New Parallel Algorithms for Direct Solution of

Sparse Linear Systems

A Thesis
Submitted by

G. Kartik

for the award of the degree

of
MASTER OF SCIENCE
(by Research)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.
July 1996

THESIS CERTIFICATE

This is to certify that the thesis titled New Parallel Algorithms for Direct
Solution of Sparse Linear Systems, submitted by G. Kartik, to the Indian In-
stitute of Technology, Madras, for the award of the degree of Master of Science by
Research, is a bonafide record of the research work done by him under my supervision.
The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Place: Madras 600 036. [C. Siva Ram Murthy]
Date:

Acknowledgements

First and foremost, I would like to express gratitude to my guide Dr. C. Siva Ram
Murthy, whose constant guidance has been the principal moving force behind my thesis
work. It is the outcome of his gentle encouragement, invaluable feedbacks, and the
countless hours he spent going through the drafts, that this thesis has materialized in
the present form. His perseverance and his ability to always keep the larger picture in

view without compromising on the finer details are qualities worth being emulated.

I would like to thank the Head of the Department, the department office and the
department library for providing all the help when required. I would like to express
special thanks to Dr. P. Sreenivasa Kumar who spent time with me discussing impor-
tant aspects of my work. I would also like to thank Dr. V. V. Rao for providing me
with useful tips and suggestions during GTC meetings.

This work was supported by Indian National Science Academy and the Department
of Science and Technology.

It is hard to work alone without company. The company of my PDC lab mates
went a long way in filling that void. Balu, who spent so many hours discussing my
work and suggesting new ideas, in spite of his busy schedule, was a constant source of
encouragement to me. It was indeed a pleasure to work with Bhuvana, Manimaran,
Santosh, Sudhakar and Tom. The help given by Godbole and Murthy in running my
simulation programs have proved invaluable.

Then, of course, it is imperative that I mention all those MS-ites, (both chai and
non-chai types), from Tapti, Brahms, and Ganga whose friendship T will remember
forever. There was never a dull moment during my stay in Cauvery, thanks to the
excellent company of my numerous friends, who are too many to mention individually.

It is difficult to express in words, all the support and encouragement I received

from my family members. 1 derive strength from their love and affection.

Abstract

The problem of solving large sparse systems of linear equations of the form (Ax = b)
- i.e. systems of linear equations in which majority of coefficients (Al j|) are zero -
arise in various applications such as finite element analysis, computational fluid dy-
namics, and power systems analysis. The techniques for solving sparse linear systems
involve more complex data structures and algorithms than their dense counterparts.
We have developed new parallel algorithms for solution of three classes of sparse linear
systems - (i) block tridiagonal linear systems, (ii) sparse symmetric linear systems,
and (iii) general sparse linear systems. For the solution of block tridiagonal system
of linear equations, we propose a new mapping of the Cyclic Elimination (CE) algo-
rithm onto hypercube multiprocessors. Unlike the previous mapping schemes, in our
mapping of the CE algorithm, all communications are restricted to physically adjacent
processors, using the concept of data replication. For the solution of sparse symmetric
linear systems, we propose a new bidirectional algorithm, based on Cholesky factoriza-
tion. Unlike the regular algorithm based on Cholesky factorization, in our algorithm,
the numerical factorization phase is carried out in such a manner that the entire back
substitution component of the substitution phase is replaced by a single step division.
On similar lines, for the solution of general sparse system of linear equations, we pro-
pose a new bidirectional algorithm, based on LU factorization. As with the sparse
symmetric case, the substitution phase of our algorithm does not have a back substitu-
tion component. However, due to absence of symmetry, important differences arise in
the ordering technique, the symbolic factorization phase, and message passing during
numerical factorization phase. Extensive simulations, comparing the two bidirectional
algorithms with their corresponding existing algorithms indicate that, when solving
for multiple b-vectors, the speedups obtained from these two bidirectional algorithm-
s steadily overtake those obtained from the corresponding regular algorithms, as the

number of b-vectors for which the system is solved increases.

Contents

Acknowledgements i
Abstract ii
List of Figures vi
List of Tables ix
1 Introduction 1
1.1 Multiprocessing Systems and Parallel Algorithms 1
1.2 Key Issues in Design of Parallel Algorithms. 2
1.3 Statement of the Problem 2
1.4 Brief Survey of Relevant Work 4
1.5 Contribution of the Thesis D
1.6 Organization of the Thesis 6

2 Solving Block Tridiagonal Linear Systems on Hypercube Multipro-
cessors 7
2.1 Introductiono 7
2.2 Problem Statement and Notations 9
2.3 Solving Block Tridiagonal Linear Systems 10
2.3.1 Sequential Block Gaussian Elimination (BGE) 10
2.3.2 The Basic Elimination Step 11
2.3.3 The Block Cyclic Reduction Algorithm (CR) 12
2.3.4 The Block Cyclic Elimination Algorithm (CE) 13

2.4 Solving Block Tridiagonal Linear Systems on Hypercubes 15

2.5
2.6

2.4.1 Comparison of Three Schemes 15

2.4.2 Definitions L 23
2.4.3 Our Improved Mapping of CE onto Hypercubes 25
2.4.4 Analytical Performance Studies 28
Experimental Results 00000 32
Conclusions L 39

3 A New Algorithm for Direct Solution of Sparse Symmetric Linear

Systems 40
3.1 Introduction 40
3.2 The Bidirectional Sparse Cholesky Factorization (BSCF) Algorithm . . 41

3.2.1 Bidirectional Cholesky Factorization - The Concept 42
3.2.2 Exploiting the Sparsity of the Coefficient Matrix A 44
3.2.3 Implementing the BSCF Algorithm on Multiprocessors 45
3.3 The Substitution Phase 0oL 54
3.3.1 Bidirectional Substitution Algorithm - The Concept 54
3.3.2 Increasing Parallelism by Exploiting Sparsity o6
3.4 Ordering the Sparse Symmetric Matrix for Bidirectional Factorization . 59
3.5 The Bidirectional Symbolic Factorization Algorithm 66
3.6 Experimental Results and Performance Analysis 73
3.7 Conclusions 79

4 A New Algorithm for Direct Solution of General Sparse Linear Sys-

tems
4.1
4.2

4.3

81
Introduction 81
The Bidirectional Sparse Factorization (BSF) Algorithm 83
4.2.1 Bidirectional Factorization - The Concept 83
4.2.2 Exploiting the Sparsity of the Coefficient Matrix A 83
4.2.3 Implementing the BSF Algorithm on Multiprocessors 84
Ordering the General Sparse Matrix for Bidirectional Factorization . . 88

v

4.4 The Bidirectional Symbolic Factorization Algorithm 90

4.5 Experimental Results and Performance Analysis 92
4.6 Conclusions e 99
5 Conclusions 100
5.1 Summary 100
5.2 Suggestions for Future Work 102
Bibliography 103

List

2.1
2.2
2.3
2.4

2.5
2.6

2.7
2.7
2.8
2.9
2.10
2.11

2.12

2.13

3.1
3.2

of Figures

()

An 8 x 8 block tridiagonal system and listing of row,;’ at various stages 10

Elimination and back substitution pattern in CR algorithm for N=8 . 13
Elimination pattern in CE algorithm for N=8 14
Progression of the CR algorithm with the existing mapping for N=16

and p=4 . . . 17

Progression of the CE algorithm with existing mapping for N=16 and
P=4 e 19

Progression of the CE algorithm with improved mapping for N=16 and

P=4 e 21
(a) Progression of our algorithm on hypercube for N=16 and p=8 . .. 29
(b) Progression of our algorithm on hypercube for N=16 and p=8 . . . 30

Speedups obtained for our algorithm versus CR algorithm for N=512 and n=1 33

Speedups obtained for our algorithm versus CR algorithm for N=512 and n=2 34

Speedups obtained for our algorithm versus CR algorithm for N=512 and n=4 35
Speedups obtained for our algorithm versus CR algorithm for N=1024 and
n=1 . L e 36
Speedups obtained for our algorithm versus CR algorithm for N=1024 and
N=2 . . 37
Speedups obtained for our algorithm versus CR algorithm for N=1024 and
n=4 . . 38
The progression of BSCF algorithm for N =4 43

The progression of BSCF algorithm for p = N = 4 (one column is

mapped onto each processor). 49

3.3

3.4
3.5
3.6
3.7
3.8

3.9
3.10
3.11

3.12

3.13

3.14

3.15

4.1
4.2

4.3

4.4

Progression of the BSCF algorithm for p = 4 and N = 16 (four columns

are stored in each processor).
The progression of substitution phase for N =4
Dissection of a 7 x 7 grid by separators during nested dissection

The nested dissection tree fora 7 x 7 grid
Ordering of a 7 x 7 grid using regular nested dissection ordering

The forward and backward elimination trees for a 7 x 7 grid obtained

using regular nested dissection ordering L.
The colouring of tree nodes in bidirectional nested dissection ordering
Ordering of a 7 x 7 grid using bidirectional nested dissection ordering .

The forward and backward elimination trees for a 7 x 7 grid obtained

using bidirectional nested dissection ordering

Speedups obtained for bidirectional algorithm versus regular algorithm for a

16 x 16 grid (i.e., N =256) with C/E =50

Speedups obtained for bidirectional algorithm versus regular algorithm for a

16 x 16 grid (i.e., N = 256) with C/E =100

Speedups obtained for bidirectional algorithm versus regular algorithm for a

32 x 32 grid (ie, N =1024) with C/E =50

Speedups obtained for bidirectional algorithm versus regular algorithm for a

32 x 32 grid (ie., N =1024) with C/E =100

Ordering of a 9 x 9 matrix using alternate stripe reordering.

Speedups obtained for bidirectional algorithm versus regular algorithm for

WILL199.o

Speedups obtained for bidirectional algorithm versus regular algorithm for

GRE216A.

Speedups obtained for bidirectional algorithm versus regular algorithm for

GRE343. . . . s

Vil

63
63
64

4.5 Pseudo-speedups obtained for bidirectional factorization with matrices re-
ordered by ASR method versus those reordered by Liu’s rotation method.
C/E =50. e

viil

List of Tables

2.1
2.2
2.3

4.1

Counts of tasks executed by the CR algorithm 18
Counts of tasks executed by the CE algorithm with the existing mapping 20

Counts of tasks executed by the CE algorithm with improved mapping 23

Matrices from Harwell-Boeing collection 94

Chapter 1

Introduction

1.1 Multiprocessing Systems and Parallel Algorithms

Various scientific computing problems, such as computational fluid dynamics and nu-
merical weather prediction, are highly computationally intensive. The high computa-
tional power required for fast solution of such problems is beyond the reach of present
day conventional uniprocessors. Furthermore, the performance of uniprocessors tends
to display an early saturation in relation to their costs. This implies that even modest
gains in performance of a uniprocessor comes at an exorbitant increase in its cost. Thus
ordinary microprocessors, which cost many orders of magnitude lower than the fastest
serial computers, have only marginally lower performance. By connecting many such
microprocessors together to form a multiprocessor, we can obtain raw computing power
comparable to that of the fastest serial computers available, that too at a considerably

lower price.

However, this raw power of multiprocessors needs to be translated to high compu-
tational rates that are realizable for actual applications. For this purpose, we need to
design efficient parallel algorithms that can exploit the maximum possible parallelism
available in the problem and deliver the high performance required. Unlike a sequential
algorithm, which simply executes a sequence of instructions on a single processor, a
parallel algorithm proceeds by dividing a problem into multiple sub-problems. Each
of these sub-problems can in turn be solved on different processors in an asynchronous
fashion. In addition, a parallel algorithm handles the various interactions that occur
between these sub-problems in the form of exchange of messages. In the next section,
we look at some of the fundamental issues that crop up in the design of a parallel

algorithm.

1.2 Key Issues in Design of Parallel Algorithms

The following two principal issues arise in the design of parallel algorithms.

e Problem partitioning and mapping : refers to dividing a problem into a number
of co-operating sub-problems (tasks) which can be executed concurrently and

assigning these tasks to various processors.

e Communication : refers to interaction between various tasks of a parallel algo-
rithm by exchange of messages containing data or control information across the

inter-processor links.

A parallel algorithm may execute different number of tasks simultaneously at dif-
ferent instants of time. The maximum number of tasks that can be executed simul-
taneously at any time in a parallel algorithm is called its degree of concurrency. The
degree of concurrency depends principally upon how amenable a given problem is to
parallelization.

The measure of the amount of computation involved in each task of a parallel
algorithm is called task granularity. Task granularity can be classified as fine, medium,
or coarse depending upon the processing levels involved.

Speedup is a simple metric to measure the performance of a parallel algorithm. It
refers to the ratio of the serial run time of the best sequential algorithm for solving
a problem to the time taken by a parallel algorithm for solving the same problem on
p identical processors. For an ideal multiprocessor system, the speedup is equal to p.
In practice, however, depending upon the inter-task dependencies and communication

overheads, the speedup is less than p.

1.3 Statement of the Problem

In this thesis, we address the problem of solving the sparse system of linear equations

apj xry +apee + - +a NIy = b1
911 + Q9T + + -+ + AoNTN = bg
an1Ti + anoZo + -+ anNTn = bN

where majority of the coefficients a;; are zero. In other words, we have to solve the
linear system Az = b, where A is a sparse coefficient matrix (i.e., majority of its
elements are zero) of dimension N x N, zis an N x 1 unknown solution vector, and
bisan N x 1 known right hand side vector.

In this work we have considered the solution of the following three classes of sparse

linear systems.

e Block tridiagonal linear systems : in which the coefficient matrix A has nonzeros

along the three diagonals as shown below.

Each x is an n x n matrix block.

e Sparse symmetric linear systems : in which the relation A[i, j] = A[j, i] holds for

each element of the coefficient matrix A.

e General sparse linear systems : in which the coefficient matrix does not have

any specific pattern in the location of nonzeros.

The techniques for obtaining solution for sparse linear systems can be divided
into two broad categories - iterative and direct. Iterative methods, such as Jacobi,
Gauss-Seidel, and conjugate gradient methods, converge towards an approximate final
solution by means of a sequence of iterations. The number of iterations required to
solve a system of linear equations with a desired precision is not known beforehand.
Iterative methods do not guarantee convergence towards a final solution, but when
they do yield a solution, they are usually less computationally expensive than the
direct methods.

Direct methods, such as Guassian elimination, LU factorization, and Cholesky
factorization based methods, yield an exact final solution by executing a predetermined

number of arithmetic operations. Although these methods are more computationally

intensive than iterative methods, they are important for solving sparse linear systems
due to their accuracy, robustness, and generality. In this work we consider the direct

methods for solution of sparse linear systems.

1.4 Brief Survey of Relevant Work

The problem of solving a system of linear equations (Ax = b) is central to many prob-
lems in engineering and scientific computing. Large sparse systems of linear equations
arise in various applications such as finite element analysis, computational fluid dynam-
ics, and power systems analysis. Developing fast parallel algorithms for solving sparse
linear systems has been the focus of research in recent years not only because they are
encountered frequently in scientific computing problems, but also because they usually
form the most computationally intensive part of these problems. Furthermore, the
techniques for solving sparse linear systems involve more complex data structures and
algorithms than their dense counterparts. There is an enormous amount of literature
available in this field. The current state of art in developing parallel algorithms for

sparse linear systems can be found in [19, 13, 20, 30].

Although there is substantial parallelism inherent in sparse linear systems, efforts
made till date to develop efficient parallel algorithms for solving these have achieved
only limited success. This is because most of the attempts are based on trying to
parallelize good sequential algorithms. However, the goal of a good sequential algorithm
i.e., minimizing the total operation count, directly conflicts with the goal of a good
parallel algorithm, which is maximizing the number of concurrent sub-problems. Hence,

parallelizing the good sequential formulations may not yield good parallel counterparts.

Existing works on parallel algorithms for solving tridiagonal and block tridiagonal

systems can be found in [3, 31, 50, 51, 52].

Existing works on solving sparse symmetric and general sparse linear system-
s can be classified according to the phases of solution that each work address-
es. Parallelization of the numerical factorization phase has received much attention
(2,4, 14, 15, 11, 20, 44, 30] due to its being a computationally intensive phase. A class
of algorithms called multifrontal algorithms has also gained popularity recently [9, 40].

Ashcraft et. al. [5] compare the fan-out, fan-in and multifrontal approaches to sparse

numerical factorization.

The substitution phase, which involves solution of triangular systems, has limited
inherent parallelism. Therefore efforts towards parallelizing this phase have received
much less attention. Solving sparse triangular systems in parallel is discussed in [14,
22, 29].

Literature on the various techniques for the ordering phase can be found in [12, 26,
38, 33, 32]. Work on developing parallel ordering algorithms is fairly rudimentary till
date [8, 41, 47]. Work on parallel algorithms for the symbolic factorization phase can
be found in [2, 18, 28].

1.5 Contribution of the Thesis

We have proposed new parallel algorithms for the following three problems in our work:

e In the first problem, we have proposed a new mapping of the Cyclic Elimination
(CE) algorithm [25] for the solution of block tridiagonal system of linear equa-
tions onto hypercube multiprocessors. Unlike the previous mapping schemes, in
our mapping of the CE algorithm, all communications are restricted to physically

adjacent processors, using the concept of data replication.

e In the second problem, we have proposed a new parallel bidirectional algorithm,
based on Cholesky factorization, for the solution of sparse symmetric system
of linear equations. Traditionally, the process of obtaining a direct solution
of a sparse symmetric linear system, Az = b, where A is a sparse symmetric
matrix, involves the four distinct phases - (i) Ordering, (ii) Symbolic factorization
(iii) Numerical factorization, and (iv) Substitution. For solution of multiple b-
vectors, the first three phases are carried out only once to obtain the Cholesky
factor L. The substitution phase is then repeated for each b-vector in order
to obtain a different solution vector z in each case. Thus, in problems which
involve solution of multiple b-vectors, the time taken by repeated execution of

substitution phase dominates the overall solution time.

In the bidirectional algorithm based on Cholesky factorization, that we have
proposed, the numerical factorization phase is carried out in such a manner that
the entire back substitution component of the substitution phase is replaced
by a single step division. The application of the novel concept of bidirectional

elimination to dense linear systems can be found in [42, 43].

e In the third problem, we have proposed a new parallel bidirectional algorithm,
based on LU factorization, for the solution of general sparse system of linear
equations. The traditional method for parallel solution of this class of problem
consists of the four phases mentioned above. As with sparse symmetric systems,
the numerical factorization phase is carried out in such a manner that the entire
back substitution component of the substitution phase is replaced by a single
step division. However, due to absence of symmetry, important differences arise
in the ordering technique, the symbolic factorization phase, and message passing
during numerical factorization phase. The bidirectional substitution phase for

solving general sparse systems is the same as that for sparse symmetric systems.

The effectiveness of all our algorithms have been demonstrated by comparing them with

their corresponding existing parallel algorithms using extensive simulation studies.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows. In chapter 2, we present an improved
mapping of the cyclic elimination algorithm onto hypercube multiprocessors. We also
present analytical and experimental performance studies for the new mapping scheme.
In chapter 3, we describe new parallel algorithms based on Cholesky factorization for
solving sparse symmetric linear systems. We consider the case where the system needs
to be solved for multiple b-vectors and compare the new scheme with the existing
method for solving sparse symmetric linear systems. In chapter 4, we present new
parallel algorithms, based on LU factorization, for solving general sparse linear systems
with multiple b-vectors and present comparison with the existing methods based on
LU factorization. Chapter 5 concludes the work with a summary of the thesis and

pointers to some directions in which the work presented here can be extended.

Chapter 2

Solving Block Tridiagonal Linear Systems

on Hypercube Multiprocessors

2.1 Introduction

The numerical solution of block tridiagonal linear system of equations is one of the
important classes of problems which occurs in many areas of numerical analysis such
as solving partial differential equations using finite difference schemes. The most ef-
ficient method for solving block tridiagonal linear systems on a uniprocessor is the
Block Gaussian Elimination (BGE) [19]. However, the BGE algorithm is not suitable
for multiprocessor environment because of lack of adequate parallelism. On the other
hand algorithms such as block Cyclic Reduction (CR) [24], Buneman’s algorithm [7],
block Cyclic Elimination (CE) [25, 19] and recursive doubling [31] exploit the inherent
parallelism present in the problem. For efficient implementation of these algorithms on
multiprocessors, the principal challenge lies in reducing the overhead involved in com-
munication between processors. This aim can be achieved by using efficient mapping
schemes and overlapping the communication and computation steps.

A mapping of any algorithm onto a hypercube is said to be desirable if all com-
munications are restricted to physically adjacent processors. However, the following
(statement) result due to Lakshmivarahan and Dhall [31] relates to non-existence of a
desirable mapping of the CR and CE algorithms onto base-2 (binary) hypercube.

“In any mapping of the CR or CE algorithm onto a p-node base-2 hypercube, it is
necessary that at least 1"% —1 steps involve communication between processors that are
at a distance two or more apart.” (For proof refer to [31], pp 364-365.) Further, it has
been shown by Johnsson [27] that upon using the binary reflected Gray code mapping

(48], the distance between any two communicating processors is no more than two.

7

However, we show, in this chapter, that it is possible to obtain a desirable mapping of

CE algorithm onto hypercube multiprocessors using the concept of data replication.

Complete details about mapping of CR or CE algorithm onto a hypercube multi-
processor can be found in [31]. Here we give a brief overview of the major differences
between the CR and CE algorithms. The CR algorithm consists of two phases - reduc-
tion and substitution. The CE algorithm consists of only one phase, namely, reduction.
The degree of parallelism in the reduction phase of CR algorithm halves with every
consecutive stage. On the other hand, the degree of parallelism in the reduction phase
of CE algorithm remains constant through all stages. Thus, theoretically, CE algorith-
m ought to be preferred over CR algorithm. However, the communication overhead
incurred in the existing mapping of CE algorithm onto hypercubes is much higher than
that of CR algorithm. In particular, the communication graph of the CR algorithm is a
sub-graph of the communication graph of CE algorithm. The communication overhead
incurred by the existing mapping of CE algorithm becomes costly, especially since suc-
cessive stages of the reduction phase call for data communication between processors
which are not neighbours. A large number of such multiple hop data communications

lead to link contentions and, consequently, lower performance.

In order to gainfully exploit the higher degree of parallelism of the CE algorithm
we propose an improved mapping of the CE algorithm onto a hypercube multiproces-
sor with which the data communications are restricted to occur between neighbouring
processors only. This is achieved by efficient duplication of data at every stage of the
algorithm. Thus the problem due to link contentions are overcome and better perfor-
mance achieved. Two significant features of our algorithm are that, the computational
load is balanced among all the processors at all stages of the algorithm and secondly,
much of the communication gets overlapped with computation giving an overall better

performance.

The rest of the chapter is organised as follows. In section 2.2, we make a problem
statement and introduce some notations which will be used in the subsequent sections.
In section 2.3, we discuss the sequential BGE algorithm on a uniprocessor, and the
parallel CR and CE algorithms. In section 2.4, using an example, we first look at the

existing schemes for mapping CR and CE algorithms onto hypercube multiprocessors

and then present our improved mapping scheme for the CE algorithm followed by
its analytical performance study. In section 2.5, we present numerical results for the
speedups obtained from our new mapping scheme and the existing mapping of CR
algorithm, and compare the two schemes. Section 2.6 concludes the work with some

pointers for future research.

2.2 Problem Statement and Notations

The block tridiagonal matrix A is defined as

di fi
ey dy f2

en-1 dy-1 fol

eEN dN

where the components e;, d; and f; are n X n matrices (or blocks) with e; = fy = 0.
There are N such blocks along principal diagonal of A where N is a power of 2. So the
overall dimension of A is (Nn) x (Nn). We are to solve the system AX = b, where the
vector X = (x1,%a,...,xy)", the vector b = (by, by, ..., by)?, the components z; and b;

are n-vectors and
ejvj 1 +djvj + fivjp = b o j=1,...,N.

The CR algorithm for solving the system Ax = b consists of the reduction phase
followed by the back substitution phase. Each of these two phases, in turn, is divided
into log V stages. The CE algorithm consists of reduction phase alone which is divided

into log N stages. In both CR and CE algorithms, at the beginning of stage [= 1 of
(0)

the reduction phase, we define the 5-tuple row; "’ as

7"0101(0) = (62(0)7 dz([])a (d(o))f]a fz'([])a bz(o)) = (67:, d;, (di)i]: fis bv)

()

At each stage [€ {1,...,log N} of reduction phase, we define the tuple row;’ as

o) @ dP @)Yy vie {1, N

] i

(0,1,1,0,0) , Vi<Oori>N.

row

i

Here el(l) is the value of e; at the end of stage [, fi(l) is the value of f; at the end

of stage [and so on. The matrix [is the n x n identity matrix. Note that (dz(l))’1
9
2

. This is done because, the inverse, once

. !
computed at a source processor, can be transferred along with the tuple row,o to

is included as a member of the tuple row

other processors which need it, thus avoiding its re-computation at the destination
processors. Figure 2.1 gives an example of the above notations for an 8 x 8 block

tridiagonal system.

d] f] T bl
ex dy fo T by
er dr fr 7 bz
€g dg xrg bg
A T = b
Stagel Stage2 Stage3

(e, d”, (@) M) rowt® = (e

row@ = (e1,dy,(dy)7", f1,b1) row§) egl

(57, ds?, ()1, £9 08) row?) = (ef
(1

€3

1
(0) _ (1)
1

rowy’ = (e, ds, (d2)", fo,ba) oW,
mwgo) = (es,ds, (d3)~ "', fs,b3) rowé)

(
(
(e, d), (@) AV 6 rowl? = (e, dS) () £8P 08))

Figure 2.1: An 8 x 8 block tridiagonal system and listing of rowgl) at various stages

2.3 Solving Block Tridiagonal Linear Systems

In this section, we first briefly present the theoretical concepts behind the sequential

BGE and then the parallel versions of CR and CE algorithms.

2.3.1 Sequential Block Gaussian Elimination (BGE)

There are two phases in this algorithm - forward elimination and back substitution.

Computation within each phase is completely sequential in nature.

10

2d® @))
2 2 2)\ — 2 2
LdP @) i e)

Algorithm 1
(*Forward elimination phase*)
for : =2 to N do

Calculate (d; ;)"

a; = €i(di71)7]

e; =0

di = d; — a; fi—

fi=Ji

bi = b; — a;b;i 1
endfor

(*Back substitution phase*)

Calculate (dy)™"

Ty = (dy) 'by

for i = (N — 1) downto 1 do
z; = (di) "' (b = fiwita)

endfor.

The time taken for calculating the inverse of an n x n matrix block, using the exchange
method, is Tj,, = 3n® — 4n? 4+ 2n computational time units. Multiplying two n x n
matrices takes T, = 21 — n? time units, whereas multiplying an n x n matrix

with an n-vector takes T

Tl = 2n% — n time units. The sequential BGE algorithm

executes N matrix inversions, 2(/N — 1) matrix-matrix multiplications, 3N — 2 matrix-
vector multiplications, N — 1 matrix subtractions, and 2(N — 1) vector subtractions.

Summing up all the components, this step takes
Tae = N(3n*—4n*+2n)+2(N—1)(2n* —n*)+ (BN =2) (2 —n)+(N - 1)n*+2(N—1)n

= (N = 1)(7n* +n? 4+ n) + (3n® + 2n* + n) time units.

2.3.2 The Basic Elimination Step

Both CE and CR algorithms, have a basic elimination step in common. We name this
(0

step Compute row;’ , where i € {1,..., N} is the index of a row of blocks and [€

{1,...,log N} is the stage being considered. Let h = 2(=Y. The Compute rowfl) step

11

eliminates the dependence of equation i on the variables x;,, and z;_, by subtracting
appropriate multiples of equations i+ h and 2 — h from equation 7. The Compute rowEl)

step consists of the following computation steps.

ul) = —e(al",))
1 1 1— _
) _ _fi()(d7(j+h,1)) 1

i
o = el
40 = D 4 D50 4)

Calculate (d(l))*1

)

FO 2 0 400

7

i+h
b = b+ Wb 4o

7 [

)

The Compute r()wl() step involves six matrix-matrix multiplications, two matrix-vector
multiplications, one matrix inversion, two matrix additions, and two vector additions.

Summing up the components, this step takes e = (15n* — 4n? + 2n) time units.

2.3.3 The Block Cyclic Reduction Algorithm (CR)

The CR algorithm consists of two phases, namely reduction (or elimination) phase
and back substitution phase. These two phases are essentially sequential although the
computations within each phase can be carried out in parallel. Therefore, the total
parallel time is the sum of the individual parallel times. Figure 2.2 shows the pattern

of elimination and back substitution steps for the case of N = 8 block equations.

Algorithm 2

(*Reduction phase*)

1. for I =1 to log N do
h =201

for i € {2/,2 x 2!, 3 x 2!,... log N}do in parallel
O]

Compute row;
endfor
endfor
(*Back substitution phase*)

2. zy = (d\EN))-Lploe N

12

®

) (8)
O ZJ

(=

stage 1 stage 2 stage 3 stage 1 stage 2 stage 3

Figure 2.2: Elimination and back substitution pattern in CR algorithm for N=8

3. for [=log N downto 1 do
B = 20-1)
for i € {207V 3 x 20=1 5 x 20=D N —2(0-ldo in parallel
mi = (d)0 e £ V)
endfor

endfor.

2.3.4 The Block Cyclic Elimination Algorithm (CE)

The CE algorithm consists of only the elimination phase followed by a single step
division. Here the elimination phase recursively converts the given system of equations
into two independent systems of equations each of which can be solved in parallel using

()

the CE algorithm. Figure 2.3 shows the pattern of Compute row;’ steps for the case

of N = 8 block equations.

13

1 1
2 2
3 3

@
O
O

ROA\VA

OAV(A

ROV

>
>

@
®
©
Q)
®

DO VIANS

>% 8
stage 1 stage 2 stage 3
Figure 2.3: Elimination pattern in CE al

Q)

Algorithm 3
1. for I =1 to log N do

for i € {1,2,..., N}do in parallel
O]

i

Compute row
endfor
endfor
2. for i € {1,2,..., N}do in parallel
(d(log N))qb('log N)

€Tr; = i

endfor.

2.4 Solving Block Tridiagonal Linear Systems on Hypercubes

The hypercube, one of the most popular architecture for multiprocessor systems, is
a generalization of a cube to d dimensions such that each of the 2¢ processors has d
neighbours. In this section, we present an improved mapping of the CE algorithm
on a hypercube multiprocessor which achieves neighbouring processor communication
by efficient use of the concept of data duplication. We begin by comparing the three
mapping schemes, namely, the existing mapping of the CR algorithm, the existing
mapping of the CE algorithm, and our improved mapping of the CE algorithm with
the help of a simple example. We then proceed to formally present our algorithm and

explain the various steps.

2.4.1 Comparison of Three Schemes

Let us consider the simple problem of solving a block tridiagonal system with N = 16
block equations and block size 1 x 1 (i.e., n = 1) on a two-dimensional hypercube
(i.e., there are four processors in the hypercube). We trace the step by step execution
of each of the schemes below and calculate the time taken in each case. For the
sake of simplicity, we consider only the non-overlapped execution of computation and

communication steps.

We define the following notations to make our comparison clearer.

15

pr symbolically represents the kth processor of a hypercube.

p represents the number of processors in a hypercube. Thus the dimension of
the hypercube is logp.

e represents the number of operations involved in executing the Compute rowEl)

with no communication overheads. As shown in section 3.2, this works out to

be e = 15n% — 4n? + 2n computational time units.

s represents the number of operations involved in executing one back substi-
tution step, which involves three matrix-vector multiplications and two vector

subtractions. This works out to be s = 6n? — n computational time units.

Communication to Computation ratio, C/ E, represents the the ratio of time tak-
en to communicate one floating point value between two neighbouring processors

to the time taken to execute one floating point operation.

T, represents the time taken to communicate the contents of an n x n matrix
block between two neighbouring processors. This works out to be n*(C/FE)
computational time units.

0

i

T, represents the time taken to communicate the contents of a 5-tuple row
between two neighbouring processors. This works out to be 5T, = 5n*(C/E)

computational time units.

kth dimension of a hypercube is represented by a set of links each of which
connects some processor p; to its neighbour p;, such that jis obtained by

inverting the kth bit in the binary representation of j.

2.4.1.1 Existing Mapping of the CR Algorithm

Figure 2.4 shows the step by step execution of the CR algorithm for solving the tridi-

agonal system of 16 equations using a hypercube of four processors. The equation-

s are initially mapped onto processors in a block wrap manner (see figure 2.4(a)).

The reduction phase of the mapped algorithm consists of 4 (i.e., log16) stages. The

0)

first stage consists of a one hop communication of tuples rowé (from processor p; to

o), TO?l)éO) (from p3 to py), rmug) (from py to p3) followed by the computation steps

16

9 10
9101112 ——7— 5678

13

1314 15 16

(d) stage 3 (e) stage 4

Figure 2.4: Progression of the CR algorithm with the existing mapping for N=16 and
p=4

17

Table 2.1: Counts of tasks executed by the CR algorithm

task count task count
stage | T, e stage | Ty S
. 1 1 2 L. 1 2 1
Reduction phase Substitution phase
2 1 1 2 1 1
3 1 1 3 1 1
4 2 1 4 1 2

Compute rowél) and Compute rowfll) at pg, Compute rowél) and Compute rowél) at pq,

Compute row%) and Compute rowg) at p3 and Compute rowﬂ) and Compute row%)

at po. This completes the first stage of reduction phase. Similarly, second and third
(0

stages involve one hop communication of row;

(

i

tuples and one step each of the form

(3)

2 Stage 4 consists of a two hop communication of rowg” from p; to py

followed by the step Compute rmugé). The substitution phase of the algorithm follows

Compute row

a completely reverse pattern of communication and can be described by reversing the
order of the stages and the direction of the arrows in the reduction phase. The data
0

i

items communicated are the floating point values of the variables x; (instead of row
as in reduction phase).

The counts of various tasks executed at each stage of the algorithm are summarised
in table 2.1. We see from table 2.1 that it takes 57, 4+ 5e computational time units
for the reduction phase, followed by a division step, followed by 57} + 5s units for the
substitution phase. Thus the total execution time is Tor = 5(T. + Tp) + 5(e + s) + 1
units. Typically the communication to computation ratio (C/E) is of the order of 100.
Thus with N =16, n = 1 and p = 4 we have T, = 500, T, = 100, ¢ = 13 and s = 5.

Thus Tecr = 3091 computational time units from the above expression.

2.4.1.2 Existing Mapping of the CE Algorithm

Figure 2.5 shows the step by step execution of the CE algorithm for solving the tridi-
agonal system of 16 equations using a hypercube with four processors. The equations

are initially mapped onto processors in a block wrap manner (see figure 2.5(a)). The

18

910 11 12 5678
13 12 4 5
1314 15 16 1234
(a) stage 1
010 910 11 12
910 11 12 67 5678 910 11 12 5678 5678
12 56
13 14 11 12 34| |56 131411910
1516 | |11 12 34 78
1234 13 14 15 16 1234
13 14 15 16
(b) stage 2 (c) stage 3
010 11 12 13 14 15 16
910 11 12 5678 £ 678 9101112 {94, 5678
13 14 12 56 910
15 16 34 78 11z
13 14 15 16 1234 1314 15 16 1234

(d) stage 4 - first hop

(e) stage 4 -second hop and elimination

Figure 2.5: Progression of the CE algorithm with existing mapping for N=16 and p=4

Table 2.2: Counts of tasks executed by the CE algorithm with the existing mapping

task count
stage T, e
1 1 4
2 2 4
3 4 4
4 | 8(2hops) | 4

algorithm consists of only reduction phase which has 4 (i.e., log16) stages. In the

first stage, rowéo) tuple is communicated from p; to py preceding the step Compute

rowfl]). Simultaneously, rowflo) tuple is communicated from py to p; preceding the

step Compute rowél) and so on. Thus stage 1 consists of one-hop communication

() ()

of row; ., steps per processor. At the end of

tuples followed by four Compute row
stage 1, there are two independent sets of equations, namely, {1,3,5,7,9,11,13,15}
and {2,4,6,8,10,12,14,16}. Similarly, stage 2 consists of two one-hop communication

of rowfl) tuples followed by four C'ompute rowfl) steps per processor. At the end of
stage 2 there are four independent sets of equations, namely {1,5,9,13}, {3,7,11, 15},
{2,6,10,14}, and {4,8,12,16}. Stage 3 consists of four one hop communications of

0 0]

row; tuples followed by four Compute row;’ steps.

The counts of various tasks executed at each stage of the algorithm are summarised
in table 2.2. We see from table 2.2 that communication overhead doubles with each
stage as the number of independent sets of equations doubles at each stage. Further, the

()

last stage consists of four consecutive two-hop communication of row,;” tuples. Stage
4 is followed by four divisions per processor. Thus the total execution time taken in
the present case is Tcp = 157, 4+ 16e + 4 computational time units. Substituting the
values for T, and e, we get Top = 7712 time units. Thus, in the present case, the
existing mapping of CE algorithm performs poorly in comparison to the mapping of

CR algorithm onto hypercubes.

20

91011121314 1516 91011121314 1516

12345678 12345678

(a) initial data distribution

910111213141516 910111213141516
9 8
12345678 12345678

(b) elimination phase at stage 1

10 12 14 1 9 11 13 15
10 12 24 13 911
14 16 6 8 o7 13 15
2468 @ 1357

(c) copying phase at stage 1

181216 (p3) (p1) 371115

261014 @ 15913

(d) after elimination at stage 2

Figure 2.6: Progression of the CE algorithm with improved mapping for N=16 and
p=4

21

2.4.1.3 The Improved Mapping of CE Algorithm

Figure 2.6 shows the step by step execution of our improved mapping of CE algorithm
for solving the tridiagonal system of 16 equations using a hypercube with four proces-
sors. In this improved mapping scheme, all the communication steps occur between
neighbouring processors only. The initial distribution of data is as follows. We di-
vide the processors of the hypercube into two sets - {po, p1} and {py, p3} - the former
being the set of processors in the lower half of the hypercube along 2nd dimension
and the latter being the set of processors in the upper half of the hypercube along
the 1st dimension. The 16 equations are then mapped onto each of the two sets of
processors in a block wrap manner. Thus we get the initial data distribution as shown
in figure 2.6(a). There are logp stages of the improved mapping. Each of the first
logp — 1 stages (only the first stage in the present case) consists of two phases - elimi-
nation and replication (copying). The elimination phase corresponds to the reduction

(0

stage of the CE algorithm in which Compute row,;’ steps are executed. Thus in stage

1 of the algorithm (figure 2.6(b)), the processors in the set {pg, p1} execute Compute
O]

row;’ steps for odd-indexed equations and the processor set {ps, p3} executes Compute

(0

i

!
row” for even-indexed equations. This involves a one-hop communication of row

(0

tuples followed by four Compute row,;’ steps per processor. At the end of elimina-

tion phase of stage 1, the processor set {pg, p1} holds the independent set of equations
{1,3,5,7,9,11,13,15} and the processor set {ps,ps} holds the independent set of e-

quations {2,4,6,8,10,12,14,16}. The next phase of stage 1 is the copying phase in
M

;~ tuples of its set of equations to the neighbouring

(1)

i

which each processor copies the row

processor along the 1st dimension of the hypercube. Thus p, copies the row,;’ tuples of

equations {1, 3,5, 7} to p; and p; copies those of equations {9, 11,13, 15} to py. Similar

copying occurs between processors py and p3. Stage 2 of the algorithm consists of only
)

[

steps for 1 = 1,5,9,13, p;
(2)

i

the elimination phase. Thus py executes Compute row
(2)

executes C'ompute row;”’ steps for i« = 3,7,11,15, po executes Compute row,;” steps

for + = 2,6,10,14, and p3 executes Compute row,@ steps for 7+ = 4,8,12,16. Thus
at the end of logp stages (i.e., elimination phase of stage 2 in the present case) each
processor contains an independent set of equations which can be solved using BGE

algorithm without communicating with any other processor.

22

Table 2.3: Counts of tasks executed by the CE algorithm with improved mapping

stage task count

T, e

1 | elimination

1 4
copying 4 0
0 4

2 | elimination

The counts of various tasks executed at each stage of the algorithm are summarised
in table 2.3. The BGE algorithm for solving 4 equations per processor takes Tggor = 33
computational time units (see section 3.1). Thus the total time taken in the present
case i8 Tyep = DT, + 8¢ + Ther units. Substituting the values for T, and e, we get

Thew = 2637 time units.

Thus we see that in the case of N =16, n = 1 and p = 4, our improved mapping
of CE algorithm performs better than the existing mappings of both CR and the CE
algorithms. Further, the existing mapping of CR algorithm performs better than the
existing mapping of CE algorithm due to lower communication overhead. We now
present some definitions and then formally present our improved mapping of the CE
algorithm. We then evaluate its performance by comparing with the existing mapping
of the CR algorithm only, since this mapping fares better than the existing mapping

of CE algorithm, as shown in the above example.

2.4.2 Definitions

e Binary reflected gray codes [48] are a class of codes useful in embedding a ring
structure onto a binary hypercube. Let G(n) denote the set of all n-digit code
words of the base-2 (binary) reflected gray code i.e.,

G(n) = {Gy(n),G1(n),..., Gy _1(n)}

where, G;(n) ith code word of binary reflected gray code, i € {0,...,2" — 1}.
Let

L= lply_1 -l

23

in binary with 7, = 0 and

G7(n) = OnGn-1"""9291

in binary. If @ denotes the exclusive-OR addition of binary bits, then the en-
coding function E,, :< N >— G(n) is given by

where
9j =15 D ij
for all j = 1,2,..., N, and the decoding function D,, : G(n) < N > is given
by
Dy(g) =i
where

i =9i+1 D gj+2® - D gn.

(0

i

‘ o 0
p; : send(row ,pjz) indicates that processor p; sends contents of row;” to pro-
Cessor p.

0

. . . . l
pj @ receive(row;’, py) indicates that processor p; receives contents of row’

‘
from processor p,.

neighbour(j, k) indicates the neighbour of processor p; along the kth dimension
of hypercube. If j' = neighbour(j, k) then j is obtained by complementing the
kth bit in the binary representation of j.

Let d be the dimension of the hypercube and [€ {1,...,d} be the dimension
across which the hypercube is to be divided into two halves. We define two sets

PO and Pl(olq)ue,ﬂ as

upper

) 210 - {j | 7 > neighbour(j,1)}

upper

po

lower

= {j | j < neighbour(j,1)}

where j € {0,...,p — 1}. Further,
0 R
PO = {p/2,p/2+1,....p—1}

24

PO =10,1,....p/2 —1}.
In the next two sub-sections the following assumptions hold.

e Each processor contains sufficient local memory and no global memory exists.

e N/p > 1, where N is the number of rows of blocks in the block tridiagonal linear

system.

e All links between the processors of the hypercube are capable of full-duplex

communication.

e For each communication step between a pair of neighbouring processors, the

startup time is assumed to be negligible.

e Each processor can overlap its computation with the data communication

from/to its neighbours.
e Inversion of matrix blocks is done using the exchange method.

e The matrix blocks df;l), t = 1,...,N, are non-singular at all stages [=

1,...,log N.

2.4.3 Our Improved Mapping of CE onto Hypercubes

(0)

i

into p/2 sets Sfo), Séo), cee SIE% of 2N/p rows each such that

Initially, all row; ’, # =1,..., N in the block tridiagonal linear system are partitioned

Si(o) = {7"071);)371)%4_1, 7“011)2(()271)%4_2, . ,rowég)%}

i=1,...,p/2.
One copy of each set Si(ﬂ) is stored in a pair of processors p; and py, j € {0,...,p/2—1}
and j' € {p/2,...,p— 1}such that

7 = Elogpfl(i - 1)
i.e., j = (i — 1)th code word of the binary reflected gray code with logp — 1 bits and

j = neighbour(j,log p)

25

At any stage [of the algorithm, we maintain sets ol

;’ at every processor p; such
that

C’](l) = {rowflil) | row,@is computed at processor p;}.

For all j € Pl(o) let k = Diogp—1(j) + 1. Thus the members of the set S,(CO) are stored

ower’

at processor p;. Initially, let

C'](-]) = {rowZ@) | rmugo) € S,(CO) and 7 € {1,3,...,N —1}}

(@)

i.e., Compute row; step is executed at p; for all odd indexed equations which are mem-

bers of the set S,(CO). Similarly, for all j' € PO let k = Dygp 1(neighbour(j',logp)) +

upper)?
1. Then

C’J(.,]) = {rowl@) \ TO?I)Z@) € S,ﬁo) and 7 € {2,4,...,N}}

. l
i.e., Compute 7"011)Z~) step is executed at p; for all even indexed equations which are

members of the set S,(CO). We now formally present our CE algorithm for hypercubes.

Algorithm 4

(*Cyeclic elimination on hypercube*)

1. for j € {0,1,...,p/2 — 1} do in parallel
2. Pjs Pjtps2 + k= Diggp1(j) +1

3. h = 2!-1

4. endfor

5. for I =1tologp—1do

6. (*Elimination phase*)

7. for all j € {0,...,p— 1} do in parallel
8. p; « for all i such that (row! € C’](-l)) do
9. Compute r()wl(l)

10. endfor

11. endfor

12. if (Il <logp—1) then

13. (*Copying phase™*)

14. for j € {0,...,p — 1} do in parallel
15. pi: S =Gy

26

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

for all 7 such that (rowglfl) € C](.l))

0
Send(r()“)i apneighbour(j,l))
receive(row;”, Pneighbour(j1)

S,(cl) = S,(cl) U {row,@}

endfor
endfor
(*Updating C'](-H])*)
for j € Pz(olq)uer and j' € qué)per do in parallel

p; + min = minimum{i | row" € SV}

cH) — 4 |

J

for i = min to min + (% — 1)h step 2h do

C](-H—l) = C;-H U {rowgl)}

endfor
, tmin = minimum{i | row!? € sV}
py s min = minimum{i | row;” € Sic

) = ¢

J

for i = min + h to min + Nh/p step 2h do

C’J(.,H]) = C’;fr] U {7“011)Z(l)}
endfor

endfor

endif

endfor

37. (*Obtaining z;*)

38

39.
40.

41.
42.
43.
44.

. for j € {0,...,p— 1} do in parallel
p; if (% > 1) then

Solve the independent system of % block equations in

C(logpfl)

i using BGE algorithm to obtain

(logp—1) o C(logpfﬂ}
j

i
else (*N = p*)
for all 4 such that (rowglogpfl) c C§1ng,1)) do
e (d(l"g”’l))flbv(jlogpfl)

i

{z; | row

endfor

27

45. endif
46. end

We see that the communication of data occurs in the lines 7-11 (elimination phase)
@

[

and lines 14-21 (copying phase). Lines 7-11 for computing row

fl:hl),rowglfl), and rowﬁ:hl). Of the three, rowglfl) is available on p;. If

th]) are not available on p;, then they have to be brought in from its

at processor p; require
data of row
(1-1)

row,; ,’ and row
neighbouring processors. In lines 14-21 of the copying phase, (see figures 2.7(c),(e)),
at every stage [, exactly % rows of blocks are copied in each direction between every
pair of neighbouring processors along dimension [— 1 of the hypercube. Again the
communication is between neighbouring processors only. Hence the number of hops in

any communication step is no more than one at any stage of the algorithm.

Note that after log p—1 stages, the above algorithm switches over to BGE algorithm
on uniprocessor. This is because after logp — 1 stages each processor contains an
independent set of equations which can be solved without communicating with any
other processor. Since on a uniprocessor, the BGE algorithm is the most efficient one,

switching over to BGE enhances the performance.

2.4.4 Analytical Performance Studies

We now derive expressions for the execution time of our algorithm and also the CR

algorithm.

2.4.4.1 Our Improved CE Algorithm

The lines 1-4 take T} = 3 time units to execute in parallel on p processors. In lines
5-36, the copying phase of every iteration [overlaps with the computation phase of

(I + 1)th iteration. Thus this step (lines 5-36) takes

Ty, = maa:{(% —1)e, T.} + e+
(logp — 2)(mm"{(% — 1)e, %(Te +1)}+ T, +e)+

(T. + (% — 1)max(e, T,) +) units.

28

91011 12 5678

p3 P
910 11 12 5678
7 5
Pl ‘ N
1314 15 116 p2 p0)1234
13 14 15 16 @ p4)1234

(a) initial distribution of data

9101112 9 5678 91011 12 8 5678
13) 12 4
13 14 15 16 1234 13 14 15 16 1234

(b) elimination phase at 1 = 1

10 12 68
911 57

1012| (14 16 68 24 911 (1315 97 13

13 15 13

14 16 24

(c) copying phase at 1 = 1

Figure 2.7: (a) Progression of our algorithm on hypercube for N=16 and p=8

29

10 12 14 16 2468 9111315 1357

1012 14 16 8 2468 9111315 1357
(d) elimination phase at 1 = 2
12 16 11, 15
12 16 18 48 1115 ~“=3 7

GG

1014 1014 26 913 _ 913 15
26 15

(e) copying phase at 1 = 2

8 15 412

T® @

6 14 210 513 19

(f) after elimination phase at 1 = 3

Figure 2.7: (b) Progression of our algorithm on hypercube for N=16 and p=8

30

For lines 38-46, T3 = (% —1)(e + s) + (2n* — n?). Thus the total time taken, Ty =
T+ T, +1Ts.

Let us look at the communication complexity of our algorithm without considering
any overlap between the communication and computation steps. The contribution
from elimination phase (lines 7-11) alone is (logp — 1)7, and that from copying phase
(lines 14-21) alone is %(logp —2)T,. Thus the total communication complexity of our

algorithm is a sum of these two, given by
N N
((_ +1)logp — 2— — 1> T, units
p p

where T, = 5n?(C/E), n x n being the size of each block.

2.4.4.2 CR Algorithm

In reduction phase, the first log(/N/p) stages involve one hop communication of rows

of blocks and N/(p2') computations of row (figure 2.4(b) and (c)). Here the commu-
(0

nication of a row of blocks and (log(/N/p) — 1) computations of row,’ are overlapped.

The log(N/p) + 1th stage involves one hop communication of a row of blocks and one

r()wl(l) computation step in a non-overlapped manner (figure 2.4(d)). The remaining

0

i

(logp — 1) stages involve two hop communication of a row of blocks and one row
computation step in a non-overlapped manner (figure 2.4(e)). Thus the total time for

the reduction phase works out to be

Treduction - (6 + 4) log(%)_F
log(2)

Yot P (maz{(N/(p2") — 1)(e + 1), Te}+
(T. +e+4)+ (logp — 1)(2T, + e + 4) units

Similar communication pattern exists for back substitution but in reversed manner.

Thus the time taken for back substitution phase works out to be

31

Tback substitution — (5 + 3) lOg(%)—F
log(XL)
S maz{(N/(p2") — 1)s, Ty} +

(Ty, + s+ 3) + (logp — 1)(2T}, + s + 3) units.

Taking a block multiplication step between these two phases into account, the
total time Tor = Trequction + Lmuit + Thacksubstitution L€t us look at the communication
complexity of CR algorithm without considering any overlap of the communication and
computation steps. The contribution from reduction phase alone is (log N+log p—1)T,
and contribution from back substitution phase alone is (log N +logp — 1)T}. Thus the

total communication complexity of CR algorithm, as a sum of these two, is given by
(log N + logp — 1)(T, + T,) units

where T, = 5n*(C/E) and Ty = n*(C/FE), n x n being the size of each block.

2.5 Experimental Results

To evaluate the accuracy of the above analytical expressions, we implemented a hy-
percube simulator in C language and compared the speedups obtained from our new
mapping of CE algorithm with those obtained from the existing mapping of CR algo-
rithm. We used SPARC Classic machines to carry out our simulations. The parameters
that were varied were the number of rows of blocks N (512 and 1024), the block size
n (1,2, and 4), the ratio of communication step to computation step C'/E (10, 25, 50,
and 100), and the number of processors p (1 to 1024). The figures 2.8-2.13 show the
comparison of measured speedups of the two algorithms for various values of the above

parameters. We observe the following facts.

32

8 T T T
Our dgo (actud) +—
70 CRago (actud) +— |
Our algo (expected) -*-
CRalgo (expected) -+~

i i
@ @
0
1 2 4 8 16 32 64 18 2 512
No. of processors
(a) C/E=10.0
3 T T T T T T
Our dgo (actud) +—
CRago (actud) +—
251 Our algo (expected) =~ |
" CR ago (expected) -+
2l
i
@
0
1 2 4 8 16 32 64 18 2 512
No. of processors
(c) C/E=50.0

Figure 2.8: Speedups obtained for our algorithm versus CR algorithm for N=512 and n=1

Speedup

Our dgo (actud) +—
CRago (actud) +— |
Our algo (expected) -*-
CRalgo (expected) -+~

18

16

14

12

2 4 8 16 R 64 128 56 512
No. of processors
(b) C/E=25.0
Our ago (actud) ~—
r CR dgo (actud) +— 1
Our dlgo (expected) -*-
t CRalgo (expected) -+

64 26 512

128

6
No. of processors

(d) C/E=100.0

33

Speedup

Our dgo (actud) +—
w0l CRalgo (actud) ~— |
Our algo (expected) -*-
CRalgo (expected), -+~
=
i
@
0
1 2 4 8 16 32 64 128 256 512
No. of processors
(a) C/E=10.0
5 T T T T T T
Our dgo (actud) +—
CRago (actud) +—
Our algo (expected) -*-
4r CRalgo (expected) -+~ 4
3,
i
@
0
1 2 4 8 16 32 64 128 256 512
No. of processors
(c) C/E=50.0

Figure 2.9: Speedups obtained for our algorithm versus CR algorithm for N=512 and n=2

Speedup

Our dgo (actud) +— |

CRago (actud) +—
Our algo (expected) -*-
CRalgo (expected) -+~

25

2 4 8 16 R 64 128 56 512
No. of processors
(b) C/E=25.0
Our ago (actud) ~—
CR dgo (actud) +—
Our algo (expected) -*- |
CRalgo (expected) -+

26 512

128

2 4 8 16 R 64
No. of processors

(d) C/E=100.0

34

16 T T T
Our dgo (actud) +—
CRago (actud) +—

Our algo (expected)—+—"

CRelgo egpecte) -+

14r

1t ks

i
@
1 2 4 8 16 32 64 128 256 512
No. of processors
(a) C/E=10.0
6l Our dgo (actud) +— |
CRago (actud) +—
Our algo (expected) -*-
5l CR ago (expected) -+ |
%.
@

0
1 2 4 8 16 32 64 18 2 512
No. of processors

(c) C/E=50.0

Figure 2.10: Speedups obtained for our algorithm versus CR algorithm for N=512 and n=4

Speedup

Speedup

Our dgo (actud) +— 1
CRago (actud) +—
Our algo (expected) =~ {
CR dgo (expected) -+

0

2 4 8 16 R 64 128 56 512
No. of processors
(b) C/E=25.0
Our ago (actud) ~—
L CR dgo (actud) +— |
Our dlgo (expected) -*-

CRalgo (expected) -+

6 R 26 512

No. of processors

64 128

(d) C/E=100.0

35

Speedup

14} Our algo (actua) ~+— 4 6l Our algo (actua) ~— |
CRago (actud) +— CRago (actud) +—
Our algo (expected) -*- Our algo (expected) -*-
2+ CR algo (expected) == 5l CRalgo (expected) -+~ |
i
@
0 0 . . .
1 4 16 64 256 1024 1 4 16 64 256 1024
No. of processors No. of processors
(a) C/E=10.0 (b) C/E=25.0
4 T T T T 25 T T
Our dgo (actud) +— Our ago (actud) ~—
351 CRago (actud) +— | CR dgo (actud) +—
’ Our algo (expected) -*- Our dlgo (expected) -*-
CRalgo (expected) -+ 2 CRago (expected) -+~ 1
3 L 4
i i
@ @
1 4 16 64 256 1024 1 4 16 64 256 1024
No. of processors No. of processors
(c) C/E=50.0 (d) C/E=100.0

Figure 2.11: Speedups obtained for our algorithm versus CR algorithm for N=1024 and n=1

36

Speedup

Speedup

2%

20F

Our dgo (actud) +—
CRago (actud) +—
Our algo (expected) -*-
CRalgo (expected) -+~

Speedup

4 16 64 256 1024

No. of processors

(a) C/E=10.0

Our dgo (actud) +—
CRago (actud) +— 1
Our algo (expected) -*-
CRalgo (expected) -+-

4 16 64 256 1024
No. of processors
(c) C/E=50.0

Speedup

10

Our dgo (actud) +—
CRago (actud) +—
Our algo (expected) -*-
CRalgo (expected) -+~

4 16 64 256 1024

No. of processors

(b)

C/E=25.0

Our ago (actud) ~—

CR dgo (actud) +— |
Our dlgo (expected) -*-
CRalgo (expected) -+

1024

1 4 16 64 256
No. of processors

(d) C/E=100.0

Figure 2.12: Speedups obtained for our algorithm versus CR algorithm for N=1024 and n=2

37

18

Our dgo (actua Our dgo (actua

) *—) *—
B CRago (actud) +— | 16 CRago (actud) +—
Our algo (expected) -*- Our algo (expected) -*-
CRalgo (expected) -+~ CRalgo (expected) -+~
14+ 1
30 L 4
5
Q Q
3 3
i o §
@ @
15 L
10
5 L
0 . . . 0 \ . . .
1 4 16 64 256 1024 1 4 16 64 256 1024
No. of processors No. of processors
(a) C/E=10.0 (b) C/E=25.0
10 T T T T T T T T
Our dlgo (actua) +— 6l QOur algo (actudl) ~— |
CRago (actud) +— CR dgo (actud) +—
Our algo (expected) -*- Our dlgo (expected) -*-
8 CRago (expected) -+~ 5l CRalgo (expected) -+ |
i i
@ @
0 , . . . 0
1 4 16 64 256 1024 1 4 16 64 256 1024
No. of processors No. of processors
(c) C/E=50.0 (d) C/E=100.0

Figure 2.13: Speedups obtained for our algorithm versus CR algorithm for N=1024 and n=4

For N = p our improved mapping scheme for CE algorithm always gives higher

speedup than the CR algorithm.

Increasing the block size n increases the magnitude of speedups obtained by the
two schemes (see figures 2.11(a),2.12(a), and 2.13(a)). Increasing the number of
rows of blocks, N, shows up a similar trend (see figures 2.8 and 2.11, 2.9 and
2.12 and, 2.10 and 2.13). On the other hand, as the C/F ratio increases, the
magnitude of speedup reduces in both the algorithms (see figures 2.8(a), (b),
and (c)).

38

e The speedup of CR algorithm tends to saturate and even fall as the number of
processors increases. Such a saturation effect is absent from our algorithm in
which the speedup progressively increases with the number of processors and

reaches its maximum value at N = p.

e The results obtained from the simulation studies compared well with the theo-
retical predictions obtained from the analytical method. The small differences
between the speedups obtained from both the methods arise due to the follow-
ing reason. The analytical method tries to estimate, as closely as possible, the
amount of overlap between the computation and communication steps. How-
ever, the exact amount of overlap depends on various factors such as the C/E
ratio, precedence constraints between various computation and communication
tasks, and routing scheme used in the multiprocessor system. The effect of all
these factors on the speedup of the algorithms cannot be encapsulated neatly

into a single analytical expression.

2.6 Conclusions

We have proposed a new mapping of the CE algorithm onto hypercube multiproces-
sors for solving block tridiagonal linear systems. This mapping maintains the same
degree of parallelism throughout and uses the concept of data replication to achieve
only neighbouring processor communication at all stages of the processing. We have
demonstrated the effectiveness of our mapping by comparing it with the existing map-
ping of CR algorithm onto hypercubes using both analytical and simulation methods.
Further work is possible in the direction of controlling the amount of parallelism in our
implementation of the CE algorithm [42]. In its present form, our algorithm switches
to the sequential BGE algorithm only after logp — 1 stages when each processor has
an independent set of equations which can be solved without communicating with any
neighbour. However, switching over to BGE algorithm at an earlier stage (say k) may
lead to further improvements in the performance of our algorithm. Determining the

optimal value of k£ is an open problem.

39

Chapter 3

A New Algorithm for Direct Solution of

Sparse Symmetric Linear Systems

3.1 Introduction

In this chapter, we consider the problem of solving sparse symmetric system of linear
equations of the form Az = b, where A is a sparse symmetric matrix of dimension
N x N, and x and b are N-vectors. Such equations arise in various applications such
as finite element problems, power systems analysis, and circuit simulations for VLSI
CAD. Traditionally, the process for obtaining the direct solution for a sparse symmetric

system of linear equations, Ax = b, involves the following four distinct phases.

e Ordering : Apply an appropriate symmetric permutation matrix P such that

the new system is of the form (PAPT)(Px) = (Pb).

e Symbolic factorization : Set up the appropriate data structures for the numerical

factorization phase.
e Numerical factorization : Determine the Cholesky factor L such that A = LL”.

e Substitution : Determine the solution vector x by first solving the forward trian-

gular system Ly = b and then solving the backward triangular system L7z = y.

For solution of multiple b-vectors, the first three phases are carried out only once
to obtain the Cholesky factor L. The substitution phase is then repeated for each
b-vector in order to obtain a different solution vector x in each case. Thus, in problems
which involve solution of multiple b-vectors, the time taken by repeated execution of
substitution phase dominates the overall solution time. Any parallel formulation, which
can reduce the time taken by the substitution phase, will contribute significantly to

enhanced performance of the entire process.

40

Although traditional approaches to parallel solution of sparse symmetric system of
linear equations have yielded efficient parallel algorithms for the numerical factorization
phase [4, 15, 20, 30|, not much progress has been made in the case of substitution
phase due to the limited amount of parallelism inherent in this phase. Moreover,
the forward and backward substitution components of the substitution phase require
different parallel algorithms due to the manner in which data is distributed over various
processors. Existing work on parallel formulations for this phase can be found in
(14, 22, 29].

In this chapter we present a new bidirectional algorithm, based on Cholesky fac-
torization, for the solution of sparse symmetric system of linear equations. In our
algorithm, the numerical factorization phase is carried out in such a manner that the
entire back substitution component of the substitution phase is replaced by a single
step division. The application of the novel concept of bidirectional elimination to dense

linear systems can be found in [42, 43].

The rest of the chapter is organized as follows. In section 3.2, we present the
bidirectional sparse Cholesky factorization algorithm for sparse symmetric matrices.
In section 3.3, we present the bidirectional algorithm for the substitution phase which
does not have a back substitution component. In section 3.4 we develop a bidirec-
tional heuristic algorithm for ordering on the lines of the popular nested dissection
ordering algorithm [13, 10] for sparse symmetric matrices. In section 3.5, we describe
a symbolic factorization algorithm which sets up data structures required by the bidi-
rectional Cholesky factorization phase. In section 3.6, we evaluate the performance
of the bidirectional algorithm on hypercube multiprocessors and present comparison
of our algorithm with the existing scheme based on sparse Cholesky factorization. In
section 3.7, we conclude the work with some observations about possible future im-

provements to the bidirectional scheme.

3.2 The Bidirectional Sparse Cholesky Factorization (BSCF) Algorithm

Unlike the regular Cholesky factorization algorithm which factorizes A to obtain the
lower triangular matrix L, such that A = LL? the BSCF algorithm factorizes A into a

series of trapezoidal matrices of multipliers. This series of trapezoidal matrices remove

41

the need for the back substitution component in the substitution phase.

In this section, we first present an overall view of the concept of bidirectional
Cholesky factorization. We then proceed to describe the manner in which the sparsity of
the coefficient matrix can be exploited to obtain higher degree of parallelism. Following

this we present the details of implementing BSCF algorithm on multiprocessor systems.

3.2.1 Bidirectional Cholesky Factorization - The Concept

In regular Cholesky algorithm, the lower triangular matrix L is obtained by choosing
columns 1 through N of matrix A as pivots so that A = LL”. We name this process as
factorization in forward direction. On the other hand, we can also choose columns N
through 1 of matrix A as pivots and factorize A in a reverse fashion to obtain an upper
triangular matrix U such that A = UTU. We name this process as factorization in
backward direction. The bidirectional Cholesky factorization of the coefficient matrix

A proceeds as follows.

e Step 1. We form two matrices, namely Ay and A;, identical to the coefficient
matrix A. We factorize Ay in the forward direction, but only through the first
[y

5| pivot columns, to obtain a lower trapezoidal matrix Lo, as shown in fig-

ure 3.1, in which only the sub-diagonal entries in columns 1 to [g} are present.

Concurrently, we factorize A; in backward direction, through pivot columns N

to [% + 1], to obtain an upper trapezoidal matrix L;, as shown in figure 3.1, in

which only the super-diagonal elements in columns N to [% + 1] are present.
e Step 2: We duplicate the reduced matrix Ay to form Agy and Ay, and also
duplicate the reduced matrix A; to form A,y and A;;. The matrices Ay and
Ay are factorized halfway through in the forward direction to produce lower
trapezoidal matrices Loy and Lqy respectively. Similarly, the matrices Ag; and
Ay are factorized halfway through in the backward direction to produce upper
trapezoidal matrices Lo, and Lq; respectively. Note that here we factorize the

four matrices Agg, Ag1, A1g, and Aqq in parallel.

e Step 3@ We continue this process of halving the size of the sub-matrices through

simultaneous Cholesky factorization in both forward and backward directions

42

11 12 %13 Py
A — o1 Bog Aoy Py
Agp A3p Agz A3y
A Py Py3 Py
a a a a.
11 12713 T4 A g Mg Ay
a a a a, —
A — 21 22 <23 24 T DOR. Y PV A
0=
a a a a, a a a a
31 32 733 34 31 32 33 34
i a2 Paz w Ay Ay Ay Ay
a a
11 12
Reduced Ay Ag99 Reduced
A L k1 — A
0 - 0 = Al
a, a
33 34
Yz Ay
d33 g4 A dg3 gy a1 A a1 Ao
AOO = 01 :AIO = A
a a a a a a a a
43 ‘a4 43 Y44 21 22 21 22
233 an L
Lo1 11
44 99
| 1
Reduced Ago Reduced Agq Reduced A 1 ReducedAqq

Figure 3.1: The progression of BSCF algorithm for N =4

43

and thus doubling the number of sub-matrices for log N times. Finally we end

up with N sub-matrices of order 1 x 1.

The bidirectional Cholesky factorization algorithm described above produces a tree of
trapezoids of multipliers (i.e., L matrices). In the substitution phase, which is described
in section 3.3, the b-vector, corresponding to which a solution vector x has to be found,
is moved down this tree of trapezoids. At the end of this process each leaf produces
an equation with just one variable which is then solved by a single step division to

produce the solution vector x.

3.2.2 Exploiting the Sparsity of the Coefficient Matrix A

In regular sparse Cholesky factorization of a coefficient matrix A, column 7 directly
modifies column j if j > ¢ and A[i, j] # 0. Column 7 indirectly modifies column j if
column ¢ directly modifies another column & which in turn modifies column j directly
or indirectly. Columns ¢ and j are mutually independent if column ¢ does not modify
column j directly or indirectly. The mutually independent columns of the sparse matrix

can be used as pivots in parallel.

This concept of mutually independent columns can be easily extended to the BSCF
algorithm. At any stage s € {1---log N}, columns i and j (j > i) are forward
independent if pivot column ¢ does not modify column 5 directly or indirectly during
factorization in forward direction. The forward independent columns, 2 and 7, can be
simultaneously used as pivots in forward direction. The columns ¢ and j are backward
independent if pivot column j does not modify column i directly or indirectly during
factorization in backward direction. The backward independent columns, 7 and j, can

be simultaneously used as pivots in backward direction.

In regular sparse Cholesky factorization, the concept of mutually independent
columns can be abstracted with the help of elimination trees. An elimination tree
contains a node corresponding to each column of the coefficient matrix. The parent of

a node i is defined as
parent(i) = min{j | j > i and L[j,i] # 0} .
The elimination tree defines a partially ordered precedence relation which determines

44

when a certain column can be used as pivot.

Similarly, in BSCF algorithm, we can abstract the concepts of forward indepen-
dence and backward independence by means of forward elimination tree and backward
elimination tree respectively. At some stage s € {1---log N}, let A,y be a sub-matrix
being factorized in forward direction and A,; be a sub-matrix being factorized in the
backward direction (z being a possibly empty string of 0’s and 1’s). The forward parent

of node 1, is defined as

fparent(i, Azo) = min{j | j > i and Ly[j, 1] # 0} .
Similarly, the backward parent of node i, is defined as

bparent(i, Ay1) = max{j | j < i and Ly [j,i] # 0} .

For achieving high degree of parallelism during factorization phase, both the for-
ward and the backward elimination trees should be as short and wide as possible. This

is the function of the ordering phase (described in section 3.4).

In the next subsection, we examine the parallel implementation of BSCF algorithm

on multiprocessors.

3.2.3 Implementing the BSCF Algorithm on Multiprocessors

For our present study, we consider the medium grain model of parallelism in which tasks
perform floating point operations over nonzero elements of entire columns of coefficient

matrix. The following elementary tasks are considered for the BSCF algorithm.

e fdivide(i,s) divides by 1/ Auoli, 7] every nonzero element of the sub-diagonal part

of the 7th column of sub-matrix A,g.

e bdivide(i,s) divides by \/Ag1[i, 1] every nonzero element of the super-diagonal

part of the ith column of sub-matrix A,;.

e fmodify(i,vector,s) subtracts the contents of vector from the ith column of a
sub-matrix A,g, at stage s € {1---log N}. vector is an appropriate multiple of
some column j of A,q, which modifies column 7 directly in forward direction at

stage s.

45

e bmodify(i,vector,s) subtracts the contents of vector from the ith column of a
sub-matrix A,;, at stage s € {1---log N}. vector is an appropriate multiple of
some column j of A, which modifies column ¢ directly in backward direction

at stage s.

To keep track of the columns that each pivot should modify at each of the log NV stages,

we maintain the following data structures.

. Fi(s) denotes the set of all columns with indices smaller than i that modify the

1th column in the forward direction at stage s.

. Bi(s) denotes the set of all columns with indices greater than ¢ that modify the

ith column in the backward direction at stage s.

These data structures are generated during the symbolic factorization phase. This
phase is described in section 3.5. In the remaining part of this section, we describe
the implementation of BSCF algorithm on a message passing multiprocessor - initially
for the case where each processor is responsible for only one column of the coefficient
matrix and then for the case where the number of processors p is less than the order

N of the coefficient matrix.

Case p = N : In algorithm 1 below, N processors are being used to factorize an
N x N sparse symmetric matrix A. For each processor P;, the index of the column
stored in it is mycol. At any stage s € {1--- N}, there are two copies of column mycol
stored in processor P;. The first copy is a part of the forward sub-matrix A,y and is
represented by A,o[*, mycol]. The second copy is a part of the backward sub-matrix
A;q and is represented by A, [, mycol]. Thus each processor is responsible for carry-
ing out fmodify(mycol,vector, s), bmodify(mycol, vector, s), fdivide(mycol,s), and
bdivide(mycol, s) operations at every stage, s, of the BSCF algorithm.
Algorithm 1 (*The parallel BSCF algorithm for case p = N*)
begin
for s:=1 to log N do
Let A,y be the forward sub-matrix and A,; be the
backward sub-matrix to which column mycol belongs

at stage s.

46

parbegin
Forward factorize(mycol,s);
Backward _factorize(mycol,s);
parend

end

procedure Forward_factorize(col,s)
begin
for all i € F) do
receive message of the form (col,vector,s) from
processor storing the column 7;

fmodify(col,vector, s);

if col belongs to the first half of sub-matrix A,y then
fdivide(col, s);
for all j such that col € Fj(s) do
send the message (j, Ayo[j, col] X Aygl*, col], s)
to processor storing column j;
else if s < log N then
(*copy column col of Ay to column col of Azge™)
Agool*, col] := Ago[x, col];
(*copy column col of Ay to row col of A,g since only
sub-diagonal part of the columns of the symmetric matrix A,
are stored™)
for all j such that A[j, col] # 0 do
Agor[col, j] == Agolj, col];

end

procedure Backward_factorize(col,s)
begin

for all i € B®) do

col

47

receive message of the form (col,vector,s) from
processor storing the column ;

bmodi fy(col, vector, s);

if col belongs to the second half of sub-matrix A,; then
bdivide(col, s);
for all j such that col € B§S) do
send the message (7, Az1[7, col] X Agi[*, col], s)
to processor storing column j;
else if s < log N then
(*copy column col of A, to row col of A,y since only
super-diagonal part of the columns of the symmetric matrix A,
are stored™)
for all j such that A, [j, col] # 0 do
Agroleol, j] == Anlj, col];
(*copy column col of A, to column col of A1 ™)
Ag1[*, col] := Ag[x, col];

end

The progression of the above algorithm for the case of p = N = 4 is shown in
figure 3.2. In this figure we note that the size of the subset of processors with which
any processor P; communicates, reduces by half with every stage. In stage s = 1, all
processors P; through P, communicate with each other. In stage s = 2, P, and P,
communicate only with each other, and P; and P, communicate only with each other.
Thus communication gets localized with every stage. Such a pattern of communication
also holds for the case of p < N.

In practice, algorithm 1 would be extremely inefficient due to the excessive number
of messages being passed. Also, the number of processors is usually much less than N,
the order of the coefficient matrix. We now discuss the modification of algorithm 1 to

the case where p < N.

48

< < < <
— o™ [ap) <
<] <]
[ap] [2gl [l [ap)
— [~ [ap) <t
<] <]
] [N [\
N — 2\ o <t
< < <]

<
—
- Il
I =
o~ —
[l ___
— =
||||||| =] i
ol
S
<
||||||| Il
S &
< < N Q
|||||||||||||||| ol S
H m / _ - - m
< <
=S
3
= =
ol
A By
[~p] <t
< < _
o
|||||||| <<,
IIIIIIIIIIIIIIII Mm
< ~)
— [a
[aw]
/35
I ol
=) I
< 2
<

N =4 (one column is mapped

Figure 3.2: The progression of BSCF algorithm for p

onto each processor).

49

Case p < N : In Cholesky factorization, if column i modifies column j, then
the factor, by which the modifying column 7 is multiplied, is an element A[j,i] of the
modifying column ¢ itself. This happens due to the symmetric nature of the coefficient
matrix being operated upon. Thus, as seen in algorithm 1, the multiple of the modifying
column is calculated at the processor storing column ¢ itself and the resulting vector is

sent over to the processor storing column j which needs to be modified.

When p < N, there might be more than one column at a processor P, which
modifies column j (i.e., more than one column stored at processor P, might belong to
the sets Fj(s) or BJ(-S)). In place of sending a separate vector as message corresponding
to every column at P, that modifies column j, we can add all these outgoing vectors
together and send them as one vector to the processor storing column j. In this manner,
the number of outgoing messages can be significantly reduced. Note that the above

observation applies for modifications in both forward and backward factorizations.

In algorithm 2 below, we incorporate the above idea in the BSCF algorithm and
present the fan-in BSCF algorithm. The set Listy,q is the set of columns stored in
processor Pp,,;4. Each processor maintains the sparse vectors fUpdate; and bUpdate;
for 1 < j < N. If column 7 is to modify column j in forward direction at stage s then,
after performing fdivide(i, s) operation, the processor P,,,;qs, which stores the column
i, adds an appropriate multiple of column 7 to the vector fUpdate;. When such an
addition has been performed for all the columns in processor P,,,;s that modify column
j in forward direction at stage s, a message containing the fUpdate vector is sent to
the processor storing the column j. Similar mechanism operates for factorization in
backward direction.

Algorithm 2 (*The parallel fan-in BSCF algorithm for case p < N*)
begin

for s:=1 to log N do

parbegin
Forward_factorize(List,,yiq,5);
Backward_factorize(List,,yiq,5);
parend

end

50

procedure Forward factorize(List,s)
begin
for i :=0to N — 1 do fUpdate; :=0;
while List # ¢ do
if 3i € List such that fdivide(j, s) has been performed for all j € F,;(s) then
Let column 7 belong to the forward sub-matrix A,y at stage s;
while messages of the form (i, fvector,s) have not been received from
all processors that store columns belonging to Fi(s) do

receive messages of the form (i, fvector,s);

fmodify(i, fvector, s);

if column 7 belongs to the first half of sub-matrix A,, then
fdivide(i, s);
for all j such that i € F_’j(s) do
fUpdate; == fUpdate; + Azolj, 1] X Agol*,1];
if fdivide(k, s) has been done for all k € F*) N List then
send a message of the form (j,fUpdate;,s)

to processor storing column j;

else if s < log N then
(*copy column 7 of A,y to column i of A,0™)
Agzool*, 1] i = Ago[x, 1];
(*copy column i of Ay to row i of Ag since only sub-diagonal
part of the columns of the symmetric
matrix A, are stored™)
for all j such that A,[j,7] # 0 do
Azoi[i, 5] = Asol], 1;
List := List — 1;

end

51

procedure Backward_factorize(List,s)
begin
for i := 0 to N — 1 do bUpdate; :=0;
while List # ¢ do
if 37 € List such that bdivide(j, s) has been performed for all j € st) then
Let column 7 belong to the backward sub-matrix A, at stage s;
while messages of the form (i,bvector,s) have not been received from
all processors that store columns belonging to st) do

receive messages of the form (i,bvector,s);

bmodi fy(i, bvector, s);

if column 7 belongs to the second half of sub-matrix A,; then
bdivide(i, s);
for all j such that i € BJ(-S) do
bUpdate; := bUpdate; + Azi[j, 1] X Agi[*,1];
if bdivide(k, s) has been done for all k € B,(Cs) N List then
send a message of the form (j,bUpdate;,s)

to processor storing column j;

else if s < log N then
(*copy column i of A,y to row i of A,y since only
super-diagonal part of the columns of the
symmetric matrix A, are stored™)
for all j such that A,[j,7] # 0 do
Azio[i, j] = AnlJ,1];
(*copy column 7 of A, to column i of A7)
Apni[*, 1] = Ag[*,1];
List := List — 1;
end
An important observation is in order in algorithm 2. Let the number of processors

p = 2% (as in hypercube multiprocessors) and N = 2" (n,d € N, the set of natu-

52

L

Pi Py Py Py
A = I I I	
I ' I	
1-4 5-819-1213-16	
Pl. Poy Py Py Pp Pyl Pg Py	
. . I l I	
	1
' ! ! ' L	
= LO: I :	:1 :Al
I I l I I	
I I	!
1	1
] !]
1-4 5-8 9-12/13-16 1-4 5-8 9-12 13- 16	
:	
Loo Ao1 N1 L =0 N A	
l	
9-12 13/ 16 91213-16 1-4 5|8 144 5-8
Y00 md_ ——Y 01 Tnd —Y10 Tnd \—1-Y 11 Tnd
00 Ind— Lot L= LT

Figure 3.3: Progression of the BSCF algorithm for p = 4 and N = 16 (four columns

are stored in each processor).

53

ral numbers). Assume that we map the equations on the processors in a block wrap
manner (as shown in figure 3.3). Thus each processor holds % = 2" 4 consecutive
equations. At the end of d = log p stages of the fan-in BSCF algorithm, each processor
contains an independent system of % equations. This independent system can be fac-
torized within a single processor without any communication with any other processor.
Since, on a single processor, regular sequential sparse Cholesky factorization performs
more efficiently than the fan-in BSCF algorithm, we can switch over to this regular

sequential version after logp stages and factorize the coefficient matrix (say A;,q) of

this independent system into the form A;,q = LindL;and. This results in enhancing the
performance of the fan-in BSCF algorithm. The manner in which this factorization

proceeds is shown in figure 3.3.

3.3 The Substitution Phase

In this section we present the bidirectional substitution (BS) algorithm. Unlike the reg-
ular algorithm, which consists of two triangular solution components (i.e., the forward
substitution followed by the backward substiution), the BS algorithm consists of only
one forward solution component, which is followed by a single step division to yield
the solution vector x. Following the pattern of the previous section, we first present
an overall view of the concepts behind the BS algorithm. We then proceed to describe
the manner in which the sparsity of the series of trapezoidal factor matrices can be

exploited to obtain a higher degree of parallelism.

3.3.1 Bidirectional Substitution Algorithm - The Concept

The scheme we propose below is somewhat on similar lines to the parallel column
triangular solver (PCTS) proposed by Li and Coleman in [34]. To find the solution

vector x, for a given b-vector, we begin with two copies of b-vectors b, and b;.

e Step 1: The vector by is modified by successive columns of trapezoids of multipli-

ers L (i.e., from column 1 to column [£]). In other words, after modification by

column i — 1, the processor containing column i computes x; as z; = bg[i]/ Lo[t,]

54

N update N
bl
L 1
b 0 Ly b1
updated \
)
L \ L
. upd{)lteﬂ i
b 01
00] upda g\ bo1 by
boo
L oo L
_ _ 1 _
X =b oy, x37b g/ ay Xo=bygf a4y x =b /&

Figure 3.4: The progression of substitution phase for N =4

%)

and modifies the remaining elements of by-vector as by[j] = bo[j] — Lolj, 7] * ;
for all j such that Ly[j,i] # 0. At the end of updation by Ly, the size of vec-
tor by is reduced to half its original size (see figure 3.4). Simultaneously, the
vector by is updated by successive columns of the trapezoidal matrix of multi-
pliers L; in backward direction (i.e., from column N to column [£] + 1). In
other words, after modification by column 7 + 1, the processor containing col-
umn i computes z; as x; = b1[i|/L1[i, 7] and modifies the remaining b;-vector as
bi[j] = b1]j] — L1lj, 7] * x; for all j such that L[j,4] # 0. At the end of updation

by Ly, the size of vector by is reduced to half its original size (see figure 3.4).

e Step 2: The reduced by is copied to form vectors bgg and by; whereas the reduced
by is copied to form vectors big and by;. The new vectors byg and by are modified
by Lgg and Ly, respectively in forward direction whereas the vectors by, and by
are modified by Ly and Li; respectively in backward direction. Thus the size

of these new b-vectors gets reduced by another factor of half (see figure 3.4).

e Step 3: This process of reducing the size of b-vectors and doubling their numbers
continues for log N stages by which time there will be N b-vectors of only one
element each. These N b-vectors, when divided by N elements obtained at the

end of factorization phase, will give N z-vector elements.

3.3.2 Increasing Parallelism by Exploiting Sparsity

In the above scheme we observe that the process of modifying a b-vector through suc-
cessive columns of a trapezoid is inherently sequential and is communication intensive
in case the successive columns happen to reside on separate processors. George et.al.
have proposed in [14], parallel schemes for solving sparse triangular systems resulting
from regular Cholesky factorization. Their scheme is an adaptaion of the correspond-
ing dense algorithm proposed by Romine and Ortega in [49] and it uses the following

inner product form to carry out forward factorization.

T = (bz Z (L[L]}*T?)) /L[777] 1=1,2--- N

{4 L1i.5)#0}
Since the columns and the corresponding solution components are distributed among

the processors, the inner product computation is partitioned accordingly.

56

The above concept of distributed computation of inner product can be applied to
the BS algorithm. Consider the case where the vector b,, is to be updated by the
trapezoid L, in the forward direction. Instead of moving the vector b,y from left to
right across the trapezoid L, each element b,[i] is updated as follows. Each processor
computes the products of the elements of the row i of the trapezoid that it contains
with the corresponding elements of the solution vector x and sends their sum i.e., the
partial inner product, to the processor containing column 7. Upon receiving the con-
tributions to the inner product from each processor, the processor storing the column
1 subtracts them from b,o. If column 7 belongs to the first half of the matrix A,y then,
after subtracting the complete inner product of row i in L,q from b,g[i], the processor
storing the column i computes x; = by[i|/Lyol7,4]. This z; is then used for calculating
the partial inner products of rows 7 > 7. On the other hand if the column 7 belongs
to the second half then after subtracting the complete inner product of row 7 in L,
from boi], two copies of the element b,,[i], namely byo[i] and bye1[i], are made for
modification at the next stage of the BS algorithm. Similar mechanism operates while
updating a vector b,; with a trapezoid L,; in backward direction. The complete details
of the BS algorithm are given below.

Algorithm 3 (* The bidirectional substitution algorithm *)
begin

for s:=1 to log N do

parbegin
Forward_modify(List,.yiq,s);
Backward_modify(List,,yi4,9);
parend

end

procedure Forward modify(List,s)
begin
Let b, be the forward copy of the b-vector to be modified
by trapezoid L,y at stage s.
for i:=1to N dot; :=0;

o7

for all 7 € List do
for all j such that processor P; has nonzeros belonging to row i of L,, do
receive message (i,t) having partial inner product ¢ from processor P;;
byoli] 1= byoli] — ¢;
if column 7 belongs to the first half of L., then
x; := byolt]/ Laol, 1];
for all j such that L,[j,7] # 0 do
tj :=1t; +x; % Lylg, il;
if x; has been calculated for all k such that L.[j, k] # 0 and
k € List then
send message (j,t;) to processor storing column j;
else if s < log N then
broo (1] = baoi];
bro1 (1] = baoi];
else (* s =log N *) z; := byoli|/ Lyoli];

end

procedure Backward_modify(List,s)
begin
Let b,; be the backward copy of the b-vector to be modified
by trapezoid L, at stage s.
for i :=1to N do t; := 0;
for all « € List do
for all j such that processor P; has nonzeros belonging to row i of L,; do
receive message (i,t) having partial inner product ¢ from processor P;;
by [i] := by [i] — ¢
if column 7 belongs to the second half of L,; then
x; := by [t]/ L [i, 1];
for all j such that L,[j,7] # 0 do
tj =t + xi% L[5, 7];
if z;, has been calculated for all £ such that L,;[j, k] # 0 and

28

k € List then
send message (j,t;) to processor storing column j;
else if s < log N then
baro[i] := baa [i];
bei1[i] := baa [1];
else (* s =log N *) x; := b1 [i]/ L1 li];
end
As in the case of the BSCF algorithm, a special situation arises when p = 2¢ and
N =2" (n,d € N). After d = logp stages, the BSCF algorithm switches over to the
regular sparse Cholesky factorization and produces triangular factor matrix of the form
L;,q in the last stage such that A;,q = LmdLZ;,d- Thus in the substitution phase, let
bina be one of the p reduced vectors after logp stages of BS algorithm. We now switch
over to the sequential substitution algorithm for solving the two triangular systems,
Linay = bing and Lz;ldx = y. In this manner, we avoid executing excessive number of
floating point operations when all the remaining computations are resricted to occur

within individual processors.

In the next two sections, we describe the ordering and the symbolic factorization

algorithms that precede the BSCF algorithm.

3.4 Ordering the Sparse Symmetric Matrix for Bidirectional Factorization

A good initial ordering of a sparse matrix A is crucial to the efficient solution of the
sparse symmetric system Ax = b. The basic aim of the ordering phase is to reorder
the columns of the coefficient matrix in such a manner that during the factorization
phase, the amount of fill-in is minimized and the degree of parallelism is maximized.
In a parallel environment, the former aim is not as important as the latter aim since
large amounts of memory are available very cheaply.

Sparse symmetric matrices chiefly arise from &k x k regular grids that are encoun-
tered in finite element problems. The principal ordering heuristic used for reordering
the matrices obtained from the regular grid problems is the popular nested dissec-
tion ordering method [13, 10]. The nested dissection ordering yields short and wide

elimination trees that are well suited for parallel factorization algorithms. For regular

59

Cholesky factorization, this ordering technique satisfies the criteria of both low fill-in
and short and wide elimination trees. However, the nested dissection ordering in its
existing form is not suited for the BSCF algorithm due to reasons given below. Recall
that in section 3.2.2 we defined the concepts of forward elimination tree and backward
elimination tree for the BSCF algorithm. The degree of parallelism while factorizing
in forward direction depends on the shape of the forward elimination tree and that for
factorizing in backward direction depends on the shape of the backward elimination
tree. An ideal ordering for the BSCF algorithm is one in which both the elimination
trees are as short and wide as possible. The forward elimination tree obtained from
nested dissection algorithm is short and wide and hence desirable for parallel factoriza-
tion. On the other hand the backward elimination tree obtained from nested dissection

algorithm is lean and tall and hence undesirable for parallel factorization.

In the remaining part of this section, with the help of an example of a 7 x 7 grid,
we show why the regular nested dissection algorithm is not suited for BSCF algorithm
and then we describe how it can be modified to yield orderings suitable for the BSCF
algorithm.

The nested dissection algorithm begins by recursively dividing a k£ x k grid into two
disjoint parts using a set of nodes as separator nodes and applying the nested dissection
algorithm again to the two separated halves. Figure 3.5 shows the manner in which the
separators (S1 to S15) divide a 7 x 7 grid. The recursive division of the grid yields a
tree structure of separators and nodes as shown in figure 3.6. We call this tree a nested
dissection tree. The internal nodes of the tree are separator blocks and the leaves of
the tree are blocks of node(s) at lowermost level which cannot be further sub-divided
using nested dissection. The dimension of such blocks can be 1 x 1, 1 x 2, 2 x 1 or
2 x 2. Such indivisible blocks are called leaf blocks.

In regular nested dissection ordering, all the grid points at the leaf blocks(say at
level 0) are numbered in ascending order. Then the separator grid points at level 1
are numbered, then level 2 and so on until the grid points at the root separator blocks
get numbered. The ordering resulting from this scheme is shown in figure 3.7 and
the forward and backward elimination trees resulting from this ordering are shown

in figure 3.8. As seen from figure 3.8, although the forward tree is short and wide,

60

S 15 S 14 S11 S 10
o e e]] e e

S3| e o o]] e e g9
o o e]] e e

S 13 S 12 S9 S8

Figure 3.5: Dissection of a 7 x 7 grid by separators during nested dissection

,/Sl\
ZO U N
ZANVANNVANERVAN

/\/\ /\AA/\ VANAN

Figure 3.6: The nested dissection tree for a 7 x 7 grid

61

[] [] []
16 36 14
o] e [
24 35 23
[] [] []
15 | 34] 13
[] [] []
40 41 42
[] [] []
12 33 10
] |+ L[]
22 32 21
[] [] []
11 31 9

49

48

47

46

45

8 30 6
o] e [
20 29 19
[] [] []

7 | 28 5

[] [] []
39 38 37

[] [] []

4 927 2
] |+ L[]
18 26 17

[] [] []
3 25 1

Figure 3.7: Ordering of a 7 x 7 grid using regular nested dissection ordering

the backward tree is lean and tall.

performance of the BSCF algorithm.

Hence this ordering is not conducive for good

We now look at a modification of the regular nested dissection algorithm which

produces orderings that provide reasonably good parallelism properties in both forward

and backward directions.

ordering which proceeds as follows.

We call this heuristic as the bidirectional nested dissection

e Step 1 : Carry out the dissection part of the nested dissection algorithm as

described above. This gives a nested dissection tree as shown in figure 3.6.

e Step 2 : At each level of the nested dissection tree, approximately half of the

tree nodes are labeled white and the other half are labeled black as shown in

figure 3.9.

e Step 3 : While numbering the grid points, we proceed as follows.

1. Keep two counts - whiteCount initialized to 1 and blackCount initialized

to k x k.

62

49

[y

48 2
47 '
46 .
45 28
44
43 31 29
— T 32 30
39 42 33
38 41 1
37 40
a7 35
27 30 33 36 38 36
26 29 32 35 39
25 28 31 34

AN NEAY 43/\41

17 18 19 20 21 22

AANANNAN ;

12 3 4567 89 101112131415 16 .
49

forward elimination tree backward elimination tree

Figure 3.8: The forward and backward elimination trees for a 7 x 7 grid obtained using

regular nested dissection ordering

/\
A /\
A ANSVANERYAN

9b w|S10 b|S11 [S13w |S13b w|S14 bS15
/\ /\ AN AYA N AN AWA
;v l; w bw b w b w b w b

L4 o
w w

W

w : White b : Black

Figure 3.9: The colouring of tree nodes in bidirectional nested dissection ordering

63

[] [] [] [] [] [] []
1 13 2 28 5 16 6
o] el L] e L[] e| L]
9 14 1 27 1 17 39
[] [] [] [] [] []
49 | 15] 48 26 45 | 18] 44
[] [] [] [] [] [] []
19 20 21 25 29 30 31
[] [] [] [] [] []
3 35 4 24 7 32
I O L N EY R Y
10 36 40 23 12 33 38
[] [] [] [] [] [] []
47 37 46 2 43 34 42

Figure 3.10: Ordering of a 7 x 7 grid using bidirectional nested dissection ordering

2. Take a grid point at level 0. If the leaf node to which it belongs is white then
number the grid point as whiteCount and increment whiteCount. Other-
wise the leaf node is black. Hence number the grid point as blackCount

and decrement blackcount.

3. The above step is applied to all grid points of each node at level 0 followed

by each node at level 1 and so on upto the root.

The ordering obtained from this scheme is shown in figure 3.10 and the corresponding
forward and backward elimination trees are shown in figure 3.11. As seen in this
figure, although the forward elimination tree is not as short and wide as in the case of
regular nested dissection ordering, the backward tree is definitely more conducive for
good performance of parallel factorization than in the previous case. Essentially we
have succeeded in balancing the degree of parallelism in both forward and backward
directions so that lack of parallelism in any one direction does not act as a bottleneck

to the entire BSCF algorithm.

In the next section we look at the bidirectional symbolic factorization algorithm

64

. 18 25 26
17 \ 37
4
/\ N ‘ /\
/\ /K 7 4
21 3 6 11 0 15 0 47
5
5 31 32 48
1 20 22 39 33
7
N 44 34

forward elimination tree backward elimination tree

Figure 3.11: The forward and backward elimination trees for a 7 x 7 grid obtained

using bidirectional nested dissection ordering

65

which allocates memory and sets up the appropriate data structures prior to the BSCF

algorithm.

3.5 The Bidirectional Symbolic Factorization Algorithm

The principal aim of the symbolic factorization phase is to determine apriori, the data
structure of the factor matrices that result from the numerical factorization phase. As
seen in section 3.2, the BSCF algorithm creates a series of trapezoidal factor matrices of
multipliers. Hence, the bidirectional symbolic factorization algorithm, which precedes

the BSCF phase, does the following.

e [t determines the structure of each trapezoidal factor matrix at each of the log N

stages and

o It initializes the data structures for the sets F*) and B’ which are required

during the BSCF algorithm.

We define Colstruct(Az,i) to denote the set of row indices of nonzeros in the

sub-diagonal part of column 7 in the forward matrix A,g.
Colstruct(Ag, i) = {j | j > i and Agolj,i] # 0}.

In a similar fashion, we define Colstruct'(A;1,7) to denote the set of row indices of

nonzeros in the super-diagonal part of column i of the backward matrix A,;.
Colstruct'(Az1,1) = {j | j <iand A [j,7] # 0} .

We now describe the bidirectional symbolic factorization algorithm.
Algorithm 4 (*The bidirectional symbolic factorization algorithm™)
begin
for s:=1 to log N do
for col :=1 to N do
F) = ;B = ¢

for s:=1 to log N do
for col :=1 to N do

66

Forward_SF(col,s);
for col := N downto 1 do
Backward_SF(col,s);

end

procedure Forward SF(col,s)
begin
Let A,y be the forward sub-matrix that contains column col at stage s;
if col belongs to the first half of A, then
Calculate fparent(col, Ayp) using definition given in section 3.2.2;
if fparent(col, Ay) belongs to the first half of A,y then
Colstruct(Agg, fparent(col, Ay))
Colstruct(Agg, fparent(col, Ay) U Colstruct(Ay, col);
for all j such that j belongs to second half of A,y and Ay[col, j] # 0 do
Colstruct(Ag, j) := Colstruct(Ag, j) U Colstruct(Az, col);
for all j such that j € Colstruct(A,o, col) do
Fj(s) = Fj(s) U {col};
else
Colstruct(Azoo, col) := Colstruct(Ay, col);
for all j € Colstruct(Ay, col) do
Colstruct' (Azor,7) := Colstruct' (Azo, j) U {col};

end

procedure Backward_SF(col,s)
begin
Let A, be the backward sub-matrix that contains column col at stage s;
if col belongs to the second half of A,; then
Calculate bparent(col, A;1) using definition given in section 3.2.2;
if bparent(col, A1) belongs to the second half of A,; then
Colstruct' (A, fparent(col, Az))
Colstruct' (A, fparent(col, Ayy) U Colstruct' (A, col);

67

for all j such that j belongs to first half of A, and A, [col, j] # 0 do
Colstruct' (A1, J) = Colstruct' (Agz, j) U Colstruct' (A, col);
for all j such that j € Colstruct' (A, col) do
BY .= BY U {col};
else
for all j € Colstruct'(A;1, col) do
Colstruct(Azo, j) = Colstruct(Az10,J) U {col};
Colstruct' (Azi, col) := Colstruct' (Az1, col);

end

The bidirectional symbolic factorization algorithm described above has time com-
plexity proportional to the number of nonzero elements stored in trapezoids at each
stage. Since the symbolic factorization algorithm is executed only once while solv-
ing for multiple b-vectors and also since this phase takes significantly lower time than
the numerical factorization phase, parallelizing this phase does not yield significant

improvements in the overall performance.

For the case of regular symbolic factorization, parallel algorithms have been de-
scribed in [16, 28]. While the former scheme by George et.al. requires the information
about the elimination tree structure apriori, the latter scheme by P. S. Kumar et.al.
does not require this information and uses the concept of false elimination trees (fet)
to compute the symbolic factorization. More specifically, the computation begins with
the leaves of the false elimination tree which pass their column structure information
to their true parents. Each internal node then combines the column structures of all its
children with its own column structure, computes the true parent and sends its column
structure information to its true parent. This process continues till all the information

propagates to the root node.

We have developed a parallel bidirectional symbolic factorization algorithm based

on a similar concept of forward and backward false elimination trees.

e ffparent(i,s) denotes the false forward parent of a column ¢ in the sub-matrix

68

Ao being factorized in the forward direction at stage s.

ffparent(i,s) = min{j | j € first half of A,y and j € Colstruct(Ag, 1)} .

e fbparent(i,s) denotes the false backward parent of a column 7 in the sub-matrix

A1 being factorized in the backward direction at stage s.

foparent(i,s) = max {j | j € second half of A,y and j € Colstruct' (A7)} .

The details of this algorithm are described below.
Algorithm 5 (*The parallel bidirectional symbolic factorization™)
begin
for s := 1 to log N do
parbegin
Forward_SF(List,yia,s);
Backward_SF (List,,4,5);
parend

end.

procedure Forward_SF(List,s)
begin
for each ¢ € List do
Let A,y be the forward sub-matrix to which column 7 belongs at stage s;
dummy_parent := last node of sub-matrix A,g;
Determine the false forward parent f fparent(i, s);
send f fparent(i, s) to processor containing dummy_parent;
if » = dummy_parent then
receive f fparent(j,s) from each column j;
broadcast forward fet Ty; constructed from received
f fparent information;
recetve forward fet Ty broadcast from dummy_parent;
Let the children of column ¢ in Ty be CHLD(i);

(*initialise the expected and accumulated weights for node 7*)

69

exp-wt(i) :==| CHLD(i) |; accowt(i) := 0;
first(i):=true;
if column ¢ is a true leaf of T}y and column ¢ is in
first half of sub-matrix A,y then
send Colstruct(Ago, 1) to ffparent(i,s) with weight 1;
send Colstruct(Ay, i) with weight 0 to all nodes j in second half of
Ay such that j € Colstruct(Ag, 1) ;
repeat
receive a message S intended for column i;
Let the message be from processor storing column j with weight w;
if column 7 is in first half of sub-matrix A,y then
case type of S
attach or ordinary:
Colstruct(Agg, i) := Colstruct(Azg, i) U Colstruct(Ag, j);
acc_wt ;= acc_wt + w;
if j € CHLD(i) then delete j from CHLD(i);
if (| CHLD(i) =0) and (acc_wt(i) > exp_wt(i)) then
ffparent(i,s) :== k where k = min(Colstruct(Az,1));
if f fparent(i) has changed then
send a detach message to old parent;
if first(i) then
wt := acc_wt(i) — exp_wt(i) + 1;
exp-wt(i) := 0;
first(i) :=false;
else
wt = w;
send Colstruct(Ago, 1) to ffparent(i) with weight wt;
send Colstruct(Agz, 1) to all nodes j in second half of A,
such that j € Colstruct(Ay,) with weight 0;
detach :
delete j from CHLDi);

70

else
case type of S
attach or ordinary:
if j € Colstruct(Ayo,i) then
Colstruct(Agg, i) := Colstruct(Ayg, i) U Colstruct(Ago, j);
detach:
if 1 = dummy_parent then
delete j from CHLD(i);
if (|CHLD(i) =0) then
broadcast forward phase over message;
until S is forward phase over message;
for each 7 € List do
if column 7 is in second half of sub-matrix then
Colstruct(Azgo, 1) := Colstruct(Az, 1);
for all j such that A,[j,7] # 0 do
Colstruct' (Azon, j) := Colstruct(Agr, j) U i;

end

procedure Backward_SF(List,s)
begin
for each ¢ € List do
Let A, be the backward sub-matrix to which column ¢ belongs at stage s;
dummy_parent := last node of sub-matrix A,;;
Determine the false backward parent fbparent(i, s);
send fbparent(i, s) to processor containing dummy_parent;
if » = dummy_parent then
receive fbparent(j, s) from each column j;
broadcast backward fet Ty, constructed from received
fbparent information;
receive backward fet Ty, broadcast from dummy_parent;

Let the children of column ¢ in T, be CH LD(i);

71

exp-wt(i) :==| CHLD(i) |; accowt(i) := 0;
first(i):=true;
if column ¢ is a true leaf of T, and column ¢ is in second half
of sub-matrix A,; then
send Colstruct' (A, 1) to fbparent(i, s) with weight 1;
send Colstruct'(Ag, i) with weight 0 to all nodes j in first half
of sub-matrix A,; such that j € Colstruct'(Az1,1) ;
repeat
receive a message S intended for column i;
Let the message be from processor storing column j with weight w;
if column 7 is in second half of sub-matrix A,; then
case type of S
attach or ordinary:
Colstruct' (A, 1) := Colstruct'(Az1,1) U Colstruct' (Az, 7);
acc_wt ;= acc_wt + w;
if j € CHLD(i) then delete j from CHLD(i);
if (| CHLD(i) =0) and (acc_wt(i) > exp_wt(i)) then
foparent(i, s) :== k where k = max(Colstruct' (A, 1));
if fbparent(i) has changed then
send a detach message to old parent;
if first(i) then
wt := acc_wt(i) — exp_wt(i) + 1;
exp-wt(i) := 0;
first(i) :=false;
else
wt = w;
send Colstruct' (A, 1) to fbparent(i) with weight wt;
send Colstruct'(Az1,1) to all nodes j in first half of sub-matrix
such that j € Colstruct'(Az1,1) with weight 0;
detach :
delete j from CHLDi);

72

else
case type of S
attach or ordinary:
if j € Colstruct' (A1, i) then
Colstruct' (Az, 1) := Colstruct'(Az,1) U Colstruct' (A, j);
detach:
if 1 = dummy_parent then
delete j from CHLD(i);
if (|CHLD(i) =0) then
broadcast backward phase over message;
until S is backward phase over message;
for each 7 € List do
if column 7 is in first half of sub-matrix then
for all j such that A,[j,i] # 0 do
Colstruct(Azo, j) = Colstruct' (Azo,) U i
Colstruct' (Azir, i) == Colstruct' (Az1,1);

end

3.6 Experimental Results and Performance Analysis

To evaluate the performance of the entire bidirectional scheme presented in this work,

we implemented a hypercube simulator in C language and compared the speedups

obtained from the bidirectional scheme with those obtained from the regular scheme.

We used SPARC Classic machine to carry out our simulations.

In the bidirectional scheme, we implemented each of the four phases as follows.

e Ordering : The bidirectional nested dissection ordering described in section 3.4.

e Symbolic factorization : The sequential bidirectional symbolic factorization al-

gorithm described in section 3.5.
e Numerical factorization : The parallel BSCF algorithm described in section 3.2.

e Substitution ' The parallel BS algorithm described in section 3.3.

73

In the regular scheme, we implemented each of the four phases as follows.

e Ordering : The regular nested dissection algorithm for ordering a £ x k grid.

e Symbolic factorization : The sequential symbolic factorization algorithm pre-

sented in [16].
e Numerical factorization : The parallel fan-in algorithm given in [4].

e Substitution :The elimination tree based forward and back substitution algo-

rithms given in [29].

Mapping of columns onto processors is an important issue. For the bidirectional
scheme, we have used the block wrap around mapping using gray code whereas for
the regular algorithm we have used the subtree-to-processor mapping [17] based on

elimination tree.

The parameters that were varied were the grid size k(16 and 32), the number
of processors p(1 to 1024), the number of b-vectors for which solution vector z was
obtained, and the C'/FE ratio i.e., the ratio of time for communicating a floating point
data between two neighbouring processors to the time for a floating point operation(50
and 100). Figures 3.12, 3.13, 3.14, and 3.15 show the comparison of the measured

speedups of the two schemes for various values of the above parameters.

As mentioned earlier in section 3.1, the first three phases, namely ordering, sym-
bolic factorization, and numerical factorization, are executed only once and the substi-
tution phase is repeatedly executed for each one of the different b-vectors. The output
of the factorization phase of the bidirectional algorithm is a series of trapezoidal factor
matrices whereas the output of the regular factorization algorithm is the pair of lower
and upper triangular factor matrices. As a result, the inputs to the substitution phase
of bidirectional and regular algorithms also differ. For separate comparison of the two
phases of bidirectional and regular algorithms, we have considered a pseudo-speedup
ratio for the bidirectional algorithm. This is a ratio of the time taken by the best se-
quential regular algorithm for the factorization (substitution) phase to the time taken
by the parallel bidirectional algorithm for the factorization (substitution) phase.

Therefore figures 3.12(a), 3.13(a), 3.14(a), and 3.15(a) compare the pseudo-speedup
of the bidirectional algorithm with the speedup of the regular algorithm for the first

74

12 T T T

P— * Bidirectional algo —~—
. Regular algo -*---
l 1 //// \\K\ i
N ,*/ %
08 \ ™ ,
o ‘*,/l h “
=} -
B osf
&
04]
02 i
0
1 2 4 8 16 32 64 128 256
No. of processors
(a) factorization
5 T T T

Bidirectional algo —~+—
Regular algo —*-—

Speedup
N
o

2
15
1¥
05 L L L L L L L
1 2 4 8 16 32 64 128 256
No. of processors
(b) substitution
Bidirectional algo —~+—
3 Regular algo —*-—

Speedup

10 20 30 50 60 70

40
No. of b-vectors
(c) solving multiple b-vectors with 8 processors

Figure 3.12: Speedups obtained for bidirectional algorithm versus regular algorithm for a

16 x 16 grid (i.e., N = 256) with C/FE = 50

7

12 K ' ' '
Bidirectional algo —~—
Regular algo -*---

Speedup
(2]

0
1 2 4 8 16 32 64 128 256
No. of processors
(a) factorization
55 T T T T
Bidirectional algo —~+—
5r Regular algo -*— |

Speedup
N
(5]

0 L L L L L L L
1 2 4 8 16 32 64 128 256
No. of processors

(b) substitution
28 T T T T
Bidirectional algo —~+—
26 L Regular algo -*--- |

Speedup

1.2 I I I I I I I

70 80 920 100

20 30 40 50 60
No. of b-vectors

(c) solving multiple b-vectors with 8 processors

Figure 3.13: Speedups obtained for bidirectional algorithm versus regular algorithm for a

16 x 16 grid (i.e., N = 256) with C/E = 100

76

35 T T T

Bidirectional algo —+—
Regular algo -*---
3 L 4
S
f“ A .
P : |
&
15 * R
1x]
0.5 R

1 2 4 8 16 32 64 128 256 512
No. of processors

(a) factorization

12 T T T T
Bidirectional algo —~+—
Regular algo —*-—
10 | R
8 L 4

Speedup
o
X

.
1 2 4 8 16 32 64 128 256 512
No. of processors

(b) substitution

8 T T T
Bidirectional algo —~+—

. Regular algo —*-—

6 L

5 L

Speedup
S

1
0 50 100 150 200 250 300 350
No. of b-vectors

(c) solving multiple b-vectors with 8 processors

Figure 3.14: Speedups obtained for bidirectional algorithm versus regular algorithm for a

32 x 32 grid (i.e., N = 1024) with C/E = 50

77

2 T T
. Bidirectiona algo ~—
18 . Regularadgo -*— A

16 | s X, .

14t]

Speedup
=
o
*

0 . . . |
1 4 16 64 256 1024
No. of processors

(a) factorization

9 T T T

Bidirectional algo —~+—
gl Regular algo -*--- |
7 L 4
6 L 4

Speedup
ol
*
*

l oo - L L L L
1 4 16 64 256 1024
No. of processors

(b) substitution

5 T T T T
Bidirectional algo —~+—
45 b Regular algo -*--- |
4+]
35 1

Speedup
w

1
20 40 60 80 100 120 140 160 180
No. of b-vectors

(c) solving multiple b-vectors with 16 processors

Figure 3.15: Speedups obtained for bidirectional algorithm versus regular algorithm for a

32 x 32 grid (i.e., N = 1024) with C/E = 100

78

three phases put together. The figures 3.12(b), 3.13(b), 3.14(b), and 3.15(b) compare
the pseudo-speedup of the bidirectional algorithm with the speedup of the regular
algorithm for the substitution phase alone. Figures 3.12(c), 3.13(c), 3.14(c), and 3.15(c)
plot the actual speedups of bidirectional and regular algorithms for all the four phases
put together versus the number of b-vectors for which substitution phase is repeatedly
executed. In figure 3.12(c), this comparison has been shown for the case when p = 8
and k = 16 (or N = 256) since, for k£ = 16, bidirectional factorization phase gives
maximum speedup at p = 8. Similarly, in figure 3.13(¢) p = 8 and k£ = 16, in figure
3.14(¢) p = 32 and k = 32, and in figure 3.15(c¢) p = 16 and k£ = 32 (or N = 1024).
These figures clearly indicate that with increasing number of b-vectors, the speedup
obtained from our bidirectional scheme becomes higher than that obtained from the
regular scheme. On increasing the problem size from k£ = 16 to 32, we observe that
the magnitude of speedup obtained also increases. Increasing the C//E ratio causes a

decrease in the magnitude of speedup obtained.

3.7 Conclusions

In this chapter, we have proposed a new bidirectional algorithm for direct solution
of sparse symmetric system of linear equations. This scheme generates a series of
trapezoidal factor matrices during the factorization phase due to which the substi-
tution phase has only one forward substitution component and, unlike the regular
substitution algorithms, it does not possess a back substitution component. Thus the
bidirectional algorithm is well suited for situations where the system of equations has
to be solved for multiple b-vectors. We have demonstrated the effectiveness of the
bidirectional algorithm by comparing it with the regular methods for solving sparse
symmetric systems. Further work is possible in the direction of increasing the amount
of parallelism in the factorization and substitution phases of the bidirectional algorith-
m. In this work, we have considered a situation where computations on a particular
column, say i, for both forward and backward factorizations are handled by the same
processor. However, the computations for forward and backward factorizations are
independent of each other (i.e., concurrent) at every stage s. Same is the case with

the computations on a column ¢ in substitution phase. This concurrency has not been

79

sufficiently exploited in the present work. In place of using p processors, we can use 2p
processors, such that two processors are responsible for computations on each column
- one handling computations related to forward factorization and the other related to

backward factorization. Developing such a scheme is an open problem.

80

Chapter 4

A New Algorithm for Direct Solution of

General Sparse Linear Systems

4.1 Introduction

In this chapter, we consider the problem of solving general sparse system of linear
equations of the form Ax = b, where the coefficient matrix A has a general structure
(i.e., A can be either symmetric or non-symmetric in nature), and is of dimension
N x N, and z and b are N-vectors. Such equations arise in various applications
such as structural engineering, chemical engineering, fluid flow problems and nuclear
physics. As with the sparse symmetric coefficient matrix case, the traditional process
for obtaining direct solution of a general sparse system of linear equations, Az = b,

involves the following four distinct phases.

Ordering : Apply an appropriate symmetric permutation matrix P such that

the new system is of the form (PAPT)(Px) = (Pb).

e Symbolic factorization : Set up the appropriate data structures for the numerical

factorization phase.

e Numerical factorization : Factorize the coefficient matrix A to the form A = LU,

where L is a lower triangular matrix and U is an upper triangular matrix.

e Substitution : Determine the solution vector x by first solving the forward trian-

gular system Ly = b and then solving the backward triangular system Ux = y.

For solution of multiple b-vectors, the first three phases are carried out only once
following which the substitution phase is repeated for each b-vector in order to obtain

a different solution vector x in each case. Thus, in problems which involve solution of

81

multiple b-vectors, the time taken by repeated execution of substitution phase dom-
inates the overall solution time. Although efficient parallel algorithms exist for the
numerical factorization phase [5, 2, 44, 14, 11, 20, 30], not much progress has been
made in the case of substitution phase [14, 22, 29] due to the limited amount of paral-

lelism inherent in this phase.

In this chapter we present a new bidirectional algorithm, based on LU factorization,
for the solution of general sparse system of linear equations. As in the sparse sym-
metric case, the numerical factorization phase is carried out in such a manner that the
entire back substitution component of the substitution phase is replaced by a single
step division. However, due to absence of symmetry, important differences arise in
the ordering technique, the symbolic factorization phase, and message passing during
numerical factorization phase. The bidirectional substitution phase for solving general

sparse systems is the same as that for sparse symmetric systems (see section 3.3).

It is known that for sparse non-symmetric problems, pivoting is necessary to en-
sure numerical stability during numerical factorization phase. In this work, however,
we consider the case where bidirectional factorization is done without pivoting so as to
maintain clarity and concentrate more on other basic issues such as exploiting parallelis-
m and reducing communication overheads. Existing work on bidirectional factorization
algorithm based on LLU factorization with partial pivoting for dense linear systems can

be found in [42].

The rest of the chapter is organized as follows. In section 4.2, we present the
bidirectional sparse factorization algorithm based on LLU factorization for general sparse
matrices. In section 4.3, we develop a bidirectional heuristic algorithm which produces
a reordered coefficient matrix suitable for numerical factorization phase. In section 4.4,
we look at a symbolic factorization algorithm which sets up data structures required by
the numerical factorization phase. In section 4.5, we evaluate the performance of the
bidirectional algorithm on hypercube multiprocessors and present comparison of our
algorithm with the existing scheme based on sparse LU factorization. In section 4.6,
we conclude the work with some observations about possible future improvements to

the bidirectional scheme.

82

4.2 The Bidirectional Sparse Factorization (BSF) Algorithm

Unlike the regular LU factorization algorithm which factorizes A to the form A = LU,
the BSF algorithm factorizes A into a series of trapezoidal matrices of multipliers. This
series of trapezoidal matrices remove the need for the back substitution component in

the substitution phase.

In this section, we first present an overall view of the concept of bidirectional
factorization. We then proceed to describe the manner in which the sparsity of the
coefficient matrix can be exploited to obtain higher degree of parallelism. Following

this we present the details of implementing BSF algorithm on multiprocessor systems.

4.2.1 Bidirectional Factorization - The Concept

The basic concept behind the bidirectional factorization algorithm is the same as that
presented in section 3.2.1. For log N stages, we repeatedly halve the size of sub-
matrices through simultaneous factorizations in both forward and backward directions
(generating lower and upper trapezoidal factor matrices in the process) and double the
number of sub-matrices through copying at each stage. Finally, we end up with N
sub-matrices of order 1 x 1 (see figure 3.1). Each pivot column operation during the
forward and backward factorization is the same as in LU factorization. The substitution
phase (described earlier in section 3.3) consists of moving the b-vector down the tree
of trapezoids to produce N equations with one variable each, which are then solved by

a single step division to produce the solution vector z (see figure 3.4).

4.2.2 Exploiting the Sparsity of the Coefficient Matrix A

In this section we look at the notion of elimination tree and consider as to how this

notion abstracts the level of concurrency available during factorization process.

In regular sparse LU factorization, let F' be the filled matrix obtained after factor-
izing the coefficient matrix A. An elimination tree contains a node corresponding to

each column of the coefficient matrix. The parent of a node i is defined as

parent(i) = min{j | j > i and F[i,j] # 0} .

83

The elimination tree defines a partially ordered precedence relation which determines
when a certain column can be used as pivot.

Similarly, in BSF algorithm, we can define the notions of forward elimination tree
and backward elimination tree. At some stage s € {1---log N}, let A, be a sub-matrix
being factorized in the forward direction and A,; be a sub-matrix being factorized in
the backward direction (z being a possibly empty string of 0’s and 1’s). Let F,, and
F,1 be the respective filled sub-matrices generated at the end this factorization step.

The forward parent of node i, is defined as

fparent(i, Azo) = min{j | j > i and Fyli, j] # 0} .
Similarly, the backward parent of node 7, is defined as

bparent(i, Az1) = max {j | j < i and F[i,j] # 0}.

For achieving a high degree of parallelism during factorization phase, both the
forward and the backward elimination trees should be as short and wide as possible.
This is the function of the ordering phase (described in section 4.3).

In the next subsection, we examine the parallel implementation of BSF algorithm

on multiprocessors.

4.2.3 Implementing the BSF Algorithm on Multiprocessors

For our present study, we consider the medium grain model of parallelism in which tasks
perform floating point operations over nonzero elements of entire columns of coefficient

matrix. The following elementary tasks are considered for the BSF algorithm.

o fdivide(i,s) divides by Ayli,], every nonzero element of the sub-diagonal part

of the 7th column of sub-matrix A,g.

e bdivide(i,s) divides by Ay [i, 1], every nonzero element of the super-diagonal part

of the 7th column of sub-matrix A,;.

e fmodify(i,vector;,s) subtracts an appropriate multiple of vector; from the ith

column of a sub-matrix Ay, at stage s € {1---log N}. wvector; contains the

84

contents of some column j of A,y, which modifies column ¢ directly in forward

direction at stage s.

e bmodify(i,vectorj,s) subtracts an appropriate multiple of vector; from the ith
column of a sub-matrix A,;, at stage s € {1---log N}. wvector; contains the
contents of some column j of A,;, which modifies column 7 directly in backward

direction at stage s.

To keep track of the columns that each pivot should modify at each of the log N

stages, we maintain the following data structures.

. Fi(s) denotes the set of all columns with indices smaller than i that modify the

ith column in the forward direction at stage s.

° Bi(s) denotes the set of all columns with indices greater than 7 that modify the

1th column in the backward direction at stage s.

These data structures are generated during the symbolic factorization phase. This
phase is described in section 4.4. In the remaining part of this section, we describe
the implementation of BSF algorithm on a message passing multiprocessor for the case
where the number of processors p is less than or equal to the order N of the coefficient

matrix.

In parallel fan-in BSCF algorithm (described in section 3.2), the symmetric nature
of coefficient matrix is exploited to reduce the communication overheads. Multiples
of various columns located in the same processor, which modify a particular column j
located in some other processor, are added into a single message vector which is then
sent over to the destination processor. In parallel BSF algorithm, on the other hand,
the absence of symmetry in the coefficient matrix does not permit such an optimization.
Thus for every column 4, which modifies column j in the forward (backward) direction
(i.e., i belongs to the set Fj(s) (B](S))), a separate message vector containing column i

is sent to the processor storing column j.

In algorithm 1 below, we incorporate the above idea in the BSF algorithm and
present the fan-out BSF algorithm. The set List,,,q is the set of columns stored in

processor Py,,iq. If column 7 is to modify column j in forward direction at stage s then,

85

after performing fdivide(i, s) operation, the processor which stores the column 4, sends
a message containing the contents of column ¢ to the processor storing the column j.
Similar mechanism operates for factorization in backward direction.
Algorithm 1 (*The parallel fan-out BSF algorithm for case p < N*)
begin
for s:=1 to log N do
parbegin
Forward_factorize(List,,yiq,5);
Backward_factorize(List,,yiq,5);
parend

end

procedure Forward factorize(List,s)
begin
while List # ¢ do
if i € List such that fvector; has been received for all j € F,;(S) then
Let column 7 belong to the forward sub-matrix A, at stage s;
for k:=0to7—1do
if k € Fi(s) then fmodify(i, fvector;, s);
if column 7 belongs to the first half of sub-matrix A,, then
fdivide(i, s);
for all j such that i € F_’j(s) do
fvector; == Ayol*, i];
send a message of the form (j,fvector;,s)
to processor storing column j;
else if s < log N then
(*copy column i of A,y to column i of A,y and A, ™)
Agzool*, 1] = Ago[*, 1];
Agor[*, 1] = Agol*, 1];
List := List — 1;

if there is an incoming message then receive and store the message;

86

end

procedure Backward_factorize(List,s)
begin
while List # ¢ do
if i € List such that bvector; has been received for all j € B,;(S) then
Let column 7 belong to the backward sub-matrix A,; at stage s;
for k.= N — 1 downto 7+ 1 do
if k e B,;(S) then bmodify(i, bvector;, s);
if column 7 belongs to the second half of sub-matrix A,; then
bdivide(i, s);
for all j such that i € B](S) do
bvector; := Ay [*,1);
send a message of the form (j,bvector;,s)
to processor storing column j;
else if s < log N then
(*copy column i of A,y to column i of A, and A1 %)
Agiol*, 1] = Ap[*,1];
Apni[*, 1] = Ag[*,1];
List := List — 1;
if there is an incoming message then receive and store the message;

end

As noted in section 3.2.3, a special situation arises when the number of processors
p = 2% (as in hypercube multiprocessors) and N = 2" (n,d € N'). Assume that we
map the equations on the processors in a block wrap manner (as shown in figure 3.3).
Thus each processor holds % = 2"=% consecutive equations. At the end of d = logp
stages of the fan-out BSF algorithm, each processor contains an independent system
of % equations. This independent system can be factorized within a single processor
without any communication with any other processor. Since, on a single processor,

regular sequential sparse LLU factorization performs more efficiently than the fan-out

87

BSF algorithm, we can switch over to this regular sequential version after logp stages
and factorize the coefficient matrix (say A;,q) of this independent system into the
form A;,g = LingUing. This results in enhancing the performance of the fan-out BSF

algorithm.

4.3 Ordering the General Sparse Matrix for Bidirectional Factorization

As noted earlier, the basic aim of the ordering phase is to reorder the columns of the
coefficient matrix in such a manner that during the factorization phase, the amount of
fill-in is minimized and the degree of parallelism is maximized. The principal ordering
technique used for reordering the general sparse matrices for regular LU factorization
algorithms involves two stages. In the first stage, a fill reducing ordering, such as
minimum degree ordering [12], is applied to the coefficient matrix A. This is followed
by application of Liu’s scheme of elimination tree rotation [38, 39] which causes a
reduction in the height of the elimination tree without affecting the amount of fill-in
in the upper triangular factor U. The resulting elimination tree is more appropriate

for parallel LU factorization.

The ordering resulting from the above scheme is, however, not suited for the BSF
algorithm due to reasons given below. Recall that in section 4.2.2 we defined the con-
cepts of forward elimination tree and backward elimination tree for the BSF algorithm.
The degree of parallelism while factorizing in forward direction depends on the shape of
the forward elimination tree and that for factorizing in backward direction depends on
the shape of the backward elimination tree. An ideal ordering for the BSF algorithm is
one in which both the elimination trees are as short and wide as possible. The forward
elimination tree obtained from the above scheme is short and wide and hence desirable
for parallel factorization. On the other hand the backward elimination tree obtained
from the above scheme is lean and tall and hence undesirable for parallel factorization.

In the remaining part of this section we describe how the above scheme can be
extended to yield ordering suitable for the BSF algorithm. We call the new heuristic
as the alternate stripe reordering method and it proceeds as follows. First we apply a
fill reducing ordering, such as the minimum degree ordering, followed by Liu’s height

reducing elimination tree rotation scheme to obtain a reordered matrix whose forward

88

stripe 1 stripe 2 stripe 3 stripe 4
12 3 4 5 6 8 9
1] x x X
2 X X
3 X x X
4 X X X x
o | X X X X X
6 X X
7] x X x
8 X X X X
9 X X X X

(a) 9 x 9 striped sparse matrix

w

co N o ot s

(b) 9 x 9 alternate stripe reordered matrix

Figure 4.1: Ordering of a 9 X 9 matrix using alternate stripe reordering.

elimination tree has low height. Let the reordered matrix be A’. The following steps

of alternate stripe reordering method are applied to the matrix A’.

e Step 1 : Stripe the matrix A’ into groups of columns as shown in figure 4.1.

The grouping of columns into stripes is done according to the following criteria.

Column i and column i+ 1 belong to the same stripe if A’[i,i+1] # 0. Otherwise,

column 7 and column 7 + 1 belong to consecutive stripes.

e Step 2 : Initialize upCount to 1 and downCount to N. Maintain an array

newQOrder of size N to store the new ordering.

o Step 3:

For each successive column i of stripe 1 do

— newOrder[i] := upCount;

— upCount = upCount + 1;

For each successive column i’ of stripe 2 do

— newOrder[i'] := downCount;

— downCount = downCount — 1;

e Step 3 : The above numbering method is repeated for each successive pair of
stripes i.e., columns belonging to odd stripes are numbered by incrementing
upCount and columns belonging to even stripes are numbered by decrementing

downCount.

e Step 4 : The row i and column i of matrix A" are numbered as row newOrder|i]

and column newOrder[i] in the final reordered matrix.

A little thought reveals that the alternate stripe reordering method is a gener-
alization of the bidirectional nested dissection method described in section 3.4. The
latter method can be alternatively viewed as consisting of two stages - (i) applying the
regular nested dissection method to the & x k grid followed by (ii) applying alternate
stripe reordering to the matrix obtained from the first stage. It will be shown through
experimental results at the end of this chapter that the new reordering scheme does
indeed yield reorderings better suited to parallel bidirectional factorization than the
scheme based on fill-reduction and elimination tree rotations alone.

In the next section we look at the bidirectional symbolic factorization algorithm
which allocates memory and sets up the appropriate data structures prior to the BSF

algorithm.

4.4 The Bidirectional Symbolic Factorization Algorithm

The bidirectional symbolic factorization algorithm, which precedes the BSF phase, does
the following.

e It determines apriori, the structure of each one of the filled sub-matrices, F},, at

each of the log N stages and

e It initializes the data structures for the sets Fi(s) and Bi(s) which are required

during the BSF algorithm.

90

We define Colstruct(Ay,i) to denote the set of row indices of nonzeros in the

column i of forward matrix A,.
Colstruct(Ago, i) = {j | Azolj,i] # 0}.

In a similar fashion, we define Colstruct'(A;1,4) to denote the set of row indices of

nonzeros in the column 7 of the backward matrix A,;.
Colstruct' (Az1,i) = {j | Aulj, 1] # 0} .

We now describe the bidirectional symbolic factorization algorithm.
Algorithm 2 (*The bidirectional symbolic factorization algorithm*)
begin
for s:=1 to log N do
for col :=1 to N do
F) = ¢:BY) = ¢
for s:=1 to log N do
for col :=1 to N do
Forward SF(col,s);
for col := N downto 1 do
Backward_SF(col,s);

end

procedure Forward_SF(col,s)
begin
Let A,y be the forward sub-matrix that contains column col at stage s;
if col belongs to the first half of A, then
Calculate fparent(col, Ayp) using definition given in section 4.2.2;
if fparent(col, A,y) belongs to the first half of A, then
Colstruct(Az, fparent(col, Ay)) =
Colstruct(Az, fparent(col, Ay) U Colstruct(Ay, col);
for all j such that j belongs to second half of A,y and Ay[col, j] # 0 do
Colstruct(Ag, j) := Colstruct(Az, j) U Colstruct(Ay, col);
for all j such that j € Colstruct(A,, col) and j < col do

91

Fc(sl) = Fc(jl) u{i};

else
Colstruct(Azgo, col) := Colstruct(Ay, col);
Colstruct' (Agzon, col) = Colstruct(Ay, col);

end

procedure Backward_SF(col,s)
begin
Let A, be the backward sub-matrix that contains column col at stage s;
if col belongs to the second half of A,; then
Calculate bparent(col, A;1) using definition given in section 4.2.2;
if bparent(col, A;1) belongs to the second half of A,; then
Colstruct' (A1, fparent(col, Az)) =
Colstruct' (A1, fparent(col, Azy) U Colstruct' (A, col);
for all j such that j belongs to first half of A, and A, [col, j] # 0 do
Colstruct' (Az1, J) = Colstruct'(Az, j) U Colstruct' (A, col);
for all j such that j € Colstruct' (A, col) and j > col do
BY .= BY U {col};
else
Colstruct(Az, col) := Colstruct' (A1, col);
Colstruct' (Az1, col) := Colstruct' (Az1, col);

end

The bidirectional symbolic factorization algorithm described above has time com-
plexity proportional to the number of nonzero elements stored in trapezoids at each

stage.

4.5 Experimental Results and Performance Analysis

To evaluate the performance of the entire bidirectional scheme presented in this work,

we implemented a hypercube simulator in C language and compared the speedups

92

obtained from the bidirectional scheme with those obtained from the regular scheme.

We used the SPARC Classic machine to carry out our simulations.

In the bidirectional scheme, we implemented each of the four phases as follows.

Ordering : The alternate stripe reordering method described in section 4.3.

Symbolic factorization : The sequential bidirectional symbolic factorization al-

gorithm described in section 4.4.

Numerical factorization : The parallel fan-out BSF algorithm described in sec-

tion 4.2.

Substitution :'The parallel BS algorithm described in section 3.3.
In the regular scheme, we implemented each of the four phases as follows.

e Ordering : The fill reducing minimum degree ordering [12] followed by Liu’s

elimination tree rotation scheme [38].

e Symbolic factorization : The sequential symbolic factorization algorithm pre-

sented in [16].
e Numerical factorization : The parallel fan-out algorithm given in [4, 30].

e Substitution :The elimination tree based forward and back substitution algo-

rithms given in [29].

Mapping of columns onto processors is an important issue. For the bidirectional
scheme, we have used the block wrap around mapping using gray code whereas for
the regular algorithm we have used the subtree-to-processor mapping [17] based on

elimination tree.

For the purpose of simulation we used three test matrices, described in table 4.1,
from the Harwell-Boeing Collection. Due to memory constraints, the maximum di-
mension of the test matrix considered was 343 x 343. The parameters that were varied
were the number of processors p (1 to 128), the number of b-vectors for which solution
vector = was obtained, and the C'/E ratio i.e., the ratio of time for communicating

a floating point data between two neighbouring processors to the time for a floating

93

Table 4.1: Matrices from Harwell-Boeing collection

Number of | Number of

equations | nonzeros in A Description
199 701 WILL199 : pattern of stress analysis matrix.
216 876 GRE216A : unsymmetric matrix from Grenoble.
343 1435 GRE343 : unsymmetric matrix from Grenoble.

point operation (50 and 100). Figures 4.2, 4.3, and 4.4 show the comparison of the

measured speedups of the two schemes for various values of the above parameters.

As mentioned earlier in section 4.1, the first three phases, namely ordering, sym-
bolic factorization, and numerical factorization, are executed only once and the substi-
tution phase is repeatedly executed for each one of the different b-vectors. The output
of the factorization phase of the bidirectional algorithm is a series of trapezoidal factor
matrices whereas the output of the regular factorization algorithm is the pair of lower
and upper triangular factor matrices. As a result, the inputs to the substitution phase
of bidirectional and regular algorithms also differ. For separate comparison of the two
phases of bidirectional and regular algorithms, we have considered a pseudo-speedup
ratio for the bidirectional algorithm. This is a ratio of the time taken by the best se-
quential regular algorithm for the factorization (substitution) phase to the time taken
by the parallel bidirectional algorithm for the factorization (substitution) phase.

Therefore figures 4.2(a), 4.2(d), 4.3(a), 4.3(d), 4.4(a), and 4.4(d) compare the
pseudo-speedup of the bidirectional algorithm with the speedup of the regular algo-
rithm for the first three phases put together. The figures 4.2(b), 4.2(e), 4.3(b), 4.3(e),
4.4(b), and 4.4(e) compare the pseudo-speedup of the bidirectional algorithm with the
speedup of the regular algorithm for the substitution phase alone. The figures 4.2(c),
4.2(f), 4.3(c), 4.3(f), 4.4(c), and 4.4(f) plot the actual speedups of bidirectional and
regular algorithms for all the four phases put together versus the number of b-vectors
for which substitution phase is repeatedly executed. In figure 4.2(c), this comparison
has been shown for the case when p = 16, N = 199, and C/E = 50 since, for this
combination of parameters, bidirectional factorization phase gives maximum speedup

at p = 16. Same logic holds for figures 4.2(f), 4.3(c), 4.3(f), 4.4(c), and 4.4(f). These

94

3 T T T T T T
¥~ Bidirectional algo +—
/ " Regular dgo -*-
25 * 1
x
2 i
"'
2 /
=1
3 15
8 ;
s
1g- * 3

16

4 8
No. of processors

(a)

factorization, C/E=50

Speedup

25 T T T T T T

Bidirectiond dgo +—
X Regular dgo -*-
) AN
,"' ..\A
15 A
* “X -
1g-mmo* 1
) //\\
0 ‘ ‘ ‘ ‘ ‘ ‘
1 2 4 8 16 R 64 128
No. of processors

(d)

factorization, C/E=100
8

22 T T
Bidirectiond dlgo +—
Regular algo -*- {

2

18

16

14

12

Speedup

1

08

06

1

Bidirectional algo +—
Regular algo -

Speedup

02

04
1 2 8 16
No. of processors

(b) substitution, C/E=50

8 16
No. of processors

(e) substitution, C/E=100

18 T T —] ————
x Bidirectiond dlgo +— 14} Bidirectional algo +—
Regular algo -*- Regular ago -
16 g .
~~~~~~~ 12p °
I
12 1r
Q %
g 1 =] 08,
08 g
06 -
06
04 -
04
02 02
0 . . . . . . . . 0 PR R R
20 40 60 8 100 120 140 160 180 200 0 20 4 60 80 100 120 140 160 180 200

No. of b-vectors

(¢) solving multiple b-vectors

No. of b-vectors

(f) solving multiple b-vectors

with 16 processors, C/E=50 with 8 processors, C/E=100

Figure 4.2: Speedups obtained for bidirectional algorithm versus regular algorithm for

WILL199.

95



25 T T T T T T
x  Bidirectiondl algo +—
A Regular algo -~
2
15 ! ‘,
2 ; \
3 X *
|
Lpmmmpm y
05
0 . . . . .
1 2 4 8 16 2 64 128
No. of processors

(a)

2

factorization, C/E=50

Speedup

2 T T T T T T

, Bidirectiond algo +—
Regular dgo -*- |

18

16

14

12

08

06

04

02

LT

16 R 64 128
No. of processors

(d)

factorization, C/E=100
8

Bidirectiond dlgo +—
Regular algo -*- {

18

16

14

12

Speedup

1
08
0w /

04

1

Bidirectional algo +—
Regular algo -

Speedup

02 . . . . . .

8 16
No. of processors

(b) substitution, C/E=50

8 16
No. of processors

(e) substitution, C/E=100

14 T T 2 T T
Bidirectiond dlgo +— Bidirectional algo +—
L Regular dlgo -~ 18 Regular algo -*-
16+
1 Ins
o 08 o U
=] =]
i P
06 st
04 06 -
04
02
02
0 . . . . 0 . . . .
0 50 100 150 200 250 0 50 100 150 200 250

No. of b-vectors
(¢) solving multiple b-vectors

with 8 processors, C/E=50

Figure 4.3: Speedups obtained for bidirectional algorithm versus regular algorithm for

GRE216A.

No. of b-vectors
(f) solving multiple b-vectors

with 8 processors, C/E=100

96



25 T T T T T T
Bidirectiond dgo +—
X Regular dgo -*-
) .
‘Xx
“x
. 15 { B
i
&
P —
05
0 | . . .
1 2 4 8 16 2 64 128
No. of processors

(a) factorization, C/E=50

22

Speedup

22 T T T T T T
Bidirectiond dgo +—
2 A Regulardgo - ]

18

16

12

08
06
04
02

0 t . . . .
1 2 4 8 16 R 64
No. of processors

128

(d)

factorization, C/E=100
8

Bidirectiond dlgo +—
Regular dlgo -*-

2

1 T T
Bidirectional algo +—
Regular algo -

18
14
16
u 12t
o o
=] =]
g 12 ?; 1t
! 08t
08
) 06t
06t /o
0 04
02 ‘ ‘ ‘ ‘ ‘ ‘ 02 ‘ ‘ ‘ ‘ ‘ ‘
12 2 ® 18 12 R @ 18

8 16
No. of processors

(b) substitution, C/E=50

18

8 16
No. of processors

(e) substitution, C/E=100

Bidirectiond dlgo +—
Regular algo -*- {

16

147

12

1

Speedup

08

06

04

02

Bidirectional algo +—
Regular algo - -

Speedup

0
100 150 200 250 300 350 400 450

No. of b-vectors

500

(¢) solving multiple b-vectors

0 . . . . .
200 300 500 600 700

400
No. of b-vectors

(f) solving multiple b-vectors

with 16 processors, C/E=50 with 8 processors, C/E=100

Figure 4.4: Speedups obtained for bidirectional algorithm versus regular algorithm for

GRE343.

97



Pseudo-Speedup

Pseudo-Speedup

Pseudo-Speedup

09 -

Liu -x-- A
ASR —+—

1 2 4 8 16 32 64 128
No. of processors
(a) WILL199 matrix
Liu -*--
ASR —— 1

05

1 2 8 16 32 64 128
No. of processors
(b) GRE216A matrix
0.35 T T
Liu -*--
ASR ——

1 2 4 8 16
No. of processors

(c) GRE343 matrix

32

128

Figure 4.5: Pseudo-speedups obtained for bidirectional factorization with matrices reordered

by ASR method versus those reordered by Liu’s rotation method. C/E = 50.

98



figures clearly indicate that with increasing number of b-vectors, the speedup obtained
from our bidirectional scheme steadily becomes higher than that obtained from the reg-
ular scheme. Increasing the C/E ratio causes a decrease in the magnitude of speedup

obtained.

Figures 4.5(a), (b), and (c¢) compare the pseudo-speedup of the bidirectional fac-
torization phase with two different reorderings of each of the coefficient matrices - one
obtained using the ASR heuristic proposed in section 4.3 and the other obtained using
Liu’s scheme [38]. The graphs clearly indicate that BSF algorithm gives higher speedup
when the coefficient matrix is reordered using the ASR heuristic rather than with Liu’s

scheme.

4.6 Conclusions

In this chapter, we have proposed a new bidirectional algorithm for direct solution of
general sparse system of linear equations. This scheme generates a series of trapezoidal
factor matrices during the factorization phase due to which the substitution phase has
only one forward substitution component. Unlike the regular substitution algorithms,
it does not possess a back substitution component in the substitution phase. Thus the
bidirectional algorithm is well suited for situations where the system of equations has
to be solved for multiple b-vectors. We have demonstrated the effectiveness of the bidi-
rectional algorithm by comparing it with the regular methods for solving general sparse
systems. Further work is possible in the direction of incorporating partial pivoting in
the present, parallel bidirectional scheme. This will call for modification of the bidirec-
tional symbolic factorization method since, the structure of the filled sub-matrices at
each stage of factorization will depend not only on the structure of coefficient matrix
A, but also on the row interchanges that occur due to partial pivoting. Also, as in
the sparse symmetric case, the amount of parallelism can be increased by using 2p
processors, instead of p processors, for handling the forward and backward operations

on separate processors.

99



Chapter 5

Conclusions

In this thesis, we have addressed the problem of solving three important classes of
sparse linear systems - (i) block tridiagonal linear systems, (ii) sparse symmetric linear
systems, and (iii) general sparse linear systems. In the first class, we have proposed
an improved mapping of cyclic elimination (CE) algorithm onto hypercube multipro-
cessors which achieves desirable mapping through judicious use of the concept of data
replication. For the second and third classes of problems, we have proposed new bidi-
rectional algorithms which, due to the absence of back-substitution component in the
substitution phase, are very well suited for solving multiple b-vector systems. Most of
the existing parallel algorithms for solving sparse linear systems attempt to parallelize
their good sequential counterparts. This approach has not borne fruit, since the basic
goal of a good sequential algorithm i.e., minimizing the total operation count, conflicts
with the basic goal of a good parallel algorithm, which is maximizing the number of
concurrent sub-problems. By exploiting the higher degree of parallelism available in
the problem itself, the new algorithms proposed in our work achieve better performance

than the traditional algorithms.

5.1 Summary

In chapter 2, we have proposed an improved mapping of the cyclic elimination algorithm
for the solution of the block-tridiagonal linear systems onto hypercube multiprocessors.
Unlike the previous mapping schemes, our improved mapping uses the concept of data
replication to achieve only neighbouring processor communication at all stages of pro-
cessing. Our improved mapping scheme is shown to be effective by comparing it with
the existing mapping of the cyclic reduction (CR) algorithm onto hypercubes using

both analytical and simulation methods. The comparison shows that as the number of

100



processors increases, our improved mapping steadily overtakes the existing mapping of
the CR algorithm in terms of speedup. Two significant features of our algorithm are
that, the computational load is balanced among all processors at all stages of the algo-
rithm and secondly, much of the communication gets overlapped with the computation

giving an overall better performance.

In chapter 3, we have proposed a new bidirectional algorithm for the direct solu-
tion of sparse symmetric system of linear equations. This scheme generates a series of
trapezoidal factor matrices during the factorization phase due to which the substitution
phase has only one forward substitution component and, unlike the regular substitu-
tion algorithms, it does not possess a back-substitution component. For the numerical
factorization phase, we have proposed a fan-in bidirectional sparse Cholesky factoriza-
tion (BSCF) algorithm. For the substitution phase, we have proposed a bidirectional
substitution algorithm in which the b-vector gets modified by the tree of trapezoids
produced during the factorization phase. For the ordering phase, we have proposed
a bidirectional nested dissection algorithm which produces orderings suited to parallel
factorization using BSCF algorithm. Further, we have developed bidirectional symbolic
factorization algorithm which sets up the appropriate data structures required during

the BSCF algorithm.

In chapter 4, we have addressed the problem of solving general sparse linear sys-
tems using the bidirectional scheme. For the factorization phase, we have developed a
fan-out bidirectional sparse factorization (BSF) algorithm based on LU factorization.
The bidirectional algorithm for the substitution phase is the same as that for the s-
parse symmetric case. In the ordering phase, we have proposed an alternate stripes
reordering algorithm which produces orderings suited to parallel factorization using B-
SFE algorithm. We have also developed a bidirectional symbolic factorization algorithm
for setting up the appropriate data structures required during the BSF algorithm.

In order to demonstrate the effectiveness of the two bidirectional schemes presented
in chapters 3 and 4, we have conducted extensive simulation studies on the performance
of these algorithms on hypercube multiprocessors. We have compared the speedups
obtained from the entire bidirectional scheme for solving the sparse symmetric linear

systems with those obtained from the regular Cholesky factorization based schemes.

101



Similarly, we have compared the speedups obtained from the entire bidirectional scheme
for solving the general sparse linear systems with those obtained from the regular LU
factorization based schemes. The results indicate that, when solving for multiple b-
vectors, the speedups obtained from the bidirectional schemes steadily overtake those
obtained from the regular schemes, as the number of b-vectors for which the system is

solved increases.

5.2 Suggestions for Future Work

Further work can be done in the following directions.

e In chapter 1, the degree of parallelism in the improved mapping of cyclic elimi-
nation algorithm onto hypercube multiprocessors can be controlled by switching
over to the sequential algorithm for solving block-tridiagonal systems at a stage
earlier than log N. Determining the optimal stage k, at which this switching

should occur is an open problem.

e In the bidirectional algorithms for solving sparse linear systems in chapters 3 and
4, further concurrency can be exploited by assigning the computation of forward
and backward factorization phases to separate processors. This will mean using

twice the number of processors currently being considered.

e In chapter 4, the bidirectional algorithms presented for solving general sparse
linear systems can be modified to include pivoting which is widely considered to

be crucial for ensuring the stability.

102



Bibliography

1]

2]

[10]

[11]

[12]

J.C.Agui and J.Jimenez, A binary tree implementation of a parallel distributed
tridiagonal solver, Parallel Computing, Vol. 21, No. 2, 1995, pp. 233-241.

G.Alaghband and H.Jordan, Multiprocessor sparse L/U decomposition with con-
trolled fill-in, Technical Report 85-48, ICASE, NASA Langey Research Center,
Hampton, VA 1985.

P.Amodio, Optimised cyclic reduction for the solution of linear tridiagonal sys-
tems on parallel computers, Computers and Mathematics with Applications, Vol.
26, No. 3, 1993, pp. 45-53.

C.Ashcraft, S.C.Eisenstat and J.W.H.Liu, A fan-in algorithm for distributed
sparse numerical factorization, STAM J. Sci. Stat. Comput., Vol. 11, No. 3,
1990, pp. 593-599.

C.Ashcraft, S.C.Eisenstat, J.W.H.Liu, and A.H.Sherman, A comparison of
three column based distributed sparse factorization schemes, Technical Report
YALEU/DCS/RR-810, Yale University, New haven, CT, 1990.

D.P.Bertsekas and J.N.Tsitsiklis, Parallel and Distributed Computation - Nu-
merical Methods, Prentice-Hall, Engelwood Cliffs, New Jersy, 1989.

B.L.Buzbee, G.H.Golub and C.W .Nielson, On direct methods for solving Pois-
son’s equations, STAM J. Numer. Anal., Vol. 7, 1970, pp. 627-655.

J.M.Conroy, Parallel nested dissection, Parallel Computing, Vol. 16, 1990, pp.
139-156.

[.S.Duff and J.K.Reid, Multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Soft., Vol. 9, May 1983, pp. 302-325.

A.George, Nested dissection of a reqular finite element mesh, SIAM J. Numer.
Anal., Vol. 10, No. 2, 1973, pp. 345-363.

A.George and E.Ng, Parallel sparse Gaussian elimination with partial pivoting,
Annals of Operations Research, Vol. 22, 1990, pp. 219-240.

A.George and J.W.H.Liu, The evolution of minimum degree ordering algorithm,
SIAM Review, Vol. 31, No. 1, 1989, pp. 1-19.

103



[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

A.George, M. T.Heath, J.W.H.Liu and E.Ng, Computer Solution of Large Sparse
Positive Definite Systems Prentice Hall, Englewood Cliffs, N.J, 1981.

A.George, M.T.Heath, J.W.H.Liu and E.Ng, Solution of sparse positive definite
systems on hypercube, J. Comput. Applied Math., Vol. 27, 1989, pp. 129-156.

A.George, M. T.Heath, J.W.H.Liu and E.Ng, Sparse Cholesky factorization on a
local memory multiprocessor, STAM J. Sci. Stat. Comput., Vol. 9, No. 2, 1988,
pp. 327-340.

A.George, M. T.Heath, E.Ng and J.W.H.Liu, Symbolic Cholesky factorization on
local memory multiprocessor, Parallel Computing, Vol. 5, 1987, pp. 85-95.

A.George, J.W.H.Liu and E.Ng, Communication results for parallel sparse C-
holesky factorization on hypercube, Parallel Computing, Vol. 10, No. 3, 1989, pp.
287-298.

J.R.Gilbert and H.Hafsteinsson, Parallel symbolic factorization for sparse linear
systems, Parallel Computing, Vol. 14, 1990, pp. 151-162.

G.H.Golub, and C.F.V.Loan, Matriz Computations : Second Edition, John Hop-
kins University Press, Baltimore, MD, 1989.

M.T.Heath, E.Ng and B.W.Peyton, Parallel algorithms for sparse linear systems,
STAM Review, Vol. 33, 1991, pp. 420-460.

D.Heller, A survey of parallel algorithms in numerical linear algebra, STAM Re-
view, Vol. 20, No. 4, Oct. 1978, pp. 740-777.

C.W.Ho, Fast Parallel Algorithms Related to Chordal Graphs, Ph.D. Thesis,
Institute of Computer and Decision Sciences, National Tsing Hua University,
Hsinchu, Taiwan, Republic of China, 1988.

C.T.Ho and S.L.Johnsson, Optimizing tridiagonal solvers for alternating direc-
tion methods on boolean cube multiprocessors, STAM J. Sci. Stat. Comput., Vol.
11, No. 3, May 1990, pp. 563-592.

R.Hockney, A fast direct solution of Poisson’s equation using Fourier analysis,
J. ACM, Vol. 12, 1965, pp. 95-113.

R.W.Hockney and C.R.Jesshope, Parallel Computers, Adam Hilger Ltd, 1981.

J.Jess and H.Kees, A data structure for parallel L/U decomposition, IEEE Trans.
on Computers, C-31, 1982, pp. 231-239.

104



[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[36]

37]

38]

[39]

S.L.Johnsson, Odd-even Cyclic Reduction on Ensemble Architecture and the So-
lution of Tridiagonal Systems of Equations, Technical Report DCS-RR339, De-
partment of Computer Science, Yale University, New Haven, CT, 1984.

P.S.Kumar, M.K.Kumar and A.Basu, A parallel algorithm for elimination tree
computation and symbolic factorization, Parallel Computing, Vol. 18, 1992, pp.
849-856.

P.S.Kumar, M.K.Kumar and A.Basu, Parallel algorithms for sparse triangular
system solution, Parallel Computing, Vol. 19, 1993, pp. 187-196.

V.Kumar, A.Grama, A.Gupta, and G.Karypis, Introduction to Parallel Com-
puting - Design and Analysis of Algorithms, Benjamin/Cummings Publishing
Company Inc., 1994.

S.Lakshmivarahan and S.K.Dhall, Analysis and Design of Parallel Algorithms -
Arithmetic and Matriz Problems, McGraw- Hill Publishing Company, 1990.

C.E.Leiserson and T.G.Lewis, Orderings for parallel sparse symmetric factoriza-
tion, In Proceedings of the Third STAM Conference on Parallel Processing for
Scientific Computing, 1987, pp. 27-32.

T.G.Lewis, B.W.Peyton, and A.Pothen, A fast algorithm for reordering sparse
matrices for parallel factorization, SIAM J. Sci. Stat. Comput., Vol. 10, 1989,
pp. 1146-1173.

G.Li and T.F.Coleman, A new method for solving triangular systems on dis-
tributed memory message passing multiprocessors, SIAM J. Sci. Stat. Comput.,
Vol. 10, 1989, pp. 382-396.

W.Y .Lin and C.L.Chen, A parallel algorithm for solving tridiagonal linear sys-
tems on distributed memory multiprocessors, Intl. J. High Speed Comput., Vol.
6, No. 3, 1994, pp. 375-386.

J.W.H.Liu, Computational models and task scheduling for parallel sparse C-
holesky factorization, Parallel Computing, Vol. 3, 1986, pp. 327-342.

J.W.H.Liu, Role of elimination trees in sparse factorization, SIAM J. Matrix
Anal. App., Vol. 11, 1990, pp. 134-172.

J.W.H.Liu, Reordering sparse matrices for parallel elimination, Parallel Com-
puting, Vol. 11, 1989, pp. 73-91.

J.W.H.Liu, Fquivalent sparse matriz reordering by elimination tree rotations,
STAM J. Sci. Stat. Comput., Vol. 9, 1988, pp. 424-444.

105



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

J.W.H.Liu, The multifrontal method for sparse matrixz solution: Theory and
practice, SIAM Review, Vol. 34, 1992, pp. 82-109.

J.W.H.Liu, Modification of minimum degree algorithm by multiple elimination,
ACM Trans. Math. Soft., Vol. 11, 1985, pp. 141-153.

K.N.B.Murthy, New Algorithms for Parallel Solution of Linear FEquations on
Distributed Memory Multiprocessors, Ph.D. Thesis, Department of Computer
Science and Engineering, Indian Institute of Technology, Madras, India, 1995.

K.N.B.Murthy and C.S.R.Murthy, A new Gaussian elimination based algorith-
m for parallel solution of linear equations, Computers and Mathematics with
Applications, Vol. 29, No. 7, 1995, pp. 39-54.

E.Ng, Parallel direct solution of sparse linear systems, Parallel Supercomputing:
Methods, Algorithms and Applications, John Wiley and Sons Ltd., 1989.

J.M.Ortega and R.G.Voigt, Solution of partial differential equations on vector
and parallel computers, STAM Review, Vol. 27, No. 2, June 1985, pp. 149-240.

R.P.Pargas, Parallel solution of elliptic partial differential equations on a tree
machine, Ph.D. Thesis, University of North Carolina, Chapel Hill, 1982.

F.Peters, Parallel pivoting algorithms for sparse symmetric matrices, Parallel
Computing, Vol. 1, 1984, pp. 99-110.

E.M.Reingold, J.Nievergelt, and N.Deo, Combinatorial Algorithms : Theory and
Practice, Prentice Hall, Englewood Cliffs, N.J, 1977.

C.H.Romine and J.M.Ortega, Parallel solution of triangular systems of equa-
tions, Parallel Computing, Vol. 6, 1988, pp. 109-111.

A.H.Sameh and D.J.Kuck, On stable parallel linear system solvers, J. ACM, Vol.
25, No. 1, January 1978, pp. 81-91.

G.Spaletta and D.J.Evans, The parallel recursive decoupling algorithm for solving
tridiagonal linear equations, Parallel Computing, Vol. 19, January 1993, pp. 563-
576.

H.S.Stone, Parallel tridiagonal equation solvers, ACM Trans. Math. Soft., Vol.
1, No. 4, 1975, pp. 289-307.

106



Publications from this Work

“An Improved Mapping of Cyclic Elimination onto Hypercubes using Data Repli-
cation”, submitted to Journal of Parallel Algorithms and Applications.

“New Algorithms for Direct Solution of Sparse Linear Systems: Part I - Symmetric
Coefficient Matrix”, under preparation.

“New Algorithms for Direct Solution of Sparse Linear Systems: Part II - Nonsym-

metric Coefficient Matrix”, under preparation.

107



