genes facilitates learning the functions of un-characterized genes using their

association with known genes, clustering of assays reveals the disease stages and subtypes. Many

clustering algorithms require the user to specify the number of clusters a priori. A wrong

specification of number of clusters generally leads to either failure to detect novel clusters (disease

subtypes) or unnecessary splitting of natural clusters.

Results: We have developed a novel method to find the number of clusters in gene expression

data. Our procedure evaluates different partitions (each with different number of clusters) from

the clustering algorithm and finds the partition that best describes the data. In contrast to the

existing methods that evaluate the partitions independently, our procedure considers the dynamic

rearrangement of cluster members when a new cluster is added. Partition quality is measured based

on a new index called Net InFormation Transfer Index (NIFTI) that measures the information

change when an additional cluster is introduced. Information content of a partition increases when

clusters do not intersect and decreases if they are not clearly separated. A partition with the

highest Total Information Content (TIC) is selected as the optimal one. We illustrate our method

using four publicly available microarray datasets.

Conclusion: In all four case studies, the proposed method correctly identified the number of

clusters and performs better than other well known methods. Our method also showed invariance

to the clustering techniques.

Background
Clustering is a statistical technique that partitions a large
number of objects into a few clusters such that objects
within the same cluster are more similar to each other
than to the objects in other clusters. Clustering is widely
used in gene expression data analysis to cluster genes
and/or samples (assays) based on their similarity in
expression patterns. Since gene clusters are often

enriched with genes involving in common biological
processes, identifying such clusters discloses potential
roles of previously un-characterized genes and provides
insights into gene regulation. Similarly, clustering of
samples reveals different stages or subtypes of diseases
such as cancer leading to development of customized
diagnostic procedures and therapies.
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Despite the widespread use of clustering algorithms in
gene expression data analysis [1-6], selection of cluster-
ing parameters continues to be a challenge. In many
cases, the optimal specification of number of clusters, k,
is difficult especially if there is inadequate biological
understanding of the system [7]. A suboptimal specifica-
tion of number of clusters can generally result in
misleading results – either all classes may not be
identified or spurious classes may be generated [8].
While the correct number of clusters can be identified by
visual inspection in some cases, in most gene expression
datasets, the data dimensions are too high for effective
visualization. Hence, methods that find the optimal
number of clusters are essential.

Several methods have been proposed for finding the
number of clusters in data. The popular methods evaluate
the partition using a metric and optimize it as a function
of number of clusters. Comprehensive reviews of these
methods are available elsewhere [9-11]. Here we briefly
describe some recent methods recommended for gene
expression data analysis. Tibshirani et al. [12] proposed
the gap statistic that measures the difference between
within-cluster dispersion and its expected value under the
null hypothesis. The k that maximizes the difference is
selected. Since the gap statistic uses within-cluster sum of
squares around the cluster means to evaluate the within-
cluster dispersion, this method is suitable for compact,
well separated clusters. Dudoit and Fridlyand [13]
proposed a prediction based re-sampling method for
finding the number of clusters. For each value of k, the
original data is randomly divided into training and
testing sets. The training data is used to build a predictor
for predicting the class labels of the test set. The predicted
class labels are compared to that obtained by clustering of
test data using a similarity metric. This value is compared
to that expected under an appropriate null distribution.
The k for which the evidence of significance is the largest is
selected. Ben-Hur et al. [14] proposed a similar re-
sampling approach where two random subsets (possibly
overlapping) are selected from the data. The two random
subsets are subsequently clustered independently and the
similarity between the resulting partitions is measured.
The similarity is measured for multiple runs and its
distribution is visualized for each k. The optimal number
of clusters is selected where transition from high to low
similarity occurs in the distribution. The approach of
Dudoit and Fridlyand as well as Ben-Hur et al. assume
that the sample subset can represent the inherent
structure in the original data which may not be true for
small clusters. Furthermore, the user has to manually
locate the transition in Ben-Hur et al. approach.

Recently, Bolshakova and Azuaje [15] employed Silhou-
ette [16], Generalized Dunn's index [8], and Davies-

Bouldin index [17] on gene expression data. These
methods use the intra- and inter-clusters distances to
identify the best partition. In general, cluster validation
is easier when the underlying clusters are well separated.
But, most cluster validation methods lead to suboptimal
results when inter- and intra-cluster distances vary
largely. To illustrate this, consider the artificial dataset
in Figure 1 consisting of 600 objects in three clusters (A,
B, and C). Clusters B and C are closer to each other and
far from Cluster A. Figure 2 shows the results of
Silhouette, normalized Dunn's and normalized Davies-
Bouldin indices for this dataset. For ease of visualization,
all indices have been min-max re-scaled to [0 1]. For a
given index value Ik(k = 1,2,3, ... kmax), the re-scaled
index value is obtained as

ˆ ( )

( ) ( )
I

Ik min Ik
max Ik min Ik

k =
−

−
(1)

Silhouette, Generalized Dunn's index, and Davies-
Bouldin indices incorrectly identified only 2 clusters in
this dataset. A partition with two clusters {A} and {B ∪

C} is more favorable according to intra- and inter-cluster
distance based methods. Gene expression data contain
clusters of different sizes, shapes, and there exist smaller
clusters within the larger well-separated cluster [18].
Hence, the methods for finding number of clusters based
on intra- and inter-cluster distances do not perform well
for gene expression data (see results). This finding
motivates development of new methods that do not
rely on intra- and inter-cluster distances.
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Figure 1
Two dimensional artificial dataset with 3 inherent
clusters (A, B, and C). Clusters B and C are closer to each
other and far from Cluster A.
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In this paper, we propose a new method to find optimal
number of clusters in the data. Our approach is based on an
evolutionary view of the clustering process (Figure 3). We
start by considering the whole dataset as a single cluster and
notate it as Generation 1 (G1). In each subsequent
generation, the number of clusters, k, is incremented by
one and the data re-clustered. A generation with k clusters is
notated as Gk. The net change in the information content
due to the addition of a cluster is measured using Net
InFormation Transfer Index (NIFTI). NIFTI includes two
components – direction of information change and magni-
tude of information change – in its calculation. The direction
of change indicates whether information is gained or lost
during evolution. The magnitude indicates the extent of
change. During evolution, objects from ith cluster, Ck

i , in
the current generation, Gk, will be distributed across several
clusters in the next generation,Gk+1. The clusters inGk+1 that
receive objects from Ck

i are called as offspring of parent
cluster Ck

i . NIFTI considers this rearrangement of cluster
members when a new cluster is added for calculating the
information change. The net information change is the sum
of the information change for all parent clusters. Informa-
tion increases if offspring clusters are separable. We use a
simple but effective procedure with statistical basis to check
the separability of offspring clusters. The magnitude of
information change is calculated using information theory.
This evolutionary procedure is carried out for a predefined
number of generations (Gmax). The Total Information
Content, TIC, of a partition is defined as the cumulative

information gained till that generation. A partition with the
highest TIC is selected as the best partition.While testing for
separability of clusters, NIFTI does not give weightage for
largely separated clusters or penalize marginally separated
clusters, thus eliminates the problems associates with
varying inter-cluster distances.

Results
Four publicly available microarray datasets are used to
illustrate the performance of the proposed approach. The
first two datasets are time-course datasets. In time-course
datasets, genes are clustered based on their similarity in
expression patterns. The other two datasets contain data
from different samples.

Two different clustering techniques, namely k-means and
model-based, are used for generating partition with
different number of clusters. The distance metrics used
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Figure 2
Cluster validation results for the artificial dataset in
Figure 1. All three indices, Silhouette (dash line), Dunn's
(dot line), and Davies-Bouldin (dash-dot line) incorrectly
predict 2 clusters although the underlying data can be seen to
have 3 clusters (* indicates the optimal number of clusters
predicted by specific index).

Figure 3
Proposed cluster validation procedure. The procedure
starts with unclustered data (G1). In each subsequent
generation, an additional cluster is added and the data
reclustered. The Net InFormation Transfer calculated based
on the evolution of objects during the generation. This
procedure is carried out for a predefined number of
generations (Gmax). Finally the partition with highest total
information is selected as the optimal partition.
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for clustering are the same as those used by the data
publishers i.e Pearson coefficient for first, third, and
fourth case studies and standard correlation coefficient
for the second dataset. In all the case studies, the
maximumnumber of generations,Gmax is selected as [19]:

G Nmax ≤ (2)

where N is the number of objects to be clustered.

Case Study 1 : Yeast cell-cycle data

The Yeast cell-cycle dataset was generated by Cho et al.
[20]. Oligonucleotide microarrays were used to monitor
the expression levels of all known and predicted Yeast
genes during two cell-cycles. Expression levels were
measured at 17 time points with a time period of 10
min. The aim of this experiment was to identify the cell-
cycle controlled genes in Yeast. Cho et al. visually
observed the highly variant genes for consistent periodi-
city during the cell-cycle and identified 384 genes. These
384 genes were classified into five classes – early G1, late
G1, S, G2, and M phases – based on their peak
expression. Since the number of clusters is known for
this dataset, the 384 cell-cycle genes are used to validate
the proposed method.

The proposed method, NIFTI, correctly identifies five
clusters in this dataset using k-means method (Figure 4).
For comparison, the results for Silhouette, Dunn's, and
Davies-Bouldin indices are shown in Figure 4. All three
indices predict 4 clusters in this data. The reason is as

follows. At k = 4, genes from S and G2 phases are
combined into one cluster while those from Early G1,
Late G1, and M phases are clustered correctly. These four
clusters are well-separated. When the number of clusters
is increased to 5, while S and G2 clusters are identified
correctly, the inter-cluster distance is small. The three
methods therefore identify the partition with four
clusters as optimal. In contrast to these distance based
methods, the proposed method gives no weightage for
larger inter-cluster distances and correctly identifies 5
clusters.

The five clusters identified by k-means clustering
correspond to the five phases of cell-cycle – early G1,
late G1, S, G2, and M phases. For example, cluster 1
contains the cell-cycle regulated genes including PCL9,
SIC1 and DNA replication genes CDC6 and CDC46 that
are classified into early G1 by cho et al. [20]. The mean
expression profile of this cluster shows single peak
during the early stage of G1 (Figure 5). Similarly, other
clusters are also enriched with genes that are classified
into one of the reported clusters and their mean
expression profiles peak during the corresponding stages
(Figure 5).
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Figure 4
Results for Yeast cell-cycle dataset using k-means
clustering. NIFTI (solid line) correctly finds 5 clusters in
this dataset. Silhouette (dash line), Dunn's (dot line), and
Davies-Bouldin (dash-dot line) indices predict only 4 clusters.
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Figure 5
Mean expression levels of Yeast cell-cycle clusters.
Solid line represents the mean expression profile of clusters
reported by [20] and dash line corresponds to the optimal
clusters from NIFTI. A strong similarity between the two can
be observed.
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However, some of the genes especially S phase genes are
found to be 'mis-classified' by k-means clustering
algorithm. To understand the discrepancy, we used
Principal Component Analysis and plotted the scores
with the first two dominant Principal Components
(Figure 6). From Figure 6, it is clear that some of the
genes from reported classes, especially S phase genes, are
distributed to other classes. The k-means algorithm put
those genes in appropriate classes which explains the
mismatch between the reported and k-means partitions
[see additional file 1].

Results for this dataset using model-based clustering are
shown in Figure 7. NIFTI correctly identifies 5 clusters
using model-based clustering as well. Since the 'true'
(reported) partition is available for this dataset, we
compare the clustering results using k-means and model-
based clustering with reported partition using Jaccard
Coefficient (JC) which measures the similarity between
two partitions. Let C be the partition from the clustering
algorithm and P be the reported solution. The JC
measures the extent to which C matches with P

JC
n

n n n
=

+ +
11

11 10 01
(3)

where n11 is the number of pairs of objects that are in the
same cluster in both C and P, n10 is the number of pairs
of objects that are in the same cluster in C but not in P,
and n01 is the number of pairs of objects that are in the
same cluster in P but not in C. JC takes a value between 0
(complete mismatch) and 1 (perfect match). The better
the agreement between identified and the 'true' solution,
the higher the value of JC. Figure 8 shows the JC for Yeast

cell-cycle five phase criterion data as a function of
number of clusters using k-means and model-based
algorithm. The JC takes a maximum value of 0.445 at
k = 5 indicating that in the given range of k the extracted
partition best matches with the reported one. This clearly
shows that the 5 clusters identified using proposed
method are correct.

Case Study 2 : Serum data

The Serum gene expression dataset is reported by Iyer et
al. [21]. In this study, the response of human fibroblasts
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Figure 6
Scores plot of Yeast cell-cycle dataset. The first two
PCs capture 65% variance.
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Figure 7
Results for Yeast cell-cycle dataset using model-based
clustering. NIFTI correctly finds 5 clusters in this dataset.
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Jaccard Coefficient for Yeast cell-cycle dataset. The JC
has a maximum at k = 5 indicating that there are 5 clusters.
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to serum was measured using microarrays containing
around 8000 probes. Iyer et al. employed filtering
techniques and shortlisted 517 most variant genes.
They used hierarchical clustering and identified 10
clusters in this dataset using visualization tools. We use
these 517 genes in this case study.

NIFTI identifies 6 clusters in this dataset using k-means
clustering (Figure 9). This result is supported by an other
independent study using a graph-theoretical clustering
algorithm [6]. The Silhouette, Dunn's and Davies-
Bouldin indices identify only 2 clusters in the dataset
(Figure 9). This dataset is more complex than the
previous one. It contains two large clusters – one with
up-regulated genes and another with down-regulated
genes. All the other clusters are embedded in these large
clusters. The ratio of difference between the intra- and
inter-clusters distances is highest at k = 2. So any distance
based method will generally identify only two clusters in
this dataset. Multiple peaks were observed for NIFTI
index for this dataset with the highest peak at k = 9 when
model-based clustering is used for generation partitions
(Figure 10). However, the Jaccard Coefficient between
the partitions from model-based clustering and the
reported partition has the highest value at k = 6 (Figure 11)
indicating 6 clusters in this dataset.

In the next two case studies, the datasets contain gene
expression data from different cancer samples. In these
datasets, samples are clustered based on their similarity
in expression patterns. Model-based clustering is not

suitable for these datasets as it uses covariance matrix in
its computation. The estimation of covariance matrix is
inaccurate for sample clustering as the number of
samples in each cluster are very small. So results are
given for only k-means clustering.

Case Study 3 : Lymphoma data

The lymphoma dataset was reported by Alizadeh et al.
[22]. In this experiment, cDNA microarrays were used to
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Figure 9
Results for Serum dataset using k-means clustering.
NIFTI (solid line) predicts 6 clusters. Silhouette (dash line),
Dunn's (dot line), and Davies-Bouldin (dash-dot line)
estimate only 2 clusters.
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Figure 10
Results for Serum dataset using model-based
clustering. NIFTI index has multiple peaks with a maximum
peak ak k = 9. However, the Jaccard coefficient between the
partition from model-based clustering and expert partition
has maximum at k = 6 (Figure 11).
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Jaccard Coefficient for Serum dataset. The Jaccard
Coefficient for Serum dataset has maximum at number of
clusters k = 6 indicating that identifying 6 clusters is correct.
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characterize gene expression patterns in adult lymphoid
malignancies. After filtering, the final data contain 4026
genes whose expression levels were measured using 96
arrays. The dataset comprises samples from three
prevalent adult lymphoid malignancies – Diffuse Large
B-cell Lymphoma (DLBCL), Follicular Lymphoma (FL),
and Chronic Lymphocytic lymphoma (CLL). For com-
parison, the normal lymphocyte subpopulation under a
variety of conditions is also included. The objective of
the study was to identify if the presence of malignancy
and its type can be identified from gene expression
patterns. Alizadeh et al. used hierarchical clustering for
clustering the samples and identified two distinct
subtypes of DLBCL-Germinal Center B-like DLBCL and
Activated B-like DLBCL.

NIFTI finds 4 clusters in this dataset using k-means
clustering algorithm with Pearson correlation as the
distance measure (Figure 12). Not surprisingly, these
four clusters correspond to the four distinct branches of
the dendrogram reported in [22]. Two of these clusters
contain the samples from two subtypes of DLBCL
namely germinal center B-like DLBCL and activated B-
like DLBCL. The third cluster contains all FL and CLL
samples along with the resting blood samples. Most of
the cell-cycle control genes, checkpoint genes and DNA
synthesis genes that are defined as 'proliferation signa-
ture' by [22] are under expressed in these samples. This
makes these samples distinct from DLBCL samples in
which the proliferation signature genes are up-regulated.
The fourth cluster comprises the remaining normal

lymphocyte subpopulation under different activation
conditions. However, the transformed cell line samples
which are grouped with other normal sub-populations
by [22] are clustered with DLBCL samples by k-means.
The over-expression of proliferation signature genes in
these samples might be the reason that they appear
'closer' to DLBCL samples to k-means. Nevertheless, k-
means clustering correctly clustered two out of the three
DLBCL samples that were incorrectly clustered by the
hierarchical clustering.

The Silhouette, Dunn's and Davies-Bouldin indices for
this dataset are also shown in Figure 12. The Silhouette
index estimates only 2 clusters and Dunn's index predicts
3. The lowest value of Davies-Bouldin index occurred at
k = 10 in the range of k values tested (it continued to
decrease further with increase of k). However, Davies-
Bouldin index has a local minima at k = 4 indicating four
clusters in this dataset. At k = 2, all DLBCL samples are
grouped into one cluster and all other samples (FL, CLL,
and normal) are lumped into other. At k = 3, the latter is
split and normal samples are identified as the third
cluster. This indicates that at k = 2 and k = 3 subclasses of
DLBCL cannot be identified. Only at k = 4, the two
subclasses of DLBCL are identified. This clearly shows
the usefulness of proposed method to identify correct
number of clusters that aids discovering novel sub-types
of diseases.

Case Study 4 : Pancreas data

The Pancreas dataset used in this study was reported by
[23]. In this study, cDNA microarrays were used to
analyze gene expression patterns in 14 pancreatic cell
lines, 17 resected infiltrating pancreatic cancer tissues
(two sub types), and 5 normal pancreases. The final
filtered dataset consists of 1493 genes and 36 samples.

As shown in Figure 13, Silhouette, Dunn's, and Davies-
Bouldin indices estimate 2 clusters for this dataset. A
partition with two clusters lumps together the normal
and pancreatic cancer tissues into a single cluster. The
second cluster contains all the pancreatic cancer cell
lines. NIFTI estimates four clusters in this data. A
partition with four clusters describes this data well: all
cancer cell line samples are accurately placed in one
cluster, all normal samples are grouped together, and
two different cancer tissues are well separated into two
clusters. Only one sample was found to be mis-clustered.
This partition with four clusters also exactly matches the
dendrogram reported in [23].

Discussion and Conclusion
The use of clustering techniques in gene expression data
analysis is increasing rapidly. To obtain the best results
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Figure 12
Results for Lymphoma dataset. NIFTI (solid line) finds 4
clusters in this dataset. Silhouette (dash line) identifies 2
clusters. Dunn's (dot line) predicts 3 clusters. Davies-Bouldin
(dash-dot line) predicts 4 clusters.
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from these clustering techniques, optimal specification
of the number of clusters is essential. Hence, methods
that automatically identify the number of clusters in
high-dimensional gene expression data have been
proposed. Methods for finding the number of clusters
in a dataset can be classified as global or local methods
[24]. Global methods evaluate clustering results by
calculating some measure over the entire dataset whereas
local methods consider pairs of clusters and test whether
they should be amalgamated. The disadvantage of the
global methods is that there is no definition for the
measure for k = 1, i.e., the global methods do not provide
any clue whether the data should be clustered or not.
Since local methods consider pairs of clusters, they can
be used to decide if data should be clustered. The
disadvantage of local methods is that they need a
threshold value or significance level to decide whether
the clusters should be amalgamated. The proposed
approach combines both local and global approaches.
At the local level, offspring clusters are checked for
overlap and this information is converted into a global
index.

The well-known methods for finding the number of
clusters use within-cluster dispersion and/or inter-cluster
distances. These 'distance' based methods are generally
suitable when clusters are compact and well-separated
but fail when sub-clusters exist. Our approach overcomes
this limitation by giving no extra weightage for larger
inter-cluster distances. In our approach, clusters lose or
gain information based on intersection with other

clusters. The actual distance between the clusters is not
taken into consideration. Furthermore, the cumulative
way of measuring information content of a partition
ensures that information increase as long as a non-
intersecting cluster can be identified.

We have compared the performance NIFTI with four
other methods – Silhouette, Dunn's, Davies-Bouldin,
and Gap statistic – in terms of percentage of correct
prediction of actual number of clusters in artificial
datasets. The synthetic datasets are generated with
number of dimensions d = 2, 3 and 5 and number of
clusters k = 3, 5, and 8. For each combination of d and k,
100 artificial datasets are generated and k-means
clustering is used for generation of partitions. The results
are given in additional file 2. For a given d, the
performance of Silhouette, Dunns and Davies-Bouldin
indices decreased significantly with increasing k. For
example, for 2-dimensional datasets, the percentage
success of these methods dropped from 70% to 20% as
k increased from 2 to 8. This is mainly due to decrease in
inter-cluster distance with increase in number of clusters.
Similar trend of decreasing performance is observed with
Gap statistic as well. Also, its performance is very poor
(< 20%) with large number of clusters. In all the case
studies, NIFTI performed better compared to the other
methods. The performance of NIFTI is largely indepen-
dent of the number of clusters and number of dimen-
sions. This study clearly indicates the efficacy of NIFTI in
predicting the number of clusters in data.

However, the proposed method has a limitation. It
models clusters as hyper-spheres. Even though modeling
clusters as hyper-spheres simplifies the task of finding
cluster intersections, it may lead to incorrect results in
case the clusters do not have a spherical shape. Never-
theless, this procedure consistently identified the 'cor-
rect' number of clusters suggesting, in part, the spherical
shape of gene clusters. An independent study also
reported that normalization techniques used in gene
expression data analysis make the clusters spherical [4].

In this paper, the proposed method is evaluated using
k-means clustering algorithm with Pearson correlation as
distance measure for the Yeast cell-cycle and lymphoma
datasets. The standard correlation coefficient (dot
product of normalized vectors) is used for the Serum
dataset. These two measures are bounded: the minimum
and maximum distances are 0 and 2 respectively. On the
other hand metrics such as Euclidian distance and
Manhattan distance are unbounded. Hence, the affect
of outliers will be high while estimating the cluster radii.
This may lead to incorrect estimation of number of
clusters. This can be overcome by suitable normalizing
the data or selecting other ways to find cluster radius that
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Figure 13
Results for Pancreas dataset. NIFTI (solid line) finds 4
clusters in this dataset. Silhouette (dash line), Dunn's (dot
line), and Davies-Bouldin (dash-dot line) indices predict only
2 clusters.
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are less sensitive to outliers. Further study using various
distance metrics and clustering techniques is needed to
further evaluate the method.

Generally computational time is an important issue in
determining the number of clusters. In this study, we
used 100 replicates of k-means algorithm for all datasets.
The time required for finding number of clusters is less
than 10 minutes for all datasets on a Pentium 4 with 2.8
GHz processor.

Methods
Let ZNxm be the dataset to be clustered containing N
objects on which m features are measured. In gene
expression data analysis, N is number of genes and m is
number of assays. We use a clustering algorithm to
generate a series of partitions from G1 through Gmax with
an increment of one cluster in each generation. The
migration of the objects during evolution from parent
clusters in Gk to their offspring in Gk+1 forms the basis for
evaluating the quality of partition in Gk+1. Consider the
migration of objects among clusters during evolution
from Gk to Gk+1 shown in Figure 14. Three scenarios are
possible during evolution:

1. All objects in Ck
i may continue to be clustered

together as a single cluster in Gk+1. We call this
phenomenon as cluster conservation. Example: The cluster

Ck
1 is conserved as Ck+1

1 with all objects intact.

2. Most members of Ck
i may stay together as a single

cluster in Gk+1, but a few escape to other clusters. This
phenomenon is termed as cluster leakage. Example: Out
of 400 objects in cluster Ck

2 most stay together in Ck+1
2 ,

15 leak to Ck+1
3 .

3. Members of Ck
i migrate to a small number ≥ 2 of

clusters in Gk+1 such that each recipient cluster receives a
significant fraction of objects. This is called as cluster
disassociation. Example: Cluster Ck

3 disassociates to Ck+1
3

and Ck+1
4 .

During evolution from Gk to Gk+1, some clusters are
conserved, some disassociated, and others undergo
leakage. The quality of the partition is measured in
terms information transferred from Gk to Gk+1 using the
Net InFormation Transfer Index (NIFTI). The TIC of
partition is calculated for each generation as the sum of
cumulative information transferred till that generation.
The partition with the largest TIC is selected as the
optimal one. The TIC for a partition at (k + 1)th

generation is given by:

TIC TIC NIFTIk k G Gk k+ →= +
+1 1

(4)

where TIC1 = 0.

The optimal number of clusters is given by:

k TICoptimal
k k

k

max

=
≤ ≤

arg max
1

(5)

Net InFormation Transfer Index (NIFTI)

The Net InFormation Transfer Index during evolution
from Gk to Gk+1 is defined as the sum of the information
changes of all parent clusters weighted by the fraction of
total objects they contain.

NIFTI
N

k
i

N
gG G k

i

i

k

k k→ +
= ×∑1

(6)

where N k
i is the number of objects in ith parent cluster

and g k
i is its change in information as it evolves from Gk

to Gk+1. Equation 6 is similar to the one used by Li et al.
[25] for calculating the information content of a
partition.

The change in information of a parent cluster Ck
i is

given by:

g D Mk
i

k
i

k
i= × (7)

Dk
i is the direction (gain or loss) and Mk

i the
magnitude of information change arising from ith parent
cluster.

The objective of clustering is to identify clusters where
objects within a cluster are more similar to each other
compared to objects within other clusters. Geometri-
cally, this means that clusters should be distant and
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Figure 14
Behavior of cluster members during evolution. A few
clusters in Gk continue as single clusters in Gk+1 while others
disassociate or undergo leakage.
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separable from each other in the m dimensional feature
space. Here, we propose a statistical test to check whether
offspring clusters are separable or not. If the offspring of
parent cluster are separable from other sibling, informa-
tion is deemed to have been gained during transfer and

Dk
i takes +1. In contrast, if offspring are not separable,

information is deemed to be lost during transfer and Dk
i

is -1. In contrast to other methods, the NIFTI is not
weighted as per the inter- and intra-cluster distances.

The magnitude of information change, Mk
i , is calculated

using Shannon entropy given by:

M p pk
i

k
ij

k
ij

j

r

= −
=

∑ ln

1

(8)

where r is the number of offspring and pij (j = 1,2, ..., r) is
the fraction of objects that jth offspring inherits.

As described before, during evolution from Gk to Gk+1,
some clusters are conserved, some disassociated, and
others undergo leakage. Consequently Mk

i is 0 for
conservation, small for leakage, and large for cluster
disassociation. Offspring clusters are tested using a
separability test and NIFTI increases if they are separable
and decreases otherwise. We propose a simple but
effective test for separability of clusters. The cluster
separability test is described below.

Test for separability of offspring

Though a parent cluster can result in many offspring, in
practice it is observed that most members of a parent
cluster migrate to a few proximal offspring. This is not a
surprise since only one additional cluster is added at
each step. Therefore, the incremental reorganization that
takes place during evolution is minimal. We term those
offspring which inherit large fractions of objects from a
parent as the dominant offspring. The information
transferred for a parent cluster can be approximated by
considering only the dominant offspring. The informa-
tion change arising from the other offspring (non-
dominated) is very small and can be neglected. Hence,
r in Equation 8 is set to 2 for all parent clusters.

Let X and Y be the two dominant offspring of a parent
cluster given by:

X p
j

ij= arg max (9)

Y p
j X

ij=
≠

arg max (10)

where pij is the fraction of objects migrated from ith

parent cluster, Ck
i to the jth offspring cluster, Ck

j
+1
.

We use inter- and intra-cluster distances to identify
whether X and Y are separable or not. X and Y are said to
be separable if the distance between their centroid, δXY, is
larger than the sum of their radii (∆X and ∆Y). A variety
of methods can be used to measure the cluster radius [8].
Here, the mean distance between the cluster centroid to
all members of that cluster is used for this purpose.

Radius of cluster X:

∆ X X

x X
X

d x v=
∈
∑1

| |
( , ) (11)

where |X| is the number of objects in X, x represents the
object in cluster X, d is the distance metric used for
clustering, and v X the centroid of the cluster. Similarly
the radius of cluster Y is given by:

∆Y Y

x Y
Y

d x v=
∈
∑1

| |
( , ) (12)

The centroid distance between X and Y is the distance
between their centroids given as:

d XY X Yd v v= ( , ) (13)

Hence, the separability of offspring of Ck
i notated as Dk

i

is given by:

D
if

if
k
i XY X Y

XY X Y

=
+ ≥ +

− < +





1

1

d

d

( )

( )

∆ ∆

∆ ∆
(14)

Geometrically, the proposed procedure for finding the
separability of clusters is equal to modeling each
offspring clusters as a hyper-spheres with radii (∆X and
∆Y)and check whether the hyper-spheres overlap. Statis-
tically, this procedure is a hypothesis test with the
following null and alternative hypotheses:

H0 = Offspring clusters are part of single cluster

H1 = Offspring clusters are not part of single cluster (i.e.
different clusters)

The equations for hypothesis testing are derived con-
sidering the situation where a single cluster is artificially
broken into two clusters. Let us consider a single cluster
C containing n objects. Assume that the data is drawn
from Gaussian distribution with mean μ and covariance
matrix Σ. Without loss of generality, we can assume that
the mean is at origin and covariance matrix has only
diagonal elements and off-diagonal elements are all zero
(if the original covariance matrix contains non-zero off
diagonal elements it can be converted to diagonal matrix
by principal axis rotation). Suppose, now that we

BMC Bioinformatics 2009, 10:40 http://www.biomedcentral.com/1471-2105/10/40

Page 10 of 13

(page number not for citation purposes)



partition C into two clusters (offspring), we can reject the
null hypothesis using the distribution functions of both
centroid distance and radii of offspring clusters. There
are two cases:

1. Same variance in all dimensions i.e.

Σ =

s

s

s

1
2

2
2

2

0 0

0 0

0 0

…

…
…

… m

and s s s1
2

2
2 2= = =… m

.

2. The s2is of Σ are different.

We derive the equations for proposed test of separability
of offspring for case 1 and show how it can be extended
to case 2.

Case 1

Geometrically, this means that the cluster of objects form
a spheroid in m-dimensional space. Application of any
clustering algorithm to partition this cluster into two
offspring results in optimal (based on the objective
function used for clustering) partition. If we know the
analytical solution for that optimal partitioning, we
could determine the distribution functions for centroid
distance and radii of clusters. Lacking the analytical
solution for the optimal partitioning, we cannot derive
the actual sampling distributions. However, approximate
estimates can be obtained by considering the suboptimal
partition provided by a hyperplane through the centroid
of parent cluster [26]. This hyperplane approximation is
schematically described in Figure 15 for two dimen-
sional data. The data contains 1000 samples drawn from
2 dimensional Gaussian distribution with mean at origin
and covariance matrix [1 0;0 1]. k-means clustering
algorithm is used to generate the two partitions.

Because of the hyperplane, the centroids for individual
offspring clusters will be same as centroid of original
parent cluster except in one dimension (the dimension ⊥

to hyperplane). Let the dimension ⊥ to hyperplane is
denoted as f. Then f follows half-normal distribution
with mean 2 /ps (Figure 15). So, the centroid
distance between the two offspring is 2 2 /ps . Con-
sidering the sample size, n, the squared centroid distance
between the two offspring cluster follows Gaussian
distribution with mean as ((n-1)/n)8/πs2 and variance
2((n-1)/n2)(64/π2)s4. The squared radius of cluster ∆

2

also follows a Gaussian distribution with mean ((m-2)/
π)s2 and variance 4((m- 8)/π2)s4 [26].

Now consider the Equation 14 for testing the separability
of offspring clusters.

δXY ≥ (∆X + ∆Y) (15)

Squaring both sides

d XY X Y
2 2≥ +( )∆ ∆ (16)

Since the clusters are separated by a hyperplane passing
through the origin, the two offspring clusters approxi-
mately contain same number of samples and hence (∆X ≈

∆Y = ∆).

Hence the test of separability of offspring clusters
reduces to

δ
2
≥ 4 × ∆

2 (17)

where the subscripts X and Y have been removed for
convenience. Hence, the offspring clusters are deemed to
be separable if

h ≥ 0 (18)

where h = δ
2 - 4 × ∆

2

Using the distributions for δ
2 and ∆

2 derived above the
distribution for above equations can be obtained. This
distribution refers to the null distribution for the
proposed hypothesis test as this derivation is through
artificial portioning of a single cluster. Hence, the null
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Figure 15
Artificial partitioning of natural cluster. A single natural
cluster drawn from Gaussian distribution with mean at origin
and identity covariance matrix. k-means clustering partitions
this single cluster into two clusters separated by hyperplane.
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hypothesis can be rejected considering the distribution
of above equation. Since, both δ

2 and ∆
2 follows

Gaussian distribution, h follows a Gaussian distribution

with mean as 4 4
1

4
2( )

( / )
n

m
− −p s and variance

2 64
2

8 8 2 4

n
m

p

p s+ −( )





/ .

The false discovery rate for rejecting the single cluster
hypothesis can be calculated using the distribution of h.
The false discovery rate is the probability of h > 0. The
false discovery rate indicates the probability that a
offspring of a single parent cluster are incorrectly deemed
as two separable clusters. Table 1 shows the false
discovery rate for different sample sizes, n, and number
of dimensions, m. The values given in parenthesis are the
false discovery rates obtained by computational study
with 1000 datasets with mean at origin and s

2 = 2. The
false discovery rates are very low even for small samples
sizes. It clearly shows that the proposed cluster separ-
ability test able to correctly identify the artificial break of
natural clusters. When a natural clusters is artificially
broken, NIFTI decreases. So, selecting a partition with
highest NIFTI gives number of natural clusters in the
data.

Case 2

Geometrically this means that the cluster form a
ellipsoid in m-dimensional space. An Analytical
solution is difficult for this case. However, it is
possible to show that δ2 - 4∆2

≥ 0 for many situations.
Assuming that the hyperplane separating the two off-
spring cluster is ⊥ to the dimension of largest variance,
the δ

2 is given by: 8 2/psmax
. Similarly, ∆

2 is given

s p si maxi i j

m 2 2

1
1 2+ −

= ≠∑ ( / )
,

where j corresponds to the

dimension of largest variance. Hence, the separability

test δ
2-4∆2 is given by: 4 4 12 2

1
s p smax ii i j

m
[ / ]

,
− −

= ≠∑ .

This means the artificial partition of single cluster is
detected by proposed separability criteria whenever the
sum of variances in all directions (except the variance of
largest direction) has value at least 0.275 × smax

2 . Since
this criteria is satisfied in most of the cases, the proposed
test for separability works well even in this case. To check
the performance of proposed separability test, we

generated 1000 random datasets with 1000 samples
each in 3-dimensional space with the largest variance as

smax
2 = 3 and other variances are 0.75. In all the datasets

the proposed method correctly identified the partition of
a single cluster.
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