
New Parallel Algorithms for Dire
t Solution ofSparse Linear Systems
A ThesisSubmitted byG. Kartik

for the award of the degreeofMASTER OF SCIENCE(by Resear
h)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERINGINDIAN INSTITUTE OF TECHNOLOGY, MADRAS.July 1996

THESIS CERTIFICATEThis is to
ertify that the thesis titled New Parallel Algorithms for Dire
tSolution of Sparse Linear Systems, submitted by G. Kartik, to the Indian In-stitute of Te
hnology, Madras, for the award of the degree of Master of S
ien
e byResear
h, is a bona�de re
ord of the resear
h work done by him under my supervision.The
ontents of this thesis, in full or in parts, have not been submitted to any otherInstitute or University for the award of any degree or diploma.
Pla
e: Madras 600 036. [C. Siva Ram Murthy℄Date:

A
knowledgementsFirst and foremost, I would like to express gratitude to my guide Dr. C. Siva RamMurthy, whose
onstant guidan
e has been the prin
ipal moving for
e behind my thesiswork. It is the out
ome of his gentle en
ouragement, invaluable feedba
ks, and the
ountless hours he spent going through the drafts, that this thesis has materialized inthe present form. His perseveran
e and his ability to always keep the larger pi
ture inview without
ompromising on the �ner details are qualities worth being emulated.I would like to thank the Head of the Department, the department oÆ
e and thedepartment library for providing all the help when required. I would like to expressspe
ial thanks to Dr. P. Sreenivasa Kumar who spent time with me dis
ussing impor-tant aspe
ts of my work. I would also like to thank Dr. V. V. Rao for providing mewith useful tips and suggestions during GTC meetings.This work was supported by Indian National S
ien
e A
ademy and the Departmentof S
ien
e and Te
hnology.It is hard to work alone without
ompany. The
ompany of my PDC lab mateswent a long way in �lling that void. Balu, who spent so many hours dis
ussing mywork and suggesting new ideas, in spite of his busy s
hedule, was a
onstant sour
e ofen
ouragement to me. It was indeed a pleasure to work with Bhuvana, Manimaran,Santosh, Sudhakar and Tom. The help given by Godbole and Murthy in running mysimulation programs have proved invaluable.Then, of
ourse, it is imperative that I mention all those MS-ites, (both
hai andnon-
hai types), from Tapti, Brahms, and Ganga whose friendship I will rememberforever. There was never a dull moment during my stay in Cauvery, thanks to theex
ellent
ompany of my numerous friends, who are too many to mention individually.It is diÆ
ult to express in words, all the support and en
ouragement I re
eivedfrom my family members. I derive strength from their love and a�e
tion.

Abstra
tThe problem of solving large sparse systems of linear equations of the form (Ax = b)- i.e. systems of linear equations in whi
h majority of
oeÆ
ients (A[i; j℄) are zero -arise in various appli
ations su
h as �nite element analysis,
omputational
uid dy-nami
s, and power systems analysis. The te
hniques for solving sparse linear systemsinvolve more
omplex data stru
tures and algorithms than their dense
ounterparts.We have developed new parallel algorithms for solution of three
lasses of sparse linearsystems - (i) blo
k tridiagonal linear systems, (ii) sparse symmetri
 linear systems,and (iii) general sparse linear systems. For the solution of blo
k tridiagonal systemof linear equations, we propose a new mapping of the Cy
li
 Elimination (CE) algo-rithm onto hyper
ube multipro
essors. Unlike the previous mapping s
hemes, in ourmapping of the CE algorithm, all
ommuni
ations are restri
ted to physi
ally adja
entpro
essors, using the
on
ept of data repli
ation. For the solution of sparse symmetri
linear systems, we propose a new bidire
tional algorithm, based on Cholesky fa
toriza-tion. Unlike the regular algorithm based on Cholesky fa
torization, in our algorithm,the numeri
al fa
torization phase is
arried out in su
h a manner that the entire ba
ksubstitution
omponent of the substitution phase is repla
ed by a single step division.On similar lines, for the solution of general sparse system of linear equations, we pro-pose a new bidire
tional algorithm, based on LU fa
torization. As with the sparsesymmetri

ase, the substitution phase of our algorithm does not have a ba
k substitu-tion
omponent. However, due to absen
e of symmetry, important di�eren
es arise inthe ordering te
hnique, the symboli
 fa
torization phase, and message passing duringnumeri
al fa
torization phase. Extensive simulations,
omparing the two bidire
tionalalgorithms with their
orresponding existing algorithms indi
ate that, when solvingfor multiple b-ve
tors, the speedups obtained from these two bidire
tional algorithm-s steadily overtake those obtained from the
orresponding regular algorithms, as thenumber of b-ve
tors for whi
h the system is solved in
reases.

ContentsA
knowledgements iAbstra
t iiList of Figures viList of Tables ix1 Introdu
tion 11.1 Multipro
essing Systems and Parallel Algorithms 11.2 Key Issues in Design of Parallel Algorithms 21.3 Statement of the Problem . 21.4 Brief Survey of Relevant Work . 41.5 Contribution of the Thesis . 51.6 Organization of the Thesis . 62 Solving Blo
k Tridiagonal Linear Systems on Hyper
ube Multipro-
essors 72.1 Introdu
tion . 72.2 Problem Statement and Notations . 92.3 Solving Blo
k Tridiagonal Linear Systems 102.3.1 Sequential Blo
k Gaussian Elimination (BGE) 102.3.2 The Basi
 Elimination Step . 112.3.3 The Blo
k Cy
li
 Redu
tion Algorithm (CR) 122.3.4 The Blo
k Cy
li
 Elimination Algorithm (CE) 132.4 Solving Blo
k Tridiagonal Linear Systems on Hyper
ubes 15

2.4.1 Comparison of Three S
hemes 152.4.2 De�nitions . 232.4.3 Our Improved Mapping of CE onto Hyper
ubes 252.4.4 Analyti
al Performan
e Studies 282.5 Experimental Results . 322.6 Con
lusions . 393 A New Algorithm for Dire
t Solution of Sparse Symmetri
 LinearSystems 403.1 Introdu
tion . 403.2 The Bidire
tional Sparse Cholesky Fa
torization (BSCF) Algorithm . . 413.2.1 Bidire
tional Cholesky Fa
torization - The Con
ept 423.2.2 Exploiting the Sparsity of the CoeÆ
ient Matrix A 443.2.3 Implementing the BSCF Algorithm on Multipro
essors 453.3 The Substitution Phase . 543.3.1 Bidire
tional Substitution Algorithm - The Con
ept 543.3.2 In
reasing Parallelism by Exploiting Sparsity 563.4 Ordering the Sparse Symmetri
 Matrix for Bidire
tional Fa
torization . 593.5 The Bidire
tional Symboli
 Fa
torization Algorithm 663.6 Experimental Results and Performan
e Analysis 733.7 Con
lusions . 794 A New Algorithm for Dire
t Solution of General Sparse Linear Sys-tems 814.1 Introdu
tion . 814.2 The Bidire
tional Sparse Fa
torization (BSF) Algorithm 834.2.1 Bidire
tional Fa
torization - The Con
ept 834.2.2 Exploiting the Sparsity of the CoeÆ
ient Matrix A 834.2.3 Implementing the BSF Algorithm on Multipro
essors 844.3 Ordering the General Sparse Matrix for Bidire
tional Fa
torization . . 88iv

4.4 The Bidire
tional Symboli
 Fa
torization Algorithm 904.5 Experimental Results and Performan
e Analysis 924.6 Con
lusions . 995 Con
lusions 1005.1 Summary . 1005.2 Suggestions for Future Work . 102Bibliography 103

v

List of Figures2.1 An 8� 8 blo
k tridiagonal system and listing of row(l)i at various stages 102.2 Elimination and ba
k substitution pattern in CR algorithm for N=8 . 132.3 Elimination pattern in CE algorithm for N=8 142.4 Progression of the CR algorithm with the existing mapping for N=16and p=4 . 172.5 Progression of the CE algorithm with existing mapping for N=16 andp=4 . 192.6 Progression of the CE algorithm with improved mapping for N=16 andp=4 . 212.7 (a) Progression of our algorithm on hyper
ube for N=16 and p=8 . . . 292.7 (b) Progression of our algorithm on hyper
ube for N=16 and p=8 . . . 302.8 Speedups obtained for our algorithm versus CR algorithm for N=512 and n=1 332.9 Speedups obtained for our algorithm versus CR algorithm for N=512 and n=2 342.10 Speedups obtained for our algorithm versus CR algorithm for N=512 and n=4 352.11 Speedups obtained for our algorithm versus CR algorithm for N=1024 andn=1 . 362.12 Speedups obtained for our algorithm versus CR algorithm for N=1024 andn=2 . 372.13 Speedups obtained for our algorithm versus CR algorithm for N=1024 andn=4 . 383.1 The progression of BSCF algorithm for N = 4 433.2 The progression of BSCF algorithm for p = N = 4 (one
olumn ismapped onto ea
h pro
essor). 49

3.3 Progression of the BSCF algorithm for p = 4 and N = 16 (four
olumnsare stored in ea
h pro
essor). 533.4 The progression of substitution phase for N = 4 553.5 Disse
tion of a 7� 7 grid by separators during nested disse
tion 613.6 The nested disse
tion tree for a 7� 7 grid 613.7 Ordering of a 7� 7 grid using regular nested disse
tion ordering 623.8 The forward and ba
kward elimination trees for a 7 � 7 grid obtainedusing regular nested disse
tion ordering 633.9 The
olouring of tree nodes in bidire
tional nested disse
tion ordering 633.10 Ordering of a 7� 7 grid using bidire
tional nested disse
tion ordering . 643.11 The forward and ba
kward elimination trees for a 7 � 7 grid obtainedusing bidire
tional nested disse
tion ordering 653.12 Speedups obtained for bidire
tional algorithm versus regular algorithm for a16� 16 grid (i.e., N = 256) with C=E = 50 753.13 Speedups obtained for bidire
tional algorithm versus regular algorithm for a16� 16 grid (i.e., N = 256) with C=E = 100 763.14 Speedups obtained for bidire
tional algorithm versus regular algorithm for a32� 32 grid (i.e., N = 1024) with C=E = 50 773.15 Speedups obtained for bidire
tional algorithm versus regular algorithm for a32� 32 grid (i.e., N = 1024) with C=E = 100 784.1 Ordering of a 9� 9 matrix using alternate stripe reordering. 894.2 Speedups obtained for bidire
tional algorithm versus regular algorithm forWILL199. 954.3 Speedups obtained for bidire
tional algorithm versus regular algorithm forGRE216A. 964.4 Speedups obtained for bidire
tional algorithm versus regular algorithm forGRE343. 97
vii

4.5 Pseudo-speedups obtained for bidire
tional fa
torization with matri
es re-ordered by ASR method versus those reordered by Liu's rotation method.C=E = 50. 98

viii

List of Tables2.1 Counts of tasks exe
uted by the CR algorithm 182.2 Counts of tasks exe
uted by the CE algorithm with the existing mapping 202.3 Counts of tasks exe
uted by the CE algorithm with improved mapping 234.1 Matri
es from Harwell-Boeing
olle
tion 94

Chapter 1
Introdu
tion1.1 Multipro
essing Systems and Parallel AlgorithmsVarious s
ienti�

omputing problems, su
h as
omputational
uid dynami
s and nu-meri
al weather predi
tion, are highly
omputationally intensive. The high
omputa-tional power required for fast solution of su
h problems is beyond the rea
h of presentday
onventional unipro
essors. Furthermore, the performan
e of unipro
essors tendsto display an early saturation in relation to their
osts. This implies that even modestgains in performan
e of a unipro
essor
omes at an exorbitant in
rease in its
ost. Thusordinary mi
ropro
essors, whi
h
ost many orders of magnitude lower than the fastestserial
omputers, have only marginally lower performan
e. By
onne
ting many su
hmi
ropro
essors together to form a multipro
essor, we
an obtain raw
omputing power
omparable to that of the fastest serial
omputers available, that too at a
onsiderablylower pri
e.However, this raw power of multipro
essors needs to be translated to high
ompu-tational rates that are realizable for a
tual appli
ations. For this purpose, we need todesign eÆ
ient parallel algorithms that
an exploit the maximum possible parallelismavailable in the problem and deliver the high performan
e required. Unlike a sequentialalgorithm, whi
h simply exe
utes a sequen
e of instru
tions on a single pro
essor, aparallel algorithm pro
eeds by dividing a problem into multiple sub-problems. Ea
hof these sub-problems
an in turn be solved on di�erent pro
essors in an asyn
hronousfashion. In addition, a parallel algorithm handles the various intera
tions that o

urbetween these sub-problems in the form of ex
hange of messages. In the next se
tion,we look at some of the fundamental issues that
rop up in the design of a parallelalgorithm. 1

1.2 Key Issues in Design of Parallel AlgorithmsThe following two prin
ipal issues arise in the design of parallel algorithms.� Problem partitioning and mapping : refers to dividing a problem into a numberof
o-operating sub-problems (tasks) whi
h
an be exe
uted
on
urrently andassigning these tasks to various pro
essors.� Communi
ation : refers to intera
tion between various tasks of a parallel algo-rithm by ex
hange of messages
ontaining data or
ontrol information a
ross theinter-pro
essor links.A parallel algorithm may exe
ute di�erent number of tasks simultaneously at dif-ferent instants of time. The maximum number of tasks that
an be exe
uted simul-taneously at any time in a parallel algorithm is
alled its degree of
on
urren
y. Thedegree of
on
urren
y depends prin
ipally upon how amenable a given problem is toparallelization.The measure of the amount of
omputation involved in ea
h task of a parallelalgorithm is
alled task granularity. Task granularity
an be
lassi�ed as �ne, medium,or
oarse depending upon the pro
essing levels involved.Speedup is a simple metri
 to measure the performan
e of a parallel algorithm. Itrefers to the ratio of the serial run time of the best sequential algorithm for solvinga problem to the time taken by a parallel algorithm for solving the same problem onp identi
al pro
essors. For an ideal multipro
essor system, the speedup is equal to p.In pra
ti
e, however, depending upon the inter-task dependen
ies and
ommuni
ationoverheads, the speedup is less than p.1.3 Statement of the ProblemIn this thesis, we address the problem of solving the sparse system of linear equationsa11x1 + a12x2 + � � �+ a1NxN = b1a21x1 + a22x2 + � � �+ a2NxN = b2...aN1x1 + aN2x2 + � � �+ aNNxN = bN2

where majority of the
oeÆ
ients aij are zero. In other words, we have to solve thelinear system Ax = b, where A is a sparse
oeÆ
ient matrix (i.e., majority of itselements are zero) of dimension N � N , x is an N � 1 unknown solution ve
tor, andb is an N � 1 known right hand side ve
tor.In this work we have
onsidered the solution of the following three
lasses of sparselinear systems.� Blo
k tridiagonal linear systems : in whi
h the
oeÆ
ient matrix A has nonzerosalong the three diagonals as shown below.
A = 0BBBBBBBBBBB�

� �� � �.� � �� �
1CCCCCCCCCCCAEa
h � is an n� n matrix blo
k.� Sparse symmetri
 linear systems : in whi
h the relation A[i; j℄ = A[j; i℄ holds forea
h element of the
oeÆ
ient matrix A.� General sparse linear systems : in whi
h the
oeÆ
ient matrix does not haveany spe
i�
 pattern in the lo
ation of nonzeros.The te
hniques for obtaining solution for sparse linear systems
an be dividedinto two broad
ategories - iterative and dire
t. Iterative methods, su
h as Ja
obi,Gauss-Seidel, and
onjugate gradient methods,
onverge towards an approximate �nalsolution by means of a sequen
e of iterations. The number of iterations required tosolve a system of linear equations with a desired pre
ision is not known beforehand.Iterative methods do not guarantee
onvergen
e towards a �nal solution, but whenthey do yield a solution, they are usually less
omputationally expensive than thedire
t methods.Dire
t methods, su
h as Guassian elimination, LU fa
torization, and Choleskyfa
torization based methods, yield an exa
t �nal solution by exe
uting a predeterminednumber of arithmeti
 operations. Although these methods are more
omputationally3

intensive than iterative methods, they are important for solving sparse linear systemsdue to their a

ura
y, robustness, and generality. In this work we
onsider the dire
tmethods for solution of sparse linear systems.1.4 Brief Survey of Relevant WorkThe problem of solving a system of linear equations (Ax = b) is
entral to many prob-lems in engineering and s
ienti�

omputing. Large sparse systems of linear equationsarise in various appli
ations su
h as �nite element analysis,
omputational
uid dynam-i
s, and power systems analysis. Developing fast parallel algorithms for solving sparselinear systems has been the fo
us of resear
h in re
ent years not only be
ause they areen
ountered frequently in s
ienti�

omputing problems, but also be
ause they usuallyform the most
omputationally intensive part of these problems. Furthermore, thete
hniques for solving sparse linear systems involve more
omplex data stru
tures andalgorithms than their dense
ounterparts. There is an enormous amount of literatureavailable in this �eld. The
urrent state of art in developing parallel algorithms forsparse linear systems
an be found in [19, 13, 20, 30℄.Although there is substantial parallelism inherent in sparse linear systems, e�ortsmade till date to develop eÆ
ient parallel algorithms for solving these have a
hievedonly limited su

ess. This is be
ause most of the attempts are based on trying toparallelize good sequential algorithms. However, the goal of a good sequential algorithmi.e., minimizing the total operation
ount, dire
tly
on
i
ts with the goal of a goodparallel algorithm, whi
h is maximizing the number of
on
urrent sub-problems. Hen
e,parallelizing the good sequential formulations may not yield good parallel
ounterparts.Existing works on parallel algorithms for solving tridiagonal and blo
k tridiagonalsystems
an be found in [3, 31, 50, 51, 52℄.Existing works on solving sparse symmetri
 and general sparse linear system-s
an be
lassi�ed a

ording to the phases of solution that ea
h work address-es. Parallelization of the numeri
al fa
torization phase has re
eived mu
h attention[2, 4, 14, 15, 11, 20, 44, 30℄ due to its being a
omputationally intensive phase. A
lassof algorithms
alled multifrontal algorithms has also gained popularity re
ently [9, 40℄.4

Ash
raft et. al. [5℄
ompare the fan-out, fan-in and multifrontal approa
hes to sparsenumeri
al fa
torization.The substitution phase, whi
h involves solution of triangular systems, has limitedinherent parallelism. Therefore e�orts towards parallelizing this phase have re
eivedmu
h less attention. Solving sparse triangular systems in parallel is dis
ussed in [14,22, 29℄.Literature on the various te
hniques for the ordering phase
an be found in [12, 26,38, 33, 32℄. Work on developing parallel ordering algorithms is fairly rudimentary tilldate [8, 41, 47℄. Work on parallel algorithms for the symboli
 fa
torization phase
anbe found in [2, 18, 28℄.1.5 Contribution of the ThesisWe have proposed new parallel algorithms for the following three problems in our work:� In the �rst problem, we have proposed a new mapping of the Cy
li
 Elimination(CE) algorithm [25℄ for the solution of blo
k tridiagonal system of linear equa-tions onto hyper
ube multipro
essors. Unlike the previous mapping s
hemes, inour mapping of the CE algorithm, all
ommuni
ations are restri
ted to physi
allyadja
ent pro
essors, using the
on
ept of data repli
ation.� In the se
ond problem, we have proposed a new parallel bidire
tional algorithm,based on Cholesky fa
torization, for the solution of sparse symmetri
 systemof linear equations. Traditionally, the pro
ess of obtaining a dire
t solutionof a sparse symmetri
 linear system, Ax = b, where A is a sparse symmetri
matrix, involves the four distin
t phases - (i) Ordering, (ii)Symboli
 fa
torization(iii)Numeri
al fa
torization, and (iv) Substitution. For solution of multiple b-ve
tors, the �rst three phases are
arried out only on
e to obtain the Choleskyfa
tor L. The substitution phase is then repeated for ea
h b-ve
tor in orderto obtain a di�erent solution ve
tor x in ea
h
ase. Thus, in problems whi
hinvolve solution of multiple b-ve
tors, the time taken by repeated exe
ution ofsubstitution phase dominates the overall solution time.5

In the bidire
tional algorithm based on Cholesky fa
torization, that we haveproposed, the numeri
al fa
torization phase is
arried out in su
h a manner thatthe entire ba
k substitution
omponent of the substitution phase is repla
edby a single step division. The appli
ation of the novel
on
ept of bidire
tionalelimination to dense linear systems
an be found in [42, 43℄.� In the third problem, we have proposed a new parallel bidire
tional algorithm,based on LU fa
torization, for the solution of general sparse system of linearequations. The traditional method for parallel solution of this
lass of problem
onsists of the four phases mentioned above. As with sparse symmetri
 systems,the numeri
al fa
torization phase is
arried out in su
h a manner that the entireba
k substitution
omponent of the substitution phase is repla
ed by a singlestep division. However, due to absen
e of symmetry, important di�eren
es arisein the ordering te
hnique, the symboli
 fa
torization phase, and message passingduring numeri
al fa
torization phase. The bidire
tional substitution phase forsolving general sparse systems is the same as that for sparse symmetri
 systems.The e�e
tiveness of all our algorithms have been demonstrated by
omparing them withtheir
orresponding existing parallel algorithms using extensive simulation studies.1.6 Organization of the ThesisThe rest of the thesis is organized as follows. In
hapter 2, we present an improvedmapping of the
y
li
 elimination algorithm onto hyper
ube multipro
essors. We alsopresent analyti
al and experimental performan
e studies for the new mapping s
heme.In
hapter 3, we des
ribe new parallel algorithms based on Cholesky fa
torization forsolving sparse symmetri
 linear systems. We
onsider the
ase where the system needsto be solved for multiple b-ve
tors and
ompare the new s
heme with the existingmethod for solving sparse symmetri
 linear systems. In
hapter 4, we present newparallel algorithms, based on LU fa
torization, for solving general sparse linear systemswith multiple b-ve
tors and present
omparison with the existing methods based onLU fa
torization. Chapter 5
on
ludes the work with a summary of the thesis andpointers to some dire
tions in whi
h the work presented here
an be extended.6

Chapter 2
Solving Blo
k Tridiagonal Linear Systemson Hyper
ube Multipro
essors2.1 Introdu
tionThe numeri
al solution of blo
k tridiagonal linear system of equations is one of theimportant
lasses of problems whi
h o

urs in many areas of numeri
al analysis su
has solving partial di�erential equations using �nite di�eren
e s
hemes. The most ef-�
ient method for solving blo
k tridiagonal linear systems on a unipro
essor is theBlo
k Gaussian Elimination (BGE) [19℄. However, the BGE algorithm is not suitablefor multipro
essor environment be
ause of la
k of adequate parallelism. On the otherhand algorithms su
h as blo
k Cy
li
 Redu
tion (CR) [24℄, Buneman's algorithm [7℄,blo
k Cy
li
 Elimination (CE) [25, 19℄ and re
ursive doubling [31℄ exploit the inherentparallelism present in the problem. For eÆ
ient implementation of these algorithms onmultipro
essors, the prin
ipal
hallenge lies in redu
ing the overhead involved in
om-muni
ation between pro
essors. This aim
an be a
hieved by using eÆ
ient mappings
hemes and overlapping the
ommuni
ation and
omputation steps.A mapping of any algorithm onto a hyper
ube is said to be desirable if all
om-muni
ations are restri
ted to physi
ally adja
ent pro
essors. However, the following(statement) result due to Lakshmivarahan and Dhall [31℄ relates to non-existen
e of adesirable mapping of the CR and CE algorithms onto base-2 (binary) hyper
ube.\In any mapping of the CR or CE algorithm onto a p-node base-2 hyper
ube, it isne
essary that at least log p2 �1 steps involve
ommuni
ation between pro
essors that areat a distan
e two or more apart." (For proof refer to [31℄, pp 364-365.) Further, it hasbeen shown by Johnsson [27℄ that upon using the binary re
e
ted Gray
ode mapping[48℄, the distan
e between any two
ommuni
ating pro
essors is no more than two.7

However, we show, in this
hapter, that it is possible to obtain a desirable mapping ofCE algorithm onto hyper
ube multipro
essors using the
on
ept of data repli
ation.Complete details about mapping of CR or CE algorithm onto a hyper
ube multi-pro
essor
an be found in [31℄. Here we give a brief overview of the major di�eren
esbetween the CR and CE algorithms. The CR algorithm
onsists of two phases - redu
-tion and substitution. The CE algorithm
onsists of only one phase, namely, redu
tion.The degree of parallelism in the redu
tion phase of CR algorithm halves with every
onse
utive stage. On the other hand, the degree of parallelism in the redu
tion phaseof CE algorithm remains
onstant through all stages. Thus, theoreti
ally, CE algorith-m ought to be preferred over CR algorithm. However, the
ommuni
ation overheadin
urred in the existing mapping of CE algorithm onto hyper
ubes is mu
h higher thanthat of CR algorithm. In parti
ular, the
ommuni
ation graph of the CR algorithm is asub-graph of the
ommuni
ation graph of CE algorithm. The
ommuni
ation overheadin
urred by the existing mapping of CE algorithm be
omes
ostly, espe
ially sin
e su
-
essive stages of the redu
tion phase
all for data
ommuni
ation between pro
essorswhi
h are not neighbours. A large number of su
h multiple hop data
ommuni
ationslead to link
ontentions and,
onsequently, lower performan
e.In order to gainfully exploit the higher degree of parallelism of the CE algorithmwe propose an improved mapping of the CE algorithm onto a hyper
ube multipro
es-sor with whi
h the data
ommuni
ations are restri
ted to o

ur between neighbouringpro
essors only. This is a
hieved by eÆ
ient dupli
ation of data at every stage of thealgorithm. Thus the problem due to link
ontentions are over
ome and better perfor-man
e a
hieved. Two signi�
ant features of our algorithm are that, the
omputationalload is balan
ed among all the pro
essors at all stages of the algorithm and se
ondly,mu
h of the
ommuni
ation gets overlapped with
omputation giving an overall betterperforman
e.The rest of the
hapter is organised as follows. In se
tion 2.2, we make a problemstatement and introdu
e some notations whi
h will be used in the subsequent se
tions.In se
tion 2.3, we dis
uss the sequential BGE algorithm on a unipro
essor, and theparallel CR and CE algorithms. In se
tion 2.4, using an example, we �rst look at theexisting s
hemes for mapping CR and CE algorithms onto hyper
ube multipro
essors8

and then present our improved mapping s
heme for the CE algorithm followed byits analyti
al performan
e study. In se
tion 2.5, we present numeri
al results for thespeedups obtained from our new mapping s
heme and the existing mapping of CRalgorithm, and
ompare the two s
hemes. Se
tion 2.6
on
ludes the work with somepointers for future resear
h.2.2 Problem Statement and NotationsThe blo
k tridiagonal matrix A is de�ned as
A = 0BBBBBBBBBBB�

d1 f1e2 d2 f2.eN�1 dN�1 fN�1eN dN
1CCCCCCCCCCCAwhere the
omponents ei; di and fi are n � n matri
es (or blo
ks) with e1 = fN = 0.There are N su
h blo
ks along prin
ipal diagonal of A where N is a power of 2. So theoverall dimension of A is (Nn)� (Nn). We are to solve the system AX = b, where theve
tor X = (x1; x2; : : : ; xN)t, the ve
tor b = (b1; b2; :::; bN)t, the
omponents xi and biare n-ve
tors and ejxj�1 + djxj + fjxj+1 = bj ; j = 1; : : : ; N:The CR algorithm for solving the system Ax = b
onsists of the redu
tion phasefollowed by the ba
k substitution phase. Ea
h of these two phases, in turn, is dividedinto logN stages. The CE algorithm
onsists of redu
tion phase alone whi
h is dividedinto logN stages. In both CR and CE algorithms, at the beginning of stage l = 1 ofthe redu
tion phase, we de�ne the 5-tuple row(0)i asrow(0)i = (e(0)i ; d(0)i ; (d(0)i)�1; f (0)i ; b(0)i) = (ei; di; (di)�1; fi; bi):At ea
h stage l 2 f1; : : : ; logNg of redu
tion phase, we de�ne the tuple row(l)i asrow(l)i = 8><>: (e(l)i ; d(l)i ; (d(l)i)�1; f (l)i ; b(l)i) ; 8i 2 f1; : : : ; Ng(0; I; I; 0; 0) ; 8i � 0 or i > N:9

Here e(l)i is the value of ei at the end of stage l, f (l)i is the value of fi at the endof stage l and so on. The matrix I is the n � n identity matrix. Note that (d(l)i)�1is in
luded as a member of the tuple row(l)i . This is done be
ause, the inverse, on
e
omputed at a sour
e pro
essor,
an be transferred along with the tuple row(l)i toother pro
essors whi
h need it, thus avoiding its re-
omputation at the destinationpro
essors. Figure 2.1 gives an example of the above notations for an 8 � 8 blo
ktridiagonal system. 0BBBBBB� d1 f1e2 d2 f2.e7 d7 f7e8 d8
1CCCCCCA 0BBBBBB� x1x2...x7x8

1CCCCCCA = 0BBBBBB� b1b2...b7b8
1CCCCCCAA x = bStage1 Stage2 Stage3row(0)1 = (e1; d1; (d1)�1; f1; b1) row(1)1 = (e(1)1 ; d(1)1 ; (d(1)1)�1; f (1)1 ; b(1)1) row(2)1 = (e(2)1 ; d(2)1 ; (d(2)1)�1; f (2)1 ; b(2)1)row(0)2 = (e2; d2; (d2)�1; f2; b2) row(1)2 = (e(1)2 ; d(1)2 ; (d(1)2)�1; f (1)2 ; b(1)2) row(2)2 = (e(2)2 ; d(2)2 ; (d(2)2)�1; f (2)2 ; b(2)2)row(0)3 = (e3; d3; (d3)�1; f3; b3) row(1)3 = (e(1)3 ; d(1)3 ; (d(1)3)�1; f (1)3 ; b(1)3) row(2)3 = (e(2)3 ; d(2)3 ; (d(2)3)�1; f (2)3 ; b(2)3)Figure 2.1: An 8� 8 blo
k tridiagonal system and listing of row(l)i at various stages2.3 Solving Blo
k Tridiagonal Linear SystemsIn this se
tion, we �rst brie
y present the theoreti
al
on
epts behind the sequentialBGE and then the parallel versions of CR and CE algorithms.2.3.1 Sequential Blo
k Gaussian Elimination (BGE)There are two phases in this algorithm - forward elimination and ba
k substitution.Computation within ea
h phase is
ompletely sequential in nature.

10

Algorithm 1(*Forward elimination phase*)for i = 2 to N doCal
ulate (di�1)�1ai = ei(di�1)�1ei = 0di = di � aifi�1fi = fibi = bi � aibi�1endfor(*Ba
k substitution phase*)Cal
ulate (dN)�1xN = (dN)�1bNfor i = (N � 1) downto 1 doxi = (di)�1(bi � fixi+1)endfor.The time taken for
al
ulating the inverse of an n�n matrix blo
k, using the ex
hangemethod, is Tinv = 3n3 � 4n2 + 2n
omputational time units. Multiplying two n � nmatri
es takes Tmult = 2n3 � n2 time units, whereas multiplying an n � n matrixwith an n-ve
tor takes T 0mult = 2n2 � n time units. The sequential BGE algorithmexe
utes N matrix inversions, 2(N � 1) matrix-matrix multipli
ations, 3N � 2 matrix-ve
tor multipli
ations, N � 1 matrix subtra
tions, and 2(N � 1) ve
tor subtra
tions.Summing up all the
omponents, this step takesTBGE = N(3n3�4n2+2n)+2(N�1)(2n3�n2)+(3N�2)(22�n)+(N�1)n2+2(N�1)n= (N � 1)(7n3 + n2 + n) + (3n3 + 2n2 + n) time units.2.3.2 The Basi
 Elimination StepBoth CE and CR algorithms, have a basi
 elimination step in
ommon. We name thisstep Compute row(l)i , where i 2 f1; : : : ; Ng is the index of a row of blo
ks and l 2f1; : : : ; logNg is the stage being
onsidered. Let h = 2(l�1). The Compute row(l)i step11

eliminates the dependen
e of equation i on the variables xi+h and xi�h by subtra
tingappropriate multiples of equations i+h and i�h from equation i. The Compute row(l)istep
onsists of the following
omputation steps.u(l)i = �e(l)i (d(l�1)i�h)�1v(l)i = �f (l)i (d(l�1)i+h)�1e(l)i = u(l)i e(l�1)i�hd(l)i = d(l�1)i + u(l)i f (l�1)i�h + v(l)i e(l�1)i+hCal
ulate (d(l)i)�1f (l)i = v(l)i f (l�1)i+hb(l)i = b(l�1)i + u(l)i b(l�1)i�h + v(l)i b(l�1)i+hThe Compute row(l)i step involves six matrix-matrix multipli
ations, two matrix-ve
tormultipli
ations, one matrix inversion, two matrix additions, and two ve
tor additions.Summing up the
omponents, this step takes e = (15n3 � 4n2 + 2n) time units.2.3.3 The Blo
k Cy
li
 Redu
tion Algorithm (CR)The CR algorithm
onsists of two phases, namely redu
tion (or elimination) phaseand ba
k substitution phase. These two phases are essentially sequential although the
omputations within ea
h phase
an be
arried out in parallel. Therefore, the totalparallel time is the sum of the individual parallel times. Figure 2.2 shows the patternof elimination and ba
k substitution steps for the
ase of N = 8 blo
k equations.Algorithm 2(*Redu
tion phase*)1. for l = 1 to logN doh = 2(l�1)for i 2 f2l; 2� 2l; 3� 2l; : : : ; logNgdo in parallelCompute row(l)iendforendfor(*Ba
k substitution phase*)2. xN = (d(logN)N)�1blogNN 12

m
m
m
m

m
m
m
m
5
78

1234
6

m
m

m
m
4
8

2
6

m
m8

4
m8 m8

m
m8

4 m
m

m
m
4
8

2
6

m
m
m
m

m
m
m
m
5
78

1234
6HHHHHHHj

��������1
-
-
-��������1-

-
�������

- -������R -
�������

������*

�������7
������*QQQQQsHHHHHHj�����3
�����3QQQQQs- - -

-
-
-

-��������1PPPPPPPPq
AAAAAAAAAAAAU

������R ������R
�������

������
PPPPPPPPqPPPPPPPPq
stage 1 stage 2 stage 3 stage 1 stage 2 stage 3Figure 2.2: Elimination and ba
k substitution pattern in CR algorithm for N=83. for l = logN downto 1 doh = 2(l�1)for i 2 f2(l�1); 3� 2(l�1); 5� 2(l�1); : : : ; N � 2(l�1)gdo in parallelxi = (d(l�1)i)�1(b(l�1)i � e(l�1)i xi�h � f (l�1)i xi+h)endforendfor.2.3.4 The Blo
k Cy
li
 Elimination Algorithm (CE)The CE algorithm
onsists of only the elimination phase followed by a single stepdivision. Here the elimination phase re
ursively
onverts the given system of equationsinto two independent systems of equations ea
h of whi
h
an be solved in parallel usingthe CE algorithm. Figure 2.3 shows the pattern of Compute row(l)i steps for the
aseof N = 8 blo
k equations.

13

AAAAAAAAAAAAAAAAAAAU
AAAAAAAAAAAAAAAAAAU

AAAAAAAAAAAAAAAAAAAU

AAAAAAAAAAAAAAAAAAAU

�������
�������

�����
�������

�������
�����

�������
�������

�����
�������

�������
��������������������������������������

12345678

��������������������������������

12345678

��������������������������������

12345678

��������������������������������

12345678

��������������������������������

12345678

-���������*-HHHHHHHHHjHHHHHHHHj-���������*HHHHHHHHHj-��������*HHHHHHHHHj-���������*���������*HHHHHHHHj-��������*HHHHHHHHj-��������*HHHHHHHHHj-

--

���������R�������
���

���������R�������
���

���������R�������
���

���������R���������R���������R�������
����������
����������
���

--
--
--
--

stage 1 stage 2 stage 3 divisionFigure 2.3: Elimination pattern in CE algorithm for N=8

14

Algorithm 31. for l = 1 to logN doh = 2(l�1)for i 2 f1; 2; : : : ; Ngdo in parallelCompute row(l)iendforendfor2. for i 2 f1; 2; : : : ; Ngdo in parallelxi = (d(logN)i)�1b(logN)iendfor.2.4 Solving Blo
k Tridiagonal Linear Systems on Hyper
ubesThe hyper
ube, one of the most popular ar
hite
ture for multipro
essor systems, isa generalization of a
ube to d dimensions su
h that ea
h of the 2d pro
essors has dneighbours. In this se
tion, we present an improved mapping of the CE algorithmon a hyper
ube multipro
essor whi
h a
hieves neighbouring pro
essor
ommuni
ationby eÆ
ient use of the
on
ept of data dupli
ation. We begin by
omparing the threemapping s
hemes, namely, the existing mapping of the CR algorithm, the existingmapping of the CE algorithm, and our improved mapping of the CE algorithm withthe help of a simple example. We then pro
eed to formally present our algorithm andexplain the various steps.2.4.1 Comparison of Three S
hemesLet us
onsider the simple problem of solving a blo
k tridiagonal system with N = 16blo
k equations and blo
k size 1 � 1 (i.e., n = 1) on a two-dimensional hyper
ube(i.e., there are four pro
essors in the hyper
ube). We tra
e the step by step exe
utionof ea
h of the s
hemes below and
al
ulate the time taken in ea
h
ase. For thesake of simpli
ity, we
onsider only the non-overlapped exe
ution of
omputation and
ommuni
ation steps.We de�ne the following notations to make our
omparison
learer.15

� pk symboli
ally represents the kth pro
essor of a hyper
ube.� p represents the number of pro
essors in a hyper
ube. Thus the dimension ofthe hyper
ube is log p.� e represents the number of operations involved in exe
uting the Compute row(l)iwith no
ommuni
ation overheads. As shown in se
tion 3.2, this works out tobe e = 15n3 � 4n2 + 2n
omputational time units.� s represents the number of operations involved in exe
uting one ba
k substi-tution step, whi
h involves three matrix-ve
tor multipli
ations and two ve
torsubtra
tions. This works out to be s = 6n2 � n
omputational time units.� Communi
ation to Computation ratio, C=E, represents the the ratio of time tak-en to
ommuni
ate one
oating point value between two neighbouring pro
essorsto the time taken to exe
ute one
oating point operation.� Tb represents the time taken to
ommuni
ate the
ontents of an n � n matrixblo
k between two neighbouring pro
essors. This works out to be n2(C=E)
omputational time units.� Te represents the time taken to
ommuni
ate the
ontents of a 5-tuple row(l)ibetween two neighbouring pro
essors. This works out to be 5Tb = 5n2(C=E)
omputational time units.� kth dimension of a hyper
ube is represented by a set of links ea
h of whi
h
onne
ts some pro
essor pj to its neighbour pj0 , su
h that j 0 is obtained byinverting the kth bit in the binary representation of j.2.4.1.1 Existing Mapping of the CR AlgorithmFigure 2.4 shows the step by step exe
ution of the CR algorithm for solving the tridi-agonal system of 16 equations using a hyper
ube of four pro
essors. The equation-s are initially mapped onto pro
essors in a blo
k wrap manner (see �gure 2.4(a)).The redu
tion phase of the mapped algorithm
onsists of 4 (i.e., log 16) stages. The�rst stage
onsists of a one hop
ommuni
ation of tuples row(0)5 (from pro
essor p1 top0), row(0)9 (from p3 to p1), row(0)13 (from p2 to p3) followed by the
omputation steps16

����
���� ����
����

����
���� ����
���� ����

���� ����
����

����
���� ����
���� ����

���� ����
����

-

-
6 ? 6 ?

? 6 ?
�

-

5 6 7 8
13 14 15 16
9 10 11 12

1 2 3 4

1 2 3 4
5 6 7 89 10 11 12

13 14 15 16 2 4
6 810 12

14 16

4
812

16
8

16
12

8
8

9 10
13 14 65

412
(
) stage 2

(d) stage 3

(b) stage 1

p3 p1
p0p2

p1p3
p2 p0

p3 p1
p2 p0

p3 p1
p2 p0

p3 p1
p2 p0

(a) initial data distribution

(e) stage 4Figure 2.4: Progression of the CR algorithm with the existing mapping for N=16 andp=4
17

Table 2.1: Counts of tasks exe
uted by the CR algorithm
Redu
tion phase task
ountstage Te e1 1 22 1 13 1 14 2 1 Substitution phase task
ountstage Tb s1 2 12 1 13 1 14 1 2Compute row(1)2 and Compute row(1)4 at p0, Compute row(1)6 and Compute row(1)8 at p1,Compute row(1)10 and Compute row(1)12 at p3 and Compute row(1)14 and Compute row(1)16at p2. This
ompletes the �rst stage of redu
tion phase. Similarly, se
ond and thirdstages involve one hop
ommuni
ation of row(l)i tuples and one step ea
h of the formCompute row(l)i . Stage 4
onsists of a two hop
ommuni
ation of row(3)8 from p1 to p2followed by the step Compute row(4)16 . The substitution phase of the algorithm followsa
ompletely reverse pattern of
ommuni
ation and
an be des
ribed by reversing theorder of the stages and the dire
tion of the arrows in the redu
tion phase. The dataitems
ommuni
ated are the
oating point values of the variables xi (instead of row(l)ias in redu
tion phase).The
ounts of various tasks exe
uted at ea
h stage of the algorithm are summarisedin table 2.1. We see from table 2.1 that it takes 5Te + 5e
omputational time unitsfor the redu
tion phase, followed by a division step, followed by 5Tb + 5s units for thesubstitution phase. Thus the total exe
ution time is TCR = 5(Te + Tb) + 5(e + s) + 1units. Typi
ally the
ommuni
ation to
omputation ratio (C/E) is of the order of 100.Thus with N = 16, n = 1 and p = 4 we have Te = 500, Tb = 100, e = 13 and s = 5.Thus TCR = 3091
omputational time units from the above expression.2.4.1.2 Existing Mapping of the CE AlgorithmFigure 2.5 shows the step by step exe
ution of the CE algorithm for solving the tridi-agonal system of 16 equations using a hyper
ube with four pro
essors. The equationsare initially mapped onto pro
essors in a blo
k wrap manner (see �gure 2.5(a)). The18

-�6? 6?
-�Æ
�� Æ
��

Æ
�� Æ
��1 2 3 4
5 6 7 89 10 11 12

13 14 15 16
6?11 1213 14 6?3 4 5 6 6?5 67 81 23 46?13 1415 16 9 1011 12

-� 1 23 413 1415 16 5 67 8 ? 9 1011 12?
-�1 2 3 413 14 15 16

-�
Æ
�� Æ
��
Æ
��

Æ
�� Æ
��
Æ
�� Æ
��

Æ
�� Æ
��
Æ
�� Æ
��

Æ
��
Æ
�� Æ
��
Æ
�� Æ
��

66

(a) stage 1
9813 12 1 2 3 4

5 6 7 89 10 11 12
13 14 15 16 4 5

(b) stage 2
6 79 10

(
) stage 3

(d) stage 4 - �rst hop1 2 3 4
5 6 7 89 10 11 12

13 14 15 16
5 6 7 89 10 11 12

1 2 3 4
5 6 7 89 10 11 12

13 14 15 16

p3 p1
p0p2

p1p3
p0p2

9 10 11 125 6 7 8 5 6 7 89 10 11 12
1 2 3 413 14 15 16

p1p3
p0p2
p1p3
p0p2

p1
p0p2

p3
(e) stage 4 -se
ond hop and eliminationFigure 2.5: Progression of the CE algorithm with existing mapping for N=16 and p=4

19

Table 2.2: Counts of tasks exe
uted by the CE algorithm with the existing mappingtask
ountstage Te e1 1 42 2 43 4 44 8(2hops) 4algorithm
onsists of only redu
tion phase whi
h has 4 (i.e., log 16) stages. In the�rst stage, row(0)5 tuple is
ommuni
ated from p1 to p0 pre
eding the step Computerow(1)4 . Simultaneously, row(0)4 tuple is
ommuni
ated from p0 to p1 pre
eding thestep Compute row(1)5 and so on. Thus stage 1
onsists of one-hop
ommuni
ationof row(l)i tuples followed by four Compute row(l)i steps per pro
essor. At the end ofstage 1, there are two independent sets of equations, namely, f1; 3; 5; 7; 9; 11; 13; 15gand f2; 4; 6; 8; 10; 12; 14; 16g. Similarly, stage 2
onsists of two one-hop
ommuni
ationof row(l)i tuples followed by four Compute row(l)i steps per pro
essor. At the end ofstage 2 there are four independent sets of equations, namely f1; 5; 9; 13g, f3; 7; 11; 15g,f2; 6; 10; 14g, and f4; 8; 12; 16g. Stage 3
onsists of four one hop
ommuni
ations ofrow(l)i tuples followed by four Compute row(l)i steps.The
ounts of various tasks exe
uted at ea
h stage of the algorithm are summarisedin table 2.2. We see from table 2.2 that
ommuni
ation overhead doubles with ea
hstage as the number of independent sets of equations doubles at ea
h stage. Further, thelast stage
onsists of four
onse
utive two-hop
ommuni
ation of row(l)i tuples. Stage4 is followed by four divisions per pro
essor. Thus the total exe
ution time taken inthe present
ase is TCE = 15Te + 16e + 4
omputational time units. Substituting thevalues for Te and e, we get TCE = 7712 time units. Thus, in the present
ase, theexisting mapping of CE algorithm performs poorly in
omparison to the mapping ofCR algorithm onto hyper
ubes.
20

?9 68
1 35 7 9 1113 156 ?2 46 810 1214 16

����
���� ����
����

����
���� ����
����

����
���� ����

����
����

���� ����
����

6?

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
9 10 11 12 13 14 15 169 10 11 12 13 14 15 16
9 11 13 15
1 3 5 72 4 6 8

10 12 14 16

2 6 10 14 1 5 9 13
4 8 12 16 3 7 11 15

p1p3
p0p2
p1p3
p0p2
p1p3
p0p2
p1p3
p0p2

(a) initial data distribution
(b) elimination phase at stage 1
(
)
opying phase at stage 1

(d) after elimination at stage 2Figure 2.6: Progression of the CE algorithm with improved mapping for N=16 andp=4 21

2.4.1.3 The Improved Mapping of CE AlgorithmFigure 2.6 shows the step by step exe
ution of our improved mapping of CE algorithmfor solving the tridiagonal system of 16 equations using a hyper
ube with four pro
es-sors. In this improved mapping s
heme, all the
ommuni
ation steps o

ur betweenneighbouring pro
essors only. The initial distribution of data is as follows. We di-vide the pro
essors of the hyper
ube into two sets - fp0; p1g and fp2; p3g - the formerbeing the set of pro
essors in the lower half of the hyper
ube along 2nd dimensionand the latter being the set of pro
essors in the upper half of the hyper
ube alongthe 1st dimension. The 16 equations are then mapped onto ea
h of the two sets ofpro
essors in a blo
k wrap manner. Thus we get the initial data distribution as shownin �gure 2.6(a). There are log p stages of the improved mapping. Ea
h of the �rstlog p� 1 stages (only the �rst stage in the present
ase)
onsists of two phases - elimi-nation and repli
ation (
opying). The elimination phase
orresponds to the redu
tionstage of the CE algorithm in whi
h Compute row(l)i steps are exe
uted. Thus in stage1 of the algorithm (�gure 2.6(b)), the pro
essors in the set fp0; p1g exe
ute Computerow(l)i steps for odd-indexed equations and the pro
essor set fp2; p3g exe
utes Computerow(l)i for even-indexed equations. This involves a one-hop
ommuni
ation of row(l)ituples followed by four Compute row(l)i steps per pro
essor. At the end of elimina-tion phase of stage 1, the pro
essor set fp0; p1g holds the independent set of equationsf1; 3; 5; 7; 9; 11; 13; 15g and the pro
essor set fp2; p3g holds the independent set of e-quations f2; 4; 6; 8; 10; 12; 14; 16g. The next phase of stage 1 is the
opying phase inwhi
h ea
h pro
essor
opies the row(1)i tuples of its set of equations to the neighbouringpro
essor along the 1st dimension of the hyper
ube. Thus p0
opies the row(1)i tuples ofequations f1; 3; 5; 7g to p1 and p1
opies those of equations f9; 11; 13; 15g to p0. Similar
opying o

urs between pro
essors p2 and p3. Stage 2 of the algorithm
onsists of onlythe elimination phase. Thus p0 exe
utes Compute row(2)i steps for i = 1; 5; 9; 13, p1exe
utes Compute row(2)i steps for i = 3; 7; 11; 15, p2 exe
utes Compute row(2)i stepsfor i = 2; 6; 10; 14, and p3 exe
utes Compute row(2)i steps for i = 4; 8; 12; 16. Thusat the end of log p stages (i.e., elimination phase of stage 2 in the present
ase) ea
hpro
essor
ontains an independent set of equations whi
h
an be solved using BGEalgorithm without
ommuni
ating with any other pro
essor.22

Table 2.3: Counts of tasks exe
uted by the CE algorithm with improved mappingstage task
ountTe e1 elimination 1 4
opying 4 02 elimination 0 4The
ounts of various tasks exe
uted at ea
h stage of the algorithm are summarisedin table 2.3. The BGE algorithm for solving 4 equations per pro
essor takes TBGE = 33
omputational time units (see se
tion 3.1). Thus the total time taken in the present
ase is Tnew = 5Te + 8e + TBGE units. Substituting the values for Te and e, we getTnew = 2637 time units.Thus we see that in the
ase of N = 16, n = 1 and p = 4, our improved mappingof CE algorithm performs better than the existing mappings of both CR and the CEalgorithms. Further, the existing mapping of CR algorithm performs better than theexisting mapping of CE algorithm due to lower
ommuni
ation overhead. We nowpresent some de�nitions and then formally present our improved mapping of the CEalgorithm. We then evaluate its performan
e by
omparing with the existing mappingof the CR algorithm only, sin
e this mapping fares better than the existing mappingof CE algorithm, as shown in the above example.2.4.2 De�nitions� Binary re
e
ted gray
odes [48℄ are a
lass of
odes useful in embedding a ringstru
ture onto a binary hyper
ube. Let G(n) denote the set of all n-digit
odewords of the base-2 (binary) re
e
ted gray
ode i.e.,G(n) = fG0(n); G1(n); : : : ; G2n�1(n)gwhere, Gi(n) ith
ode word of binary re
e
ted gray
ode, i 2 f0; : : : ; 2n � 1g.Let i = inin�1 � � � i2i1i023

in binary with in = 0 and Gi(n) = gngn�1 � � � g2g1in binary. If � denotes the ex
lusive-OR addition of binary bits, then the en-
oding fun
tion En :< N >! G(n) is given byEn(i) = Gi(n) = gngn�1 � � � g1where gj = ij � ij�1for all j = 1; 2; : : : ; N , and the de
oding fun
tion Dn : G(n) !< N > is givenby Dn(g) = iwhere ij = gj+1 � gj+2 � � � � � gn:� pj : send(row(l)i ; pj0) indi
ates that pro
essor pj sends
ontents of row(l)i to pro-
essor pj0 .� pj : re
eive(row(l)i ; pj0) indi
ates that pro
essor pj re
eives
ontents of row(l)ifrom pro
essor pj0 .� neighbour(j; k) indi
ates the neighbour of pro
essor pj along the kth dimensionof hyper
ube. If j 0 = neighbour(j; k) then j 0 is obtained by
omplementing thekth bit in the binary representation of j.� Let d be the dimension of the hyper
ube and l 2 f1; : : : ; dg be the dimensiona
ross whi
h the hyper
ube is to be divided into two halves. We de�ne two setsP (l)upper and P (l)lower as P (l)upper = fj j j > neighbour(j; l)gP (l)lower = fj j j < neighbour(j; l)gwhere j 2 f0; : : : ; p� 1g. Further,P (0)upper = fp=2; p=2 + 1; : : : ; p� 1g24

P (0)lower = f0; 1; : : : ; p=2� 1g:In the next two sub-se
tions the following assumptions hold.� Ea
h pro
essor
ontains suÆ
ient lo
al memory and no global memory exists.� N=p � 1, where N is the number of rows of blo
ks in the blo
k tridiagonal linearsystem.� All links between the pro
essors of the hyper
ube are
apable of full-duplex
ommuni
ation.� For ea
h
ommuni
ation step between a pair of neighbouring pro
essors, thestartup time is assumed to be negligible.� Ea
h pro
essor
an overlap its
omputation with the data
ommuni
ationfrom/to its neighbours.� Inversion of matrix blo
ks is done using the ex
hange method.� The matrix blo
ks d(l)i , i = 1; : : : ; N , are non-singular at all stages l =1; : : : ; logN .2.4.3 Our Improved Mapping of CE onto Hyper
ubesInitially, all row(0)i , i = 1; : : : ; N in the blo
k tridiagonal linear system are partitionedinto p=2 sets S(0)1 ; S(0)2 ; : : : ; S(0)p=2 of 2N=p rows ea
h su
h thatS(0)i = frow(0)2(i�1)Np +1; row(0)2(i�1)Np +2; : : : ; row(0)2iNp gi = 1; : : : ; p=2.One
opy of ea
h set S(0)i is stored in a pair of pro
essors pj and pj0 , j 2 f0; : : : ; p=2�1gand j 0 2 fp=2; : : : ; p� 1gsu
h thatj = Elog p�1(i� 1)i.e., j = (i� 1)th
ode word of the binary re
e
ted gray
ode with log p� 1 bits andj 0 = neighbour(j; log p)25

At any stage l of the algorithm, we maintain sets C(l)j at every pro
essor pj su
hthat C(l)j = frow(l�1)i j row(l)i is
omputed at pro
essor pjg:For all j 2 P (0)lower, let k = Dlog p�1(j) + 1. Thus the members of the set S(0)k are storedat pro
essor pj. Initially, letC(1)j = frow(0)i j row(0)i 2 S(0)k and i 2 f1; 3; : : : ; N � 1ggi.e., Compute row(l)i step is exe
uted at pj for all odd indexed equations whi
h are mem-bers of the set S(0)k . Similarly, for all j 0 2 P (0)upper, let k = Dlog p�1(neighbour(j 0; log p))+1. Then C(1)j0 = frow(0)i j row(0)i 2 S(0)k and i 2 f2; 4; : : : ; Nggi.e., Compute row(l)i step is exe
uted at pj for all even indexed equations whi
h aremembers of the set S(0)k . We now formally present our CE algorithm for hyper
ubes.Algorithm 4(*Cy
li
 elimination on hyper
ube*)1. for j 2 f0; 1; : : : ; p=2� 1g do in parallel2. pj, pj+p=2 : k = Dlog p�1(j) + 13. h = 2l�14. endfor5. for l = 1 to log p� 1 do6. (*Elimination phase*)7. for all j 2 f0; : : : ; p� 1g do in parallel8. pj : for all i su
h that (row(l)i 2 C(l)j) do9. Compute row(l)i10. endfor11. endfor12. if (l < log p� 1) then13. (*Copying phase*)14. for j 2 f0; : : : ; p� 1g do in parallel15. pj : S(l)k = C(l)j 26

16. for all i su
h that (row(l�1)i 2 C(l)j)17. send(row(l)i ; pneighbour(j;l))18. re
eive(row(l)i0 ; pneighbour(j;l))19. S(l)k = S(l)k [frow(l)i g20. endfor21. endfor22. (*Updating C(l+1)j *)23. for j 2 P (l)lower and j 0 2 P (l)upper do in parallel24. pj : min = minimumfi j row(l)i 2 S(l)k g25. C(l+1)j = �26. for i = min to min + (Np � 1)h step 2h do27. C(l+1)j = C l+1j [frow(l)i g28. endfor29. pj0 :min = minimumfi j row(l)i 2 S(l)K g30. C(l+1)j0 = �31. for i = min+ h to min +Nh=p step 2h do32. C(l+1)j0 = C l+1j0 [frow(l)i g33. endfor34. endfor35. endif36. endfor37. (*Obtaining xi*)38. for j 2 f0; : : : ; p� 1g do in parallel39. pj :if (Np > 1) then40. Solve the independent system of Np blo
k equations inC(log p�1)j using BGE algorithm to obtainfxi j row(log p�1)i 2 C(log p�1)j g41. else (*N = p*)42. for all i su
h that (row(log p�1)i 2 C(log p�1)j) do43. xi = (d(log p�1)i)�1b(log p�1)i44. endfor 27

45. endif46. endWe see that the
ommuni
ation of data o

urs in the lines 7-11 (elimination phase)and lines 14-21 (
opying phase). Lines 7-11 for
omputing row(l)i at pro
essor pj requiredata of row(l�1)i�h ; row(l�1)i , and row(l�1)i+h . Of the three, row(l�1)i is available on pj. Ifrow(l�1)i�h and row(l�1)i+h are not available on pj, then they have to be brought in from itsneighbouring pro
essors. In lines 14-21 of the
opying phase, (see �gures 2.7(
),(e)),at every stage l, exa
tly Np rows of blo
ks are
opied in ea
h dire
tion between everypair of neighbouring pro
essors along dimension l � 1 of the hyper
ube. Again the
ommuni
ation is between neighbouring pro
essors only. Hen
e the number of hops inany
ommuni
ation step is no more than one at any stage of the algorithm.Note that after log p�1 stages, the above algorithm swit
hes over to BGE algorithmon unipro
essor. This is be
ause after log p � 1 stages ea
h pro
essor
ontains anindependent set of equations whi
h
an be solved without
ommuni
ating with anyother pro
essor. Sin
e on a unipro
essor, the BGE algorithm is the most eÆ
ient one,swit
hing over to BGE enhan
es the performan
e.2.4.4 Analyti
al Performan
e StudiesWe now derive expressions for the exe
ution time of our algorithm and also the CRalgorithm.2.4.4.1 Our Improved CE AlgorithmThe lines 1-4 take T1 = 3 time units to exe
ute in parallel on p pro
essors. In lines5-36, the
opying phase of every iteration l overlaps with the
omputation phase of(l + 1)th iteration. Thus this step (lines 5-36) takesT2 = maxf(Np � 1)e; Teg+ e+(log p� 2)(maxf(Np � 1)e; Np (Te + 1)g+ Te + e)+(Te + (Np � 1)max(e; Te) + e) units.
28

���� ����
���� ����p2
p3

p0
p1

?6 ?6
9 11 5 7
13 15

9 11 13 15 5 7
1 3

1 3���� ����
���� ����6 8p6
p7 p5

p4
10 12 6 8
14 16 2 4

10 12 14 16 2 4?6 ?6
(
)
opying phase at l = 1

���� ����
���� ����

-6 ?
p5p7 ���� ����

���� ����? 6�
p0p2
p1p3

����������
�� ����

�������� ��������
%%%% ����
%%%% %%%%(a) initial distribution of data

9 10 11 12 5 6 7 89 10 11 12 5 6 7 813 14 15 16 1 2 3 413 14 15 16 p0p2
p1p7

p6 p4
p5p3

1 2 3 4

(b) elimination phase at l = 1
13 9 5p4p6 12 8 49 10 11 12 5 6 7 8

13 14 15 16 1 2 3 4
9 10 11 12 5 6 7 8

1 2 3 413 14 15 16

Figure 2.7: (a) Progression of our algorithm on hyper
ube for N=16 and p=8
29

���� ����
���� ����

���� ����
���� ����

p1
p0p2

p37 15 3 11
5 13 1 9p4

p5
p6
p78 15 4 12

6 14 2 10

���� �������� ����
�������� ���� ����

���� ����
���� ����

���� ����
���� ����

- -
� �

- -
--

� �
��

p1p3p5p710 12 14 16 2 4 6 8 9 11 13 15 1 3 5 710 9
p0p2p4p610 12 14 16 2 4 6 8 9 11 13 15 1 3 5 78 711, 15(d) elimination phase at l = 2

(e)
opying phase at l = 2

(f) after elimination phase at l = 3

12 16 p1
p0p2

p3
p4
p5

p6
p7 3, 712 16

10 14 2 6
4 8 11 15

9 13 1 5
3 74 8

10 142 6 9 131 5

Figure 2.7: (b) Progression of our algorithm on hyper
ube for N=16 and p=8
30

For lines 38-46, T3 = (Np � 1)(e+ s) + (2n3 � n2). Thus the total time taken, Ttotal =T1 + T2 + T3.Let us look at the
ommuni
ation
omplexity of our algorithm without
onsideringany overlap between the
ommuni
ation and
omputation steps. The
ontributionfrom elimination phase (lines 7-11) alone is (log p� 1)Te and that from
opying phase(lines 14-21) alone is Np (log p� 2)Te. Thus the total
ommuni
ation
omplexity of ouralgorithm is a sum of these two, given by (Np + 1) log p� 2Np � 1!Te unitswhere Te = 5n2(C=E), n� n being the size of ea
h blo
k.2.4.4.2 CR AlgorithmIn redu
tion phase, the �rst log(N=p) stages involve one hop
ommuni
ation of rowsof blo
ks and N=(p2l)
omputations of row(l)i (�gure 2.4(b) and (
)). Here the
ommu-ni
ation of a row of blo
ks and (log(N=p)� 1)
omputations of row(l)i are overlapped.The log(N=p) + 1th stage involves one hop
ommuni
ation of a row of blo
ks and onerow(l)i
omputation step in a non-overlapped manner (�gure 2.4(d)). The remaining(log p � 1) stages involve two hop
ommuni
ation of a row of blo
ks and one row(l)i
omputation step in a non-overlapped manner (�gure 2.4(e)). Thus the total time forthe redu
tion phase works out to beTredu
tion = (e+ 4) log(Np)+Plog(Np)l=1 (maxf(N=(p2l)� 1)(e+ 1); Teg+(Te + e+ 4) + (log p� 1)(2Te + e+ 4) unitsSimilar
ommuni
ation pattern exists for ba
k substitution but in reversed manner.Thus the time taken for ba
k substitution phase works out to be
31

Tba
k substitution = (s+ 3) log(Np)+Plog(Np)l=1 maxf(N=(p2l)� 1)s; Tbg+(Tb + s+ 3) + (log p� 1)(2Tb + s+ 3) units.Taking a blo
k multipli
ation step between these two phases into a

ount, thetotal time TCR = Tredu
tion + Tmult + Tba
ksubstitution. Let us look at the
ommuni
ation
omplexity of CR algorithm without
onsidering any overlap of the
ommuni
ation and
omputation steps. The
ontribution from redu
tion phase alone is (logN+log p�1)Teand
ontribution from ba
k substitution phase alone is (logN + log p� 1)Tb. Thus thetotal
ommuni
ation
omplexity of CR algorithm, as a sum of these two, is given by(logN + log p� 1)(Te + Tb) unitswhere Te = 5n2(C=E) and Tb = n2(C=E), n� n being the size of ea
h blo
k.2.5 Experimental ResultsTo evaluate the a

ura
y of the above analyti
al expressions, we implemented a hy-per
ube simulator in C language and
ompared the speedups obtained from our newmapping of CE algorithm with those obtained from the existing mapping of CR algo-rithm. We used SPARC Classi
 ma
hines to
arry out our simulations. The parametersthat were varied were the number of rows of blo
ks N (512 and 1024), the blo
k sizen (1,2, and 4), the ratio of
ommuni
ation step to
omputation step C=E (10, 25, 50,and 100), and the number of pro
essors p (1 to 1024). The �gures 2.8-2.13 show the
omparison of measured speedups of the two algorithms for various values of the aboveparameters. We observe the following fa
ts.

32

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(a) C/E=10.0 0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(b) C/E=25.0

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(
) C/E=50.0 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(d) C/E=100.0Figure 2.8: Speedups obtained for our algorithm versus CR algorithm for N=512 and n=1

33

0

2

4

6

8

10

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(a) C/E=10.0 0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(b) C/E=25.0

0

1

2

3

4

5

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(
) C/E=50.0 0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(d) C/E=100.0Figure 2.9: Speedups obtained for our algorithm versus CR algorithm for N=512 and n=2

34

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(a) C/E=10.0 0

1

2

3

4

5

6

7

8

9

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(b) C/E=25.0

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(
) C/E=50.0 0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16 32 64 128 256 512

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(d) C/E=100.0Figure 2.10: Speedups obtained for our algorithm versus CR algorithm for N=512 and n=4

35

0

2

4

6

8

10

12

14

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(a) C/E=10.0 0

1

2

3

4

5

6

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(b) C/E=25.0

0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(
) C/E=50.0 0

0.5

1

1.5

2

2.5

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(d) C/E=100.0Figure 2.11: Speedups obtained for our algorithm versus CR algorithm for N=1024 and n=1

36

0

5

10

15

20

25

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(a) C/E=10.0 0

2

4

6

8

10

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(b) C/E=25.0

0

1

2

3

4

5

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(
) C/E=50.0 0

0.5

1

1.5

2

2.5

3

3.5

4

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(d) C/E=100.0Figure 2.12: Speedups obtained for our algorithm versus CR algorithm for N=1024 and n=2

37

0

5

10

15

20

25

30

35

40

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(a) C/E=10.0 0

2

4

6

8

10

12

14

16

18

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(b) C/E=25.0

0

2

4

6

8

10

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(
) C/E=50.0 0

1

2

3

4

5

6

1 4 16 64 256 1024

S
p
e
e
d
u
p

No. of processors

Our algo (actual)
CR algo (actual)

Our algo (expected)
CR algo (expected)

(d) C/E=100.0Figure 2.13: Speedups obtained for our algorithm versus CR algorithm for N=1024 and n=4
� For N = p our improved mapping s
heme for CE algorithm always gives higherspeedup than the CR algorithm.� In
reasing the blo
k size n in
reases the magnitude of speedups obtained by thetwo s
hemes (see �gures 2.11(a),2.12(a), and 2.13(a)). In
reasing the number ofrows of blo
ks, N , shows up a similar trend (see �gures 2.8 and 2.11, 2.9 and2.12 and, 2.10 and 2.13). On the other hand, as the C=E ratio in
reases, themagnitude of speedup redu
es in both the algorithms (see �gures 2.8(a), (b),and (
)). 38

� The speedup of CR algorithm tends to saturate and even fall as the number ofpro
essors in
reases. Su
h a saturation e�e
t is absent from our algorithm inwhi
h the speedup progressively in
reases with the number of pro
essors andrea
hes its maximum value at N = p.� The results obtained from the simulation studies
ompared well with the theo-reti
al predi
tions obtained from the analyti
al method. The small di�eren
esbetween the speedups obtained from both the methods arise due to the follow-ing reason. The analyti
al method tries to estimate, as
losely as possible, theamount of overlap between the
omputation and
ommuni
ation steps. How-ever, the exa
t amount of overlap depends on various fa
tors su
h as the C/Eratio, pre
eden
e
onstraints between various
omputation and
ommuni
ationtasks, and routing s
heme used in the multipro
essor system. The e�e
t of allthese fa
tors on the speedup of the algorithms
annot be en
apsulated neatlyinto a single analyti
al expression.2.6 Con
lusionsWe have proposed a new mapping of the CE algorithm onto hyper
ube multipro
es-sors for solving blo
k tridiagonal linear systems. This mapping maintains the samedegree of parallelism throughout and uses the
on
ept of data repli
ation to a
hieveonly neighbouring pro
essor
ommuni
ation at all stages of the pro
essing. We havedemonstrated the e�e
tiveness of our mapping by
omparing it with the existing map-ping of CR algorithm onto hyper
ubes using both analyti
al and simulation methods.Further work is possible in the dire
tion of
ontrolling the amount of parallelism in ourimplementation of the CE algorithm [42℄. In its present form, our algorithm swit
hesto the sequential BGE algorithm only after log p � 1 stages when ea
h pro
essor hasan independent set of equations whi
h
an be solved without
ommuni
ating with anyneighbour. However, swit
hing over to BGE algorithm at an earlier stage (say k) maylead to further improvements in the performan
e of our algorithm. Determining theoptimal value of k is an open problem.
39

Chapter 3
A New Algorithm for Dire
t Solution ofSparse Symmetri
 Linear Systems3.1 Introdu
tionIn this
hapter, we
onsider the problem of solving sparse symmetri
 system of linearequations of the form Ax = b, where A is a sparse symmetri
 matrix of dimensionN � N , and x and b are N -ve
tors. Su
h equations arise in various appli
ations su
has �nite element problems, power systems analysis, and
ir
uit simulations for VLSICAD. Traditionally, the pro
ess for obtaining the dire
t solution for a sparse symmetri
system of linear equations, Ax = b, involves the following four distin
t phases.� Ordering : Apply an appropriate symmetri
 permutation matrix P su
h thatthe new system is of the form (PAP T)(Px) = (Pb).� Symboli
 fa
torization : Set up the appropriate data stru
tures for the numeri
alfa
torization phase.� Numeri
al fa
torization : Determine the Cholesky fa
tor L su
h that A = LLT .� Substitution : Determine the solution ve
tor x by �rst solving the forward trian-gular system Ly = b and then solving the ba
kward triangular system LTx = y.For solution of multiple b-ve
tors, the �rst three phases are
arried out only on
eto obtain the Cholesky fa
tor L. The substitution phase is then repeated for ea
hb-ve
tor in order to obtain a di�erent solution ve
tor x in ea
h
ase. Thus, in problemswhi
h involve solution of multiple b-ve
tors, the time taken by repeated exe
ution ofsubstitution phase dominates the overall solution time. Any parallel formulation, whi
h
an redu
e the time taken by the substitution phase, will
ontribute signi�
antly toenhan
ed performan
e of the entire pro
ess.40

Although traditional approa
hes to parallel solution of sparse symmetri
 system oflinear equations have yielded eÆ
ient parallel algorithms for the numeri
al fa
torizationphase [4, 15, 20, 30℄, not mu
h progress has been made in the
ase of substitutionphase due to the limited amount of parallelism inherent in this phase. Moreover,the forward and ba
kward substitution
omponents of the substitution phase requiredi�erent parallel algorithms due to the manner in whi
h data is distributed over variouspro
essors. Existing work on parallel formulations for this phase
an be found in[14, 22, 29℄.In this
hapter we present a new bidire
tional algorithm, based on Cholesky fa
-torization, for the solution of sparse symmetri
 system of linear equations. In ouralgorithm, the numeri
al fa
torization phase is
arried out in su
h a manner that theentire ba
k substitution
omponent of the substitution phase is repla
ed by a singlestep division. The appli
ation of the novel
on
ept of bidire
tional elimination to denselinear systems
an be found in [42, 43℄.The rest of the
hapter is organized as follows. In se
tion 3.2, we present thebidire
tional sparse Cholesky fa
torization algorithm for sparse symmetri
 matri
es.In se
tion 3.3, we present the bidire
tional algorithm for the substitution phase whi
hdoes not have a ba
k substitution
omponent. In se
tion 3.4 we develop a bidire
-tional heuristi
 algorithm for ordering on the lines of the popular nested disse
tionordering algorithm [13, 10℄ for sparse symmetri
 matri
es. In se
tion 3.5, we des
ribea symboli
 fa
torization algorithm whi
h sets up data stru
tures required by the bidi-re
tional Cholesky fa
torization phase. In se
tion 3.6, we evaluate the performan
eof the bidire
tional algorithm on hyper
ube multipro
essors and present
omparisonof our algorithm with the existing s
heme based on sparse Cholesky fa
torization. Inse
tion 3.7, we
on
lude the work with some observations about possible future im-provements to the bidire
tional s
heme.3.2 The Bidire
tional Sparse Cholesky Fa
torization (BSCF) AlgorithmUnlike the regular Cholesky fa
torization algorithm whi
h fa
torizes A to obtain thelower triangular matrix L, su
h that A = LLT , the BSCF algorithm fa
torizes A into aseries of trapezoidal matri
es of multipliers. This series of trapezoidal matri
es remove41

the need for the ba
k substitution
omponent in the substitution phase.In this se
tion, we �rst present an overall view of the
on
ept of bidire
tionalCholesky fa
torization. We then pro
eed to des
ribe the manner in whi
h the sparsity ofthe
oeÆ
ient matrix
an be exploited to obtain higher degree of parallelism. Followingthis we present the details of implementing BSCF algorithm on multipro
essor systems.3.2.1 Bidire
tional Cholesky Fa
torization - The Con
eptIn regular Cholesky algorithm, the lower triangular matrix L is obtained by
hoosing
olumns 1 through N of matrix A as pivots so that A = LLT . We name this pro
ess asfa
torization in forward dire
tion. On the other hand, we
an also
hoose
olumns Nthrough 1 of matrix A as pivots and fa
torize A in a reverse fashion to obtain an uppertriangular matrix U su
h that A = UTU . We name this pro
ess as fa
torization inba
kward dire
tion. The bidire
tional Cholesky fa
torization of the
oeÆ
ient matrixA pro
eeds as follows.� Step 1: We form two matri
es, namely A0 and A1, identi
al to the
oeÆ
ientmatrix A. We fa
torize A0 in the forward dire
tion, but only through the �rstdN2 e pivot
olumns, to obtain a lower trapezoidal matrix L0, as shown in �g-ure 3.1, in whi
h only the sub-diagonal entries in
olumns 1 to dN2 e are present.Con
urrently, we fa
torize A1 in ba
kward dire
tion, through pivot
olumns Nto dN2 + 1e, to obtain an upper trapezoidal matrix L1, as shown in �gure 3.1, inwhi
h only the super-diagonal elements in
olumns N to dN2 + 1e are present.� Step 2: We dupli
ate the redu
ed matrix A0 to form A00 and A01, and alsodupli
ate the redu
ed matrix A1 to form A10 and A11. The matri
es A00 andA10 are fa
torized halfway through in the forward dire
tion to produ
e lowertrapezoidal matri
es L00 and L10 respe
tively. Similarly, the matri
es A01 andA11 are fa
torized halfway through in the ba
kward dire
tion to produ
e uppertrapezoidal matri
es L01 and L11 respe
tively. Note that here we fa
torize thefour matri
es A00, A01, A10, and A11 in parallel.� Step 3: We
ontinue this pro
ess of halving the size of the sub-matri
es throughsimultaneous Cholesky fa
torization in both forward and ba
kward dire
tions42

a11 a a a12 13 14a a a aa a a aa a a a21 22 23 2431 32 33 3441 42 43 44a11 a a a12 13 14a a a aa a a aa a a a21 22 23 2431 32 33 3441 42 43 44a aa a33 3443 44
a aa a33 3443 44

a11 a12a a21 22
a11 a 12a a21 22

a11 a12a a21 22a44
a 44

a33
a33 a22a 11

a22 a 11

= ARedu
ed1L0

00A A10 A11

ZZZZZZZ

 llll ZZZZ

? ? ? ?

����+ QQQQs
? ?
�������� JJĴ

���������

��������R

? ? ? ?

a aa aa a 23 2431 3241 42
a a13 14

a aa33 3443 aa a3443 44 a 21 a12

= A
A =

0 1

01 = A11
Redu
ed Redu
ed Redu
ed

L

L L L

1

00 01 L 10 11

Redu
ed0
00

Redu
ed 01A

A
A

A A

=
=

= = =A10

Figure 3.1: The progression of BSCF algorithm for N = 443

and thus doubling the number of sub-matri
es for logN times. Finally we endup with N sub-matri
es of order 1� 1.The bidire
tional Cholesky fa
torization algorithm des
ribed above produ
es a tree oftrapezoids of multipliers (i.e., Lmatri
es). In the substitution phase, whi
h is des
ribedin se
tion 3.3, the b-ve
tor,
orresponding to whi
h a solution ve
tor x has to be found,is moved down this tree of trapezoids. At the end of this pro
ess ea
h leaf produ
esan equation with just one variable whi
h is then solved by a single step division toprodu
e the solution ve
tor x.3.2.2 Exploiting the Sparsity of the CoeÆ
ient Matrix AIn regular sparse Cholesky fa
torization of a
oeÆ
ient matrix A,
olumn i dire
tlymodi�es
olumn j if j > i and A[i; j℄ 6= 0. Column i indire
tly modi�es
olumn j if
olumn i dire
tly modi�es another
olumn k whi
h in turn modi�es
olumn j dire
tlyor indire
tly. Columns i and j are mutually independent if
olumn i does not modify
olumn j dire
tly or indire
tly. The mutually independent
olumns of the sparse matrix
an be used as pivots in parallel.This
on
ept of mutually independent
olumns
an be easily extended to the BSCFalgorithm. At any stage s 2 f1 � � � logNg,
olumns i and j (j > i) are forwardindependent if pivot
olumn i does not modify
olumn j dire
tly or indire
tly duringfa
torization in forward dire
tion. The forward independent
olumns, i and j,
an besimultaneously used as pivots in forward dire
tion. The
olumns i and j are ba
kwardindependent if pivot
olumn j does not modify
olumn i dire
tly or indire
tly duringfa
torization in ba
kward dire
tion. The ba
kward independent
olumns, i and j,
anbe simultaneously used as pivots in ba
kward dire
tion.In regular sparse Cholesky fa
torization, the
on
ept of mutually independent
olumns
an be abstra
ted with the help of elimination trees. An elimination tree
ontains a node
orresponding to ea
h
olumn of the
oeÆ
ient matrix. The parent ofa node i is de�ned asparent(i) = min fj j j > i and L[j; i℄ 6= 0g :The elimination tree de�nes a partially ordered pre
eden
e relation whi
h determines44

when a
ertain
olumn
an be used as pivot.Similarly, in BSCF algorithm, we
an abstra
t the
on
epts of forward indepen-den
e and ba
kward independen
e by means of forward elimination tree and ba
kwardelimination tree respe
tively. At some stage s 2 f1 � � � logNg, let Ax0 be a sub-matrixbeing fa
torized in forward dire
tion and Ax1 be a sub-matrix being fa
torized in theba
kward dire
tion (x being a possibly empty string of 0's and 1's). The forward parentof node i, is de�ned asfparent(i; Ax0) = min fj j j > i and Lx0[j; i℄ 6= 0g :Similarly, the ba
kward parent of node i, is de�ned asbparent(i; Ax1) = max fj j j < i and Lx1[j; i℄ 6= 0g :For a
hieving high degree of parallelism during fa
torization phase, both the for-ward and the ba
kward elimination trees should be as short and wide as possible. Thisis the fun
tion of the ordering phase (des
ribed in se
tion 3.4).In the next subse
tion, we examine the parallel implementation of BSCF algorithmon multipro
essors.3.2.3 Implementing the BSCF Algorithm on Multipro
essorsFor our present study, we
onsider themedium grain model of parallelism in whi
h tasksperform
oating point operations over nonzero elements of entire
olumns of
oeÆ
ientmatrix. The following elementary tasks are
onsidered for the BSCF algorithm.� fdivide(i,s) divides by qAx0[i; i℄ every nonzero element of the sub-diagonal partof the ith
olumn of sub-matrix Ax0.� bdivide(i,s) divides by qAx1[i; i℄ every nonzero element of the super-diagonalpart of the ith
olumn of sub-matrix Ax1.� fmodify(i,ve
tor,s) subtra
ts the
ontents of ve
tor from the ith
olumn of asub-matrix Ax0, at stage s 2 f1 � � � logNg. ve
tor is an appropriate multiple ofsome
olumn j of Ax0, whi
h modi�es
olumn i dire
tly in forward dire
tion atstage s. 45

� bmodify(i,ve
tor,s) subtra
ts the
ontents of ve
tor from the ith
olumn of asub-matrix Ax1, at stage s 2 f1 � � � logNg. ve
tor is an appropriate multiple ofsome
olumn j of Ax1, whi
h modi�es
olumn i dire
tly in ba
kward dire
tionat stage s.To keep tra
k of the
olumns that ea
h pivot should modify at ea
h of the logN stages,we maintain the following data stru
tures.� F (s)i denotes the set of all
olumns with indi
es smaller than i that modify theith
olumn in the forward dire
tion at stage s.� B(s)i denotes the set of all
olumns with indi
es greater than i that modify theith
olumn in the ba
kward dire
tion at stage s.These data stru
tures are generated during the symboli
 fa
torization phase. Thisphase is des
ribed in se
tion 3.5. In the remaining part of this se
tion, we des
ribethe implementation of BSCF algorithm on a message passing multipro
essor - initiallyfor the
ase where ea
h pro
essor is responsible for only one
olumn of the
oeÆ
ientmatrix and then for the
ase where the number of pro
essors p is less than the orderN of the
oeÆ
ient matrix.Case p = N : In algorithm 1 below, N pro
essors are being used to fa
torize anN � N sparse symmetri
 matrix A. For ea
h pro
essor Pi, the index of the
olumnstored in it is my
ol. At any stage s 2 f1 � � �Ng, there are two
opies of
olumn my
olstored in pro
essor Pi. The �rst
opy is a part of the forward sub-matrix Ax0 and isrepresented by Ax0[�; my
ol℄. The se
ond
opy is a part of the ba
kward sub-matrixAx1 and is represented by Ax1[�; my
ol℄. Thus ea
h pro
essor is responsible for
arry-ing out fmodify(my
ol; ve
tor; s), bmodify(my
ol; ve
tor; s), fdivide(my
ol; s), andbdivide(my
ol; s) operations at every stage, s, of the BSCF algorithm.Algorithm 1 (*The parallel BSCF algorithm for
ase p = N*)beginfor s := 1 to logN doLet Ax0 be the forward sub-matrix and Ax1 be theba
kward sub-matrix to whi
h
olumn my
ol belongsat stage s. 46

parbeginForward fa
torize(my
ol,s);Ba
kward fa
torize(my
ol,s);parendendpro
edure Forward fa
torize(
ol,s)beginfor all i 2 F (s)
ol dore
eive message of the form (
ol,ve
tor,s) frompro
essor storing the
olumn i;fmodify(
ol; ve
tor; s);if
ol belongs to the �rst half of sub-matrix Ax0 thenfdivide(
ol; s);for all j su
h that
ol 2 F (s)j dosend the message (j, Ax0[j;
ol℄� Ax0[�;
ol℄, s)to pro
essor storing
olumn j;else if s < logN then(*
opy
olumn
ol of Ax0 to
olumn
ol of Ax00*)Ax00[�;
ol℄ := Ax0[�;
ol℄;(*
opy
olumn
ol of Ax0 to row
ol of Ax01 sin
e onlysub-diagonal part of the
olumns of the symmetri
 matrix Ax0are stored*)for all j su
h that Ax0[j;
ol℄ 6= 0 doAx01[
ol; j℄ := Ax0[j;
ol℄;endpro
edure Ba
kward fa
torize(
ol,s)beginfor all i 2 B(s)
ol do 47

re
eive message of the form (
ol,ve
tor,s) frompro
essor storing the
olumn i;bmodify(
ol; ve
tor; s);if
ol belongs to the se
ond half of sub-matrix Ax1 thenbdivide(
ol; s);for all j su
h that
ol 2 B(s)j dosend the message (j, Ax1[j;
ol℄� Ax1[�;
ol℄, s)to pro
essor storing
olumn j;else if s < logN then(*
opy
olumn
ol of Ax1 to row
ol of Ax10 sin
e onlysuper-diagonal part of the
olumns of the symmetri
 matrix Ax1are stored*)for all j su
h that Ax1[j;
ol℄ 6= 0 doAx10[
ol; j℄ := Ax1[j;
ol℄;(*
opy
olumn
ol of Ax1 to
olumn
ol of Ax11*)Ax11[�;
ol℄ := Ax1[�;
ol℄;endThe progression of the above algorithm for the
ase of p = N = 4 is shown in�gure 3.2. In this �gure we note that the size of the subset of pro
essors with whi
hany pro
essor Pi
ommuni
ates, redu
es by half with every stage. In stage s = 1, allpro
essors P1 through P4
ommuni
ate with ea
h other. In stage s = 2, P1 and P2
ommuni
ate only with ea
h other, and P3 and P4
ommuni
ate only with ea
h other.Thus
ommuni
ation gets lo
alized with every stage. Su
h a pattern of
ommuni
ationalso holds for the
ase of p < N .In pra
ti
e, algorithm 1 would be extremely ineÆ
ient due to the ex
essive numberof messages being passed. Also, the number of pro
essors is usually mu
h less than N ,the order of the
oeÆ
ient matrix. We now dis
uss the modi�
ation of algorithm 1 tothe
ase where p < N .
48

a aa a33 3443 44
a11 a12a a21 22

a44 a33 a22 a1101A = =A10 11= A

a11 a a a12 13 14a a a aa a a aa a a a21 22 23 2431 32 33 3441 42 43 44
P 1 P 3 P 4P 2

P 1 P 3 P 4P 2P 1 P 2 P 3 P 4
P 1 P 2P 3 P 4 P 3 P 4

L 0 L 1
P 1 P 2

����+ HHHHHjZZZZZZZZ

�������� AAAAU
���������

���������R

 llll ZZZZ

.

A =
0 =

L L L00 01 L 10 1100A =
A = A 1

Figure 3.2: The progression of BSCF algorithm for p = N = 4 (one
olumn is mappedonto ea
h pro
essor).
49

Case p < N : In Cholesky fa
torization, if
olumn i modi�es
olumn j, thenthe fa
tor, by whi
h the modifying
olumn i is multiplied, is an element A[j; i℄ of themodifying
olumn i itself. This happens due to the symmetri
 nature of the
oeÆ
ientmatrix being operated upon. Thus, as seen in algorithm 1, the multiple of the modifying
olumn is
al
ulated at the pro
essor storing
olumn i itself and the resulting ve
tor issent over to the pro
essor storing
olumn j whi
h needs to be modi�ed.When p < N , there might be more than one
olumn at a pro
essor Pk, whi
hmodi�es
olumn j (i.e., more than one
olumn stored at pro
essor Pk might belong tothe sets F (s)j or B(s)j). In pla
e of sending a separate ve
tor as message
orrespondingto every
olumn at Pk that modi�es
olumn j, we
an add all these outgoing ve
torstogether and send them as one ve
tor to the pro
essor storing
olumn j. In this manner,the number of outgoing messages
an be signi�
antly redu
ed. Note that the aboveobservation applies for modi�
ations in both forward and ba
kward fa
torizations.In algorithm 2 below, we in
orporate the above idea in the BSCF algorithm andpresent the fan-in BSCF algorithm. The set Listmyid is the set of
olumns stored inpro
essor Pmyid. Ea
h pro
essor maintains the sparse ve
tors fUpdatej and bUpdatejfor 1 � j � N . If
olumn i is to modify
olumn j in forward dire
tion at stage s then,after performing fdivide(i; s) operation, the pro
essor Pmyid, whi
h stores the
olumni, adds an appropriate multiple of
olumn i to the ve
tor fUpdatej. When su
h anaddition has been performed for all the
olumns in pro
essor Pmyid that modify
olumnj in forward dire
tion at stage s, a message
ontaining the fUpdate ve
tor is sent tothe pro
essor storing the
olumn j. Similar me
hanism operates for fa
torization inba
kward dire
tion.Algorithm 2 (*The parallel fan-in BSCF algorithm for
ase p < N*)beginfor s := 1 to logN doparbeginForward fa
torize(Listmyid,s);Ba
kward fa
torize(Listmyid,s);parendend 50

pro
edure Forward fa
torize(List,s)beginfor i := 0 to N � 1 do fUpdatei :=0;while List 6= � doif 9i 2 List su
h that fdivide(j; s) has been performed for all j 2 F (s)i thenLet
olumn i belong to the forward sub-matrix Ax0 at stage s;while messages of the form (i,fve
tor,s) have not been re
eived fromall pro
essors that store
olumns belonging to F (s)i dore
eive messages of the form (i,fve
tor,s);fmodify(i; fve
tor; s);if
olumn i belongs to the �rst half of sub-matrix Ax0 thenfdivide(i; s);for all j su
h that i 2 F (s)j dofUpdatej := fUpdatej + Ax0[j; i℄� Ax0[�; i℄;if fdivide(k; s) has been done for all k 2 F (s)k \ List thensend a message of the form (j,fUpdatej,s)to pro
essor storing
olumn j;else if s < logN then(*
opy
olumn i of Ax0 to
olumn i of Ax00*)Ax00[�; i℄ := Ax0[�; i℄;(*
opy
olumn i of Ax0 to row i of Ax01 sin
e only sub-diagonalpart of the
olumns of the symmetri
matrix Ax0 are stored*)for all j su
h that Ax0[j; i℄ 6= 0 doAx01[i; j℄ := Ax0[j; i℄;List := List� i;end
51

pro
edure Ba
kward fa
torize(List,s)beginfor i := 0 to N � 1 do bUpdatei :=0;while List 6= � doif 9i 2 List su
h that bdivide(j; s) has been performed for all j 2 B(s)i thenLet
olumn i belong to the ba
kward sub-matrix Ax1 at stage s;while messages of the form (i,bve
tor,s) have not been re
eived fromall pro
essors that store
olumns belonging to B(s)i dore
eive messages of the form (i,bve
tor,s);bmodify(i; bve
tor; s);if
olumn i belongs to the se
ond half of sub-matrix Ax1 thenbdivide(i; s);for all j su
h that i 2 B(s)j dobUpdatej := bUpdatej + Ax1[j; i℄� Ax1[�; i℄;if bdivide(k; s) has been done for all k 2 B(s)k \ List thensend a message of the form (j,bUpdatej ,s)to pro
essor storing
olumn j;else if s < logN then(*
opy
olumn i of Ax1 to row i of Ax10 sin
e onlysuper-diagonal part of the
olumns of thesymmetri
 matrix Ax1 are stored*)for all j su
h that Ax1[j; i℄ 6= 0 doAx10[i; j℄ := Ax1[j; i℄;(*
opy
olumn i of Ax1 to
olumn i of Ax11*)Ax11[�; i℄ := Ax1[�; i℄;List := List� i;endAn important observation is in order in algorithm 2. Let the number of pro
essorsp = 2d (as in hyper
ube multipro
essors) and N = 2n (n; d 2 N , the set of natu-52

P 1 P 2 P 3 P 4L0 L1

01A = =A10 11= AP 3 P 4 P 3 P 4 P 1 P 2 P 1 P 2

P 1 P 3 P 4P 2
1 - 4 5 - 8 9 -12 13 - 161 - 4 5 - 8 9 -12 13 - 16

1 - 4 5 - 8 1 - 4 5 - 89 -12 13 - 16

1 - 4 5 - 8 9 -12 13 - 16
P 1 P 3 P 4P 2

0A

U 10 Ind����

ZZZZZZZ

.
? ?

? ? ? ?ZZZ llll ZZZ llll? ? ? ?���� ���� ����� � � . �- - - -

A =

= = A1

L L L00 L10 1100A = 01
U ULLL L00 Ind 01 Ind 10 Ind 11 Ind 11 Ind01 IndU 00 Ind9 -12 13 - 16

Figure 3.3: Progression of the BSCF algorithm for p = 4 and N = 16 (four
olumnsare stored in ea
h pro
essor).
53

ral numbers). Assume that we map the equations on the pro
essors in a blo
k wrapmanner (as shown in �gure 3.3). Thus ea
h pro
essor holds Np = 2n�d
onse
utiveequations. At the end of d = log p stages of the fan-in BSCF algorithm, ea
h pro
essor
ontains an independent system of Np equations. This independent system
an be fa
-torized within a single pro
essor without any
ommuni
ation with any other pro
essor.Sin
e, on a single pro
essor, regular sequential sparse Cholesky fa
torization performsmore eÆ
iently than the fan-in BSCF algorithm, we
an swit
h over to this regularsequential version after log p stages and fa
torize the
oeÆ
ient matrix (say Aind) ofthis independent system into the form Aind = LindLTind. This results in enhan
ing theperforman
e of the fan-in BSCF algorithm. The manner in whi
h this fa
torizationpro
eeds is shown in �gure 3.3.3.3 The Substitution PhaseIn this se
tion we present the bidire
tional substitution (BS) algorithm. Unlike the reg-ular algorithm, whi
h
onsists of two triangular solution
omponents (i.e., the forwardsubstitution followed by the ba
kward substiution), the BS algorithm
onsists of onlyone forward solution
omponent, whi
h is followed by a single step division to yieldthe solution ve
tor x. Following the pattern of the previous se
tion, we �rst presentan overall view of the
on
epts behind the BS algorithm. We then pro
eed to des
ribethe manner in whi
h the sparsity of the series of trapezoidal fa
tor matri
es
an beexploited to obtain a higher degree of parallelism.3.3.1 Bidire
tional Substitution Algorithm - The Con
eptThe s
heme we propose below is somewhat on similar lines to the parallel
olumntriangular solver (PCTS) proposed by Li and Coleman in [34℄. To �nd the solutionve
tor x, for a given b-ve
tor, we begin with two
opies of b-ve
tors b0 and b1.� Step 1 : The ve
tor b0 is modi�ed by su

essive
olumns of trapezoids of multipli-ers L0 (i.e., from
olumn 1 to
olumn dN2 e). In other words, after modi�
ation by
olumn i�1, the pro
essor
ontaining
olumn i
omputes xi as xi = b0[i℄=L0[i; i℄54

������ ������- �

��� ���- �
b 0 L 0 L 1 b1b1

b0
��� ���- �b01 b11b10b00 L01 L11L10b 00

= / ab 00 444x ? ?
? ? ? ?����=

AA AA AA AAU
AAAAAAAAAAAU

AAAAAAAAAAAU
b bbL

updated
01 10 1100 updated updated

= / abx = / abx = / abx3 01 33 2 10 22 1 1111

updated updated

updated

Figure 3.4: The progression of substitution phase for N = 4

55

and modi�es the remaining elements of b0-ve
tor as b0[j℄ = b0[j℄ � L0[j; i℄ � xifor all j su
h that L0[j; i℄ 6= 0. At the end of updation by L0, the size of ve
-tor b0 is redu
ed to half its original size (see �gure 3.4). Simultaneously, theve
tor b1 is updated by su

essive
olumns of the trapezoidal matrix of multi-pliers L1 in ba
kward dire
tion (i.e., from
olumn N to
olumn dN2 e + 1). Inother words, after modi�
ation by
olumn i + 1, the pro
essor
ontaining
ol-umn i
omputes xi as xi = b1[i℄=L1[i; i℄ and modi�es the remaining b1-ve
tor asb1[j℄ = b1[j℄� L1[j; i℄ � xi for all j su
h that L1[j; i℄ 6= 0. At the end of updationby L1, the size of ve
tor b1 is redu
ed to half its original size (see �gure 3.4).� Step 2 : The redu
ed b0 is
opied to form ve
tors b00 and b01 whereas the redu
edb1 is
opied to form ve
tors b10 and b11. The new ve
tors b00 and b10 are modi�edby L00 and L10 respe
tively in forward dire
tion whereas the ve
tors b01 and b11are modi�ed by L01 and L11 respe
tively in ba
kward dire
tion. Thus the sizeof these new b-ve
tors gets redu
ed by another fa
tor of half (see �gure 3.4).� Step 3 : This pro
ess of redu
ing the size of b-ve
tors and doubling their numbers
ontinues for logN stages by whi
h time there will be N b-ve
tors of only oneelement ea
h. These N b-ve
tors, when divided by N elements obtained at theend of fa
torization phase, will give N x-ve
tor elements.3.3.2 In
reasing Parallelism by Exploiting SparsityIn the above s
heme we observe that the pro
ess of modifying a b-ve
tor through su
-
essive
olumns of a trapezoid is inherently sequential and is
ommuni
ation intensivein
ase the su

essive
olumns happen to reside on separate pro
essors. George et.al.have proposed in [14℄, parallel s
hemes for solving sparse triangular systems resultingfrom regular Cholesky fa
torization. Their s
heme is an adaptaion of the
orrespond-ing dense algorithm proposed by Romine and Ortega in [49℄ and it uses the followinginner produ
t form to
arry out forward fa
torization.xi = 0�bi � XfjjL[i;j℄6=0g(L[i; j℄ � xj)1A =L[i; i℄ i = 1; 2; � � � ; NSin
e the
olumns and the
orresponding solution
omponents are distributed amongthe pro
essors, the inner produ
t
omputation is partitioned a

ordingly.56

The above
on
ept of distributed
omputation of inner produ
t
an be applied tothe BS algorithm. Consider the
ase where the ve
tor bx0 is to be updated by thetrapezoid Lx0 in the forward dire
tion. Instead of moving the ve
tor bx0 from left toright a
ross the trapezoid Lx0, ea
h element bx0[i℄ is updated as follows. Ea
h pro
essor
omputes the produ
ts of the elements of the row i of the trapezoid that it
ontainswith the
orresponding elements of the solution ve
tor x and sends their sum i.e., thepartial inner produ
t, to the pro
essor
ontaining
olumn i. Upon re
eiving the
on-tributions to the inner produ
t from ea
h pro
essor, the pro
essor storing the
olumni subtra
ts them from bx0. If
olumn i belongs to the �rst half of the matrix Ax0 then,after subtra
ting the
omplete inner produ
t of row i in Lx0 from bx0[i℄, the pro
essorstoring the
olumn i
omputes xi = bx0[i℄=Lx0[i; i℄. This xi is then used for
al
ulatingthe partial inner produ
ts of rows j > i. On the other hand if the
olumn i belongsto the se
ond half then after subtra
ting the
omplete inner produ
t of row i in Lx0from bx0[i℄, two
opies of the element bxo[i℄, namely bx00[i℄ and bx01[i℄, are made formodi�
ation at the next stage of the BS algorithm. Similar me
hanism operates whileupdating a ve
tor bx1 with a trapezoid Lx1 in ba
kward dire
tion. The
omplete detailsof the BS algorithm are given below.Algorithm 3 (* The bidire
tional substitution algorithm *)beginfor s := 1 to logN doparbeginForward modify(Listmyid,s);Ba
kward modify(Listmyid,s);parendendpro
edure Forward modify(List,s)beginLet bx0 be the forward
opy of the b-ve
tor to be modi�edby trapezoid Lx0 at stage s.for i := 1 to N do ti := 0; 57

for all i 2 List dofor all j su
h that pro
essor Pj has nonzeros belonging to row i of Lx0 dore
eive message (i,t) having partial inner produ
t t from pro
essor Pj;bx0[i℄ := bx0[i℄� t;if
olumn i belongs to the �rst half of Lx0 thenxi := bx0[i℄=Lx0[i; i℄;for all j su
h that Lx0[j; i℄ 6= 0 dotj := tj + xi � Lx0[j; i℄;if xk has been
al
ulated for all k su
h that Lx0[j; k℄ 6= 0 andk 2 List thensend message (j,tj) to pro
essor storing
olumn j;else if s < logN thenbx00[i℄ := bx0[i℄;bx01[i℄ := bx0[i℄;else (* s = logN *) xi := bx0[i℄=Lx0[i℄;endpro
edure Ba
kward modify(List,s)beginLet bx1 be the ba
kward
opy of the b-ve
tor to be modi�edby trapezoid Lx1 at stage s.for i := 1 to N do ti := 0;for all i 2 List dofor all j su
h that pro
essor Pj has nonzeros belonging to row i of Lx1 dore
eive message (i,t) having partial inner produ
t t from pro
essor Pj;bx1[i℄ := bx1[i℄� t;if
olumn i belongs to the se
ond half of Lx1 thenxi := bx1[i℄=Lx1[i; i℄;for all j su
h that Lx1[j; i℄ 6= 0 dotj := tj + xi � Lx1[j; i℄;if xk has been
al
ulated for all k su
h that Lx1[j; k℄ 6= 0 and58

k 2 List thensend message (j,tj) to pro
essor storing
olumn j;else if s < logN thenbx10[i℄ := bx1[i℄;bx11[i℄ := bx1[i℄;else (* s = logN *) xi := bx1[i℄=Lx1[i℄;endAs in the
ase of the BSCF algorithm, a spe
ial situation arises when p = 2d andN = 2n (n; d 2 N). After d = log p stages, the BSCF algorithm swit
hes over to theregular sparse Cholesky fa
torization and produ
es triangular fa
tor matrix of the formLind in the last stage su
h that Aind = LindLTind. Thus in the substitution phase, letbind be one of the p redu
ed ve
tors after log p stages of BS algorithm. We now swit
hover to the sequential substitution algorithm for solving the two triangular systems,Lindy = bind and LTindx = y. In this manner, we avoid exe
uting ex
essive number of
oating point operations when all the remaining
omputations are resri
ted to o

urwithin individual pro
essors.In the next two se
tions, we des
ribe the ordering and the symboli
 fa
torizationalgorithms that pre
ede the BSCF algorithm.3.4 Ordering the Sparse Symmetri
 Matrix for Bidire
tional Fa
torizationA good initial ordering of a sparse matrix A is
ru
ial to the eÆ
ient solution of thesparse symmetri
 system Ax = b. The basi
 aim of the ordering phase is to reorderthe
olumns of the
oeÆ
ient matrix in su
h a manner that during the fa
torizationphase, the amount of �ll-in is minimized and the degree of parallelism is maximized.In a parallel environment, the former aim is not as important as the latter aim sin
elarge amounts of memory are available very
heaply.Sparse symmetri
 matri
es
hie
y arise from k � k regular grids that are en
oun-tered in �nite element problems. The prin
ipal ordering heuristi
 used for reorderingthe matri
es obtained from the regular grid problems is the popular nested disse
-tion ordering method [13, 10℄. The nested disse
tion ordering yields short and wideelimination trees that are well suited for parallel fa
torization algorithms. For regular59

Cholesky fa
torization, this ordering te
hnique satis�es the
riteria of both low �ll-inand short and wide elimination trees. However, the nested disse
tion ordering in itsexisting form is not suited for the BSCF algorithm due to reasons given below. Re
allthat in se
tion 3.2.2 we de�ned the
on
epts of forward elimination tree and ba
kwardelimination tree for the BSCF algorithm. The degree of parallelism while fa
torizingin forward dire
tion depends on the shape of the forward elimination tree and that forfa
torizing in ba
kward dire
tion depends on the shape of the ba
kward eliminationtree. An ideal ordering for the BSCF algorithm is one in whi
h both the eliminationtrees are as short and wide as possible. The forward elimination tree obtained fromnested disse
tion algorithm is short and wide and hen
e desirable for parallel fa
toriza-tion. On the other hand the ba
kward elimination tree obtained from nested disse
tionalgorithm is lean and tall and hen
e undesirable for parallel fa
torization.In the remaining part of this se
tion, with the help of an example of a 7� 7 grid,we show why the regular nested disse
tion algorithm is not suited for BSCF algorithmand then we des
ribe how it
an be modi�ed to yield orderings suitable for the BSCFalgorithm.The nested disse
tion algorithm begins by re
ursively dividing a k � k grid into twodisjoint parts using a set of nodes as separator nodes and applying the nested disse
tionalgorithm again to the two separated halves. Figure 3.5 shows the manner in whi
h theseparators (S1 to S15) divide a 7 � 7 grid. The re
ursive division of the grid yields atree stru
ture of separators and nodes as shown in �gure 3.6. We
all this tree a nesteddisse
tion tree. The internal nodes of the tree are separator blo
ks and the leaves ofthe tree are blo
ks of node(s) at lowermost level whi
h
annot be further sub-dividedusing nested disse
tion. The dimension of su
h blo
ks
an be 1 � 1, 1 � 2, 2 � 1 or2� 2. Su
h indivisible blo
ks are
alled leaf blo
ks.In regular nested disse
tion ordering, all the grid points at the leaf blo
ks(say atlevel 0) are numbered in as
ending order. Then the separator grid points at level 1are numbered, then level 2 and so on until the grid points at the root separator blo
ksget numbered. The ordering resulting from this s
heme is shown in �gure 3.7 andthe forward and ba
kward elimination trees resulting from this ordering are shownin �gure 3.8. As seen from �gure 3.8, although the forward tree is short and wide,60

s s s s s s ss s s s s s s

s s s s s s ss s s s s s ss s s s s s s
s s s s s s ss s s s s s s

S1
S2S3

S4

S5

S6

S7
S 15 S 14 S 10

S8S 9S 12S 13

S 11

Figure 3.5: Disse
tion of a 7� 7 grid by separators during nested disse
tion

s s s s s s s s s s s s s s s s

����������) PPPPPPPPPPq�����= ZZZZZ~ ������+ QQQQQQs

� JJJĴ

� JJJĴ

� JJJĴ

� JJJĴ����

� ����

�

� ���� ����

� AAAU AAAU JJĴ AAAU JJĴ JJĴJĴ JJĴ

S1
S2 S3

S4 S5 S6 S7
S 11 S 12 S 13 S 14 S 15S 10S 9S 8

Figure 3.6: The nested disse
tion tree for a 7� 7 grid61

s s s s s s ss s s s s s s

s s s s s s ss s s s s s ss s s s s s s
s s s s s s ss s s s s s s

1
4 2

3

5
6

7
8

911
12

13
14

15
16

1718

1920

2122 10
2324

2526
27
2829
30

3132
33
3536

37383940 41 42
4344
4546
4748
49

34

Figure 3.7: Ordering of a 7� 7 grid using regular nested disse
tion orderingthe ba
kward tree is lean and tall. Hen
e this ordering is not
ondu
ive for goodperforman
e of the BSCF algorithm.We now look at a modi�
ation of the regular nested disse
tion algorithm whi
hprodu
es orderings that provide reasonably good parallelism properties in both forwardand ba
kward dire
tions. We
all this heuristi
 as the bidire
tional nested disse
tionordering whi
h pro
eeds as follows.� Step 1 : Carry out the disse
tion part of the nested disse
tion algorithm asdes
ribed above. This gives a nested disse
tion tree as shown in �gure 3.6.� Step 2 : At ea
h level of the nested disse
tion tree, approximately half of thetree nodes are labeled white and the other half are labeled bla
k as shown in�gure 3.9.� Step 3 : While numbering the grid points, we pro
eed as follows.1. Keep two
ounts - whiteCount initialized to 1 and bla
kCount initializedto k � k. 62

333231 36353417 18 19 20 21 22 2423
�����9 XXXXXz���+ QQs ���� QQs��/ AAU ��/��R ��/ ��R ��� SSw��
 CCW ��� CCW ��
 CCW ��� ? ��
 CCW ��
 AAU ��
 BBN ��� AAU

49484746454443393837 424140272625 3029281 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

��/��R��+HHj��+ HHj....

28 293031323334 353637383940 4142434449

....12

forward elimination tree ba
kward elimination treeFigure 3.8: The forward and ba
kward elimination trees for a 7�7 grid obtained usingregular nested disse
tion ordering

s s s s s s s s s s s s s s s s

����������) PPPPPPPPPPq�����= ZZZZZ~ ������+ QQQQQQs

� JJJĴ

� JJJĴ

� JJJĴ

� JJJĴ����

� ����

�

� ���� ����

� AAAU AAAU JJĴ AAAU JJĴ JJĴJĴ JJĴ

S1
S2 S3

S4 S5 S6 S7
S 11 S 12 S 13 S 14 S 15S 10S 9S 8w b w b w b w bw b w b w b w bw : White b : Bla
k

bw
w

b w bw
w wb b bw w b

Figure 3.9: The
olouring of tree nodes in bidire
tional nested disse
tion ordering63

s s s s s s ss s s s s s s

s s s s s s ss s s s s s ss s s s s s s
s s s s s s ss s s s s s s

61
49

2
48

3
47

4
46

5
45
7

43
8
42

9 41

10 40

11 39

12 38

131415

3736
35

161718

3433
32

4419 20 21 313029
2223
2425
2627
28

Figure 3.10: Ordering of a 7� 7 grid using bidire
tional nested disse
tion ordering2. Take a grid point at level 0. If the leaf node to whi
h it belongs is white thennumber the grid point as whiteCount and in
rement whiteCount. Other-wise the leaf node is bla
k. Hen
e number the grid point as bla
kCountand de
rement bla
k
ount.3. The above step is applied to all grid points of ea
h node at level 0 followedby ea
h node at level 1 and so on upto the root.The ordering obtained from this s
heme is shown in �gure 3.10 and the
orrespondingforward and ba
kward elimination trees are shown in �gure 3.11. As seen in this�gure, although the forward elimination tree is not as short and wide as in the
ase ofregular nested disse
tion ordering, the ba
kward tree is de�nitely more
ondu
ive forgood performan
e of parallel fa
torization than in the previous
ase. Essentially wehave su

eeded in balan
ing the degree of parallelism in both forward and ba
kwarddire
tions so that la
k of parallelism in any one dire
tion does not a
t as a bottlene
kto the entire BSCF algorithm.In the next se
tion we look at the bidire
tional symboli
 fa
torization algorithm64

.......���+��/��	 ��R��+ ZZ~��	ZZ~
HHHHj���� ZZZZ~

PPPPPPPPq��	QQs

.......��R HHHHj������������ HHHj����) PPPPq���+ HHHj
PPPPPq��= QQs

XXXXXXXXz��� SSw

49483127262524214 201514132 91
19103

2322 127
1817166 115

forward elimination tree

1219238 492425262930313944 3233343842 43
45 274148 28

3536374046 47

ba
kward elimination treeFigure 3.11: The forward and ba
kward elimination trees for a 7 � 7 grid obtainedusing bidire
tional nested disse
tion ordering
65

whi
h allo
ates memory and sets up the appropriate data stru
tures prior to the BSCFalgorithm.3.5 The Bidire
tional Symboli
 Fa
torization AlgorithmThe prin
ipal aim of the symboli
 fa
torization phase is to determine apriori, the datastru
ture of the fa
tor matri
es that result from the numeri
al fa
torization phase. Asseen in se
tion 3.2, the BSCF algorithm
reates a series of trapezoidal fa
tor matri
es ofmultipliers. Hen
e, the bidire
tional symboli
 fa
torization algorithm, whi
h pre
edesthe BSCF phase, does the following.� It determines the stru
ture of ea
h trapezoidal fa
tor matrix at ea
h of the logNstages and� It initializes the data stru
tures for the sets F (s)i and B(s)i whi
h are requiredduring the BSCF algorithm.We de�ne Colstru
t(Ax0; i) to denote the set of row indi
es of nonzeros in thesub-diagonal part of
olumn i in the forward matrix Ax0.Colstru
t(Ax0; i) = fj j j > i and Ax0[j; i℄ 6= 0g :In a similar fashion, we de�ne Colstru
t0(Ax1; i) to denote the set of row indi
es ofnonzeros in the super-diagonal part of
olumn i of the ba
kward matrix Ax1.Colstru
t0(Ax1; i) = fj j j < i and Ax1[j; i℄ 6= 0g :We now des
ribe the bidire
tional symboli
 fa
torization algorithm.Algorithm 4 (*The bidire
tional symboli
 fa
torization algorithm*)beginfor s := 1 to logN dofor
ol := 1 to N doF (s)
ol := �;B(s)
ol := �;for s := 1 to logN dofor
ol := 1 to N do 66

Forward SF(
ol,s);for
ol := N downto 1 doBa
kward SF(
ol,s);endpro
edure Forward SF(
ol,s)beginLet Ax0 be the forward sub-matrix that
ontains
olumn
ol at stage s;if
ol belongs to the �rst half of Ax0 thenCal
ulate fparent(
ol; Ax0) using de�nition given in se
tion 3.2.2;if fparent(
ol; Ax0) belongs to the �rst half of Ax0 thenColstru
t(Ax0; fparent(
ol; Ax0)) :=Colstru
t(Ax0; fparent(
ol; Ax0) [Colstru
t(Ax0;
ol);for all j su
h that j belongs to se
ond half of Ax0 and Ax0[
ol; j℄ 6= 0 doColstru
t(Ax0; j) := Colstru
t(Ax0; j) [Colstru
t(Ax0;
ol);for all j su
h that j 2 Colstru
t(Ax0;
ol) doF (s)j := F (s)j [f
olg;elseColstru
t(Ax00;
ol) := Colstru
t(Ax0;
ol);for all j 2 Colstru
t(Ax0;
ol) doColstru
t0(Ax01; j) := Colstru
t0(Ax01; j) [f
olg;endpro
edure Ba
kward SF(
ol,s)beginLet Ax1 be the ba
kward sub-matrix that
ontains
olumn
ol at stage s;if
ol belongs to the se
ond half of Ax1 thenCal
ulate bparent(
ol; Ax1) using de�nition given in se
tion 3.2.2;if bparent(
ol; Ax1) belongs to the se
ond half of Ax1 thenColstru
t0(Ax1; fparent(
ol; Ax1)) :=Colstru
t0(Ax1; fparent(
ol; Ax1) [Colstru
t0(Ax1;
ol);67

for all j su
h that j belongs to �rst half of Ax1 and Ax1[
ol; j℄ 6= 0 doColstru
t0(Ax1; j) := Colstru
t0(Ax1; j) [Colstru
t0(Ax1;
ol);for all j su
h that j 2 Colstru
t0(Ax1;
ol) doB(s)j := B(s)j [f
olg;elsefor all j 2 Colstru
t0(Ax1;
ol) doColstru
t(Ax10; j) := Colstru
t(Ax10; j) [f
olg;Colstru
t0(Ax11;
ol) := Colstru
t0(Ax1;
ol);endThe bidire
tional symboli
 fa
torization algorithm des
ribed above has time
om-plexity proportional to the number of nonzero elements stored in trapezoids at ea
hstage. Sin
e the symboli
 fa
torization algorithm is exe
uted only on
e while solv-ing for multiple b-ve
tors and also sin
e this phase takes signi�
antly lower time thanthe numeri
al fa
torization phase, parallelizing this phase does not yield signi�
antimprovements in the overall performan
e.For the
ase of regular symboli
 fa
torization, parallel algorithms have been de-s
ribed in [16, 28℄. While the former s
heme by George et.al. requires the informationabout the elimination tree stru
ture apriori, the latter s
heme by P. S. Kumar et.al.does not require this information and uses the
on
ept of false elimination trees (fet)to
ompute the symboli
 fa
torization. More spe
i�
ally, the
omputation begins withthe leaves of the false elimination tree whi
h pass their
olumn stru
ture informationto their true parents. Ea
h internal node then
ombines the
olumn stru
tures of all its
hildren with its own
olumn stru
ture,
omputes the true parent and sends its
olumnstru
ture information to its true parent. This pro
ess
ontinues till all the informationpropagates to the root node.We have developed a parallel bidire
tional symboli
 fa
torization algorithm basedon a similar
on
ept of forward and ba
kward false elimination trees.� ffparent(i; s) denotes the false forward parent of a
olumn i in the sub-matrix
68

Ax0 being fa
torized in the forward dire
tion at stage s.ffparent(i; s) = min fj j j 2 �rst half of Ax0 and j 2 Colstru
t(Ax0; i)g :� fbparent(i; s) denotes the false ba
kward parent of a
olumn i in the sub-matrixAx1 being fa
torized in the ba
kward dire
tion at stage s.fbparent(i; s) = max fj j j 2 se
ond half of Ax1 and j 2 Colstru
t0(Ax1; i)g :The details of this algorithm are des
ribed below.Algorithm 5 (*The parallel bidire
tional symboli
 fa
torization*)beginfor s := 1 to logN doparbeginForward SF(Listmyid,s);Ba
kward SF(Listmyid,s);parendend.pro
edure Forward SF(List,s)beginfor ea
h i 2 List doLet Ax0 be the forward sub-matrix to whi
h
olumn i belongs at stage s;dummy parent := last node of sub-matrix Ax0;Determine the false forward parent ffparent(i; s);send ffparent(i; s) to pro
essor
ontaining dummy parent;if i = dummy parent thenre
eive ffparent(j; s) from ea
h
olumn j;broad
ast forward fet Tff
onstru
ted from re
eivedffparent information;re
eive forward fet Tff broad
ast from dummy parent;Let the
hildren of
olumn i in Tff be CHLD(i);(*initialise the expe
ted and a

umulated weights for node i*)69

exp wt(i) :=j CHLD(i) j; a

 wt(i) := 0;first(i):=true;if
olumn i is a true leaf of Tff and
olumn i is in�rst half of sub-matrix Ax0 thensend Colstru
t(Ax0; i) to ffparent(i; s) with weight 1;send Colstru
t(Ax0; i) with weight 0 to all nodes j in se
ond half ofAx0 su
h that j 2 Colstru
t(Ax0; i) ;repeatre
eive a message S intended for
olumn i;Let the message be from pro
essor storing
olumn j with weight w;if
olumn i is in �rst half of sub-matrix Ax0 then
ase type of Satta
h or ordinary:Colstru
t(Ax0; i) := Colstru
t(Ax0; i) [Colstru
t(Ax0; j);a

 wt := a

 wt+ w;if j 2 CHLD(i) then delete j from CHLD(i);if (j CHLD(i) = 0 j) and (a

 wt(i) � exp wt(i)) thenffparent(i; s) := k where k = min(Colstru
t(Ax0; i));if ffparent(i) has
hanged thensend a deta
h message to old parent;if first(i) thenwt := a

 wt(i)� exp wt(i) + 1;exp wt(i) := 0;first(i) :=false;elsewt := w;send Colstru
t(Ax0; i) to ffparent(i) with weight wt;send Colstru
t(Ax0; i) to all nodes j in se
ond half of Ax0su
h that j 2 Colstru
t(Ax0; i) with weight 0;deta
h :delete j from CHLD(i);70

else
ase type of Satta
h or ordinary:if j 2 Colstru
t(Ax0; i) thenColstru
t(Ax0; i) := Colstru
t(Ax0; i) [Colstru
t(Ax0; j);deta
h:if i = dummy parent thendelete j from CHLD(i);if (j CHLD(i) = 0 j) thenbroad
ast forward phase over message;until S is forward phase over message;for ea
h i 2 List doif
olumn i is in se
ond half of sub-matrix thenColstru
t(Ax00; i) := Colstru
t(Ax0; i);for all j su
h that Ax0[j; i℄ 6= 0 doColstru
t0(Ax01; j) := Colstru
t(Ax01; j) [i;endpro
edure Ba
kward SF(List,s)beginfor ea
h i 2 List doLet Ax1 be the ba
kward sub-matrix to whi
h
olumn i belongs at stage s;dummy parent := last node of sub-matrix Ax1;Determine the false ba
kward parent fbparent(i; s);send fbparent(i; s) to pro
essor
ontaining dummy parent;if i = dummy parent thenre
eive fbparent(j; s) from ea
h
olumn j;broad
ast ba
kward fet Tfb
onstru
ted from re
eivedfbparent information;re
eive ba
kward fet Tfb broad
ast from dummy parent;Let the
hildren of
olumn i in Tfb be CHLD(i);71

exp wt(i) :=j CHLD(i) j; a

 wt(i) := 0;first(i):=true;if
olumn i is a true leaf of Tfb and
olumn i is in se
ond halfof sub-matrix Ax1 thensend Colstru
t0(Ax1; i) to fbparent(i; s) with weight 1;send Colstru
t0(Ax1; i) with weight 0 to all nodes j in �rst halfof sub-matrix Ax1 su
h that j 2 Colstru
t0(Ax1; i) ;repeatre
eive a message S intended for
olumn i;Let the message be from pro
essor storing
olumn j with weight w;if
olumn i is in se
ond half of sub-matrix Ax1 then
ase type of Satta
h or ordinary:Colstru
t0(Ax1; i) := Colstru
t0(Ax1; i) [Colstru
t0(Ax1; j);a

 wt := a

 wt+ w;if j 2 CHLD(i) then delete j from CHLD(i);if (j CHLD(i) = 0 j) and (a

 wt(i) � exp wt(i)) thenfbparent(i; s) := k where k = max(Colstru
t0(Ax1; i));if fbparent(i) has
hanged thensend a deta
h message to old parent;if first(i) thenwt := a

 wt(i)� exp wt(i) + 1;exp wt(i) := 0;first(i) :=false;elsewt := w;send Colstru
t0(Ax1; i) to fbparent(i) with weight wt;send Colstru
t0(Ax1; i) to all nodes j in �rst half of sub-matrixsu
h that j 2 Colstru
t0(Ax1; i) with weight 0;deta
h :delete j from CHLD(i);72

else
ase type of Satta
h or ordinary:if j 2 Colstru
t0(Ax1; i) thenColstru
t0(Ax1; i) := Colstru
t0(Ax1; i) [Colstru
t0(Ax1; j);deta
h:if i = dummy parent thendelete j from CHLD(i);if (j CHLD(i) = 0 j) thenbroad
ast ba
kward phase over message;until S is ba
kward phase over message;for ea
h i 2 List doif
olumn i is in �rst half of sub-matrix thenfor all j su
h that Ax1[j; i℄ 6= 0 doColstru
t(Ax10; j) := Colstru
t0(Ax10; j) [i;Colstru
t0(Ax11; i) := Colstru
t0(Ax1; i);end3.6 Experimental Results and Performan
e AnalysisTo evaluate the performan
e of the entire bidire
tional s
heme presented in this work,we implemented a hyper
ube simulator in C language and
ompared the speedupsobtained from the bidire
tional s
heme with those obtained from the regular s
heme.We used SPARC Classi
 ma
hine to
arry out our simulations.In the bidire
tional s
heme, we implemented ea
h of the four phases as follows.� Ordering : The bidire
tional nested disse
tion ordering des
ribed in se
tion 3.4.� Symboli
 fa
torization : The sequential bidire
tional symboli
 fa
torization al-gorithm des
ribed in se
tion 3.5.� Numeri
al fa
torization : The parallel BSCF algorithm des
ribed in se
tion 3.2.� Substitution :The parallel BS algorithm des
ribed in se
tion 3.3.73

In the regular s
heme, we implemented ea
h of the four phases as follows.� Ordering : The regular nested disse
tion algorithm for ordering a k � k grid.� Symboli
 fa
torization : The sequential symboli
 fa
torization algorithm pre-sented in [16℄.� Numeri
al fa
torization : The parallel fan-in algorithm given in [4℄.� Substitution :The elimination tree based forward and ba
k substitution algo-rithms given in [29℄.Mapping of
olumns onto pro
essors is an important issue. For the bidire
tionals
heme, we have used the blo
k wrap around mapping using gray
ode whereas forthe regular algorithm we have used the subtree-to-pro
essor mapping [17℄ based onelimination tree.The parameters that were varied were the grid size k(16 and 32), the numberof pro
essors p(1 to 1024), the number of b-ve
tors for whi
h solution ve
tor x wasobtained, and the C=E ratio i.e., the ratio of time for
ommuni
ating a
oating pointdata between two neighbouring pro
essors to the time for a
oating point operation(50and 100). Figures 3.12, 3.13, 3.14, and 3.15 show the
omparison of the measuredspeedups of the two s
hemes for various values of the above parameters.As mentioned earlier in se
tion 3.1, the �rst three phases, namely ordering, sym-boli
 fa
torization, and numeri
al fa
torization, are exe
uted only on
e and the substi-tution phase is repeatedly exe
uted for ea
h one of the di�erent b-ve
tors.The outputof the fa
torization phase of the bidire
tional algorithm is a series of trapezoidal fa
tormatri
es whereas the output of the regular fa
torization algorithm is the pair of lowerand upper triangular fa
tor matri
es. As a result, the inputs to the substitution phaseof bidire
tional and regular algorithms also di�er. For separate
omparison of the twophases of bidire
tional and regular algorithms, we have
onsidered a pseudo-speedupratio for the bidire
tional algorithm. This is a ratio of the time taken by the best se-quential regular algorithm for the fa
torization (substitution) phase to the time takenby the parallel bidire
tional algorithm for the fa
torization (substitution) phase.Therefore �gures 3.12(a), 3.13(a), 3.14(a), and 3.15(a)
ompare the pseudo-speedupof the bidire
tional algorithm with the speedup of the regular algorithm for the �rst74

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32 64 128 256

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(a) fa
torization

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16 32 64 128 256

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(b) substitution
1.5

2

2.5

3

10 20 30 40 50 60 70

S
pe

ed
up

No. of b-vectors

Bidirectional algo
Regular algo

(
) solving multiple b-ve
tors with 8 pro
essorsFigure 3.12: Speedups obtained for bidire
tional algorithm versus regular algorithm for a16� 16 grid (i.e., N = 256) with C=E = 50 75

0

.2

.4

.6

.8

1

1.2

1 2 4 8 16 32 64 128 256

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(a) fa
torization

0

.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 2 4 8 16 32 64 128 256

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(b) substitution

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

20 30 40 50 60 70 80 90 100

S
pe

ed
up

No. of b-vectors

Bidirectional algo
Regular algo

(
) solving multiple b-ve
tors with 8 pro
essorsFigure 3.13: Speedups obtained for bidire
tional algorithm versus regular algorithm for a16� 16 grid (i.e., N = 256) with C=E = 10076

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32 64 128 256 512

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(a) fa
torization
2

4

6

8

10

12

1 2 4 8 16 32 64 128 256 512

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(b) substitution

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350

S
pe

ed
up

No. of b-vectors

Bidirectional algo
Regular algo

(
) solving multiple b-ve
tors with 8 pro
essorsFigure 3.14: Speedups obtained for bidire
tional algorithm versus regular algorithm for a32� 32 grid (i.e., N = 1024) with C=E = 5077

0

.2

.4

.6

.8

1

1.2

1.4

1.6

1.8

2

1 4 16 64 256 1024

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(a) fa
torization

1

2

3

4

5

6

7

8

9

1 4 16 64 256 1024

S
pe

ed
up

No. of processors

Bidirectional algo
Regular algo

(b) substitution

1

1.5

2

2.5

3

3.5

4

4.5

5

20 40 60 80 100 120 140 160 180

S
pe

ed
up

No. of b-vectors

Bidirectional algo
Regular algo

(
) solving multiple b-ve
tors with 16 pro
essorsFigure 3.15: Speedups obtained for bidire
tional algorithm versus regular algorithm for a32� 32 grid (i.e., N = 1024) with C=E = 10078

three phases put together. The �gures 3.12(b), 3.13(b), 3.14(b), and 3.15(b)
omparethe pseudo-speedup of the bidire
tional algorithm with the speedup of the regularalgorithm for the substitution phase alone. Figures 3.12(
), 3.13(
), 3.14(
), and 3.15(
)plot the a
tual speedups of bidire
tional and regular algorithms for all the four phasesput together versus the number of b-ve
tors for whi
h substitution phase is repeatedlyexe
uted. In �gure 3.12(
), this
omparison has been shown for the
ase when p = 8and k = 16 (or N = 256) sin
e, for k = 16, bidire
tional fa
torization phase givesmaximum speedup at p = 8. Similarly, in �gure 3.13(
) p = 8 and k = 16, in �gure3.14(
) p = 32 and k = 32, and in �gure 3.15(
) p = 16 and k = 32 (or N = 1024).These �gures
learly indi
ate that with in
reasing number of b-ve
tors, the speedupobtained from our bidire
tional s
heme be
omes higher than that obtained from theregular s
heme. On in
reasing the problem size from k = 16 to 32, we observe thatthe magnitude of speedup obtained also in
reases. In
reasing the C=E ratio
auses ade
rease in the magnitude of speedup obtained.3.7 Con
lusionsIn this
hapter, we have proposed a new bidire
tional algorithm for dire
t solutionof sparse symmetri
 system of linear equations. This s
heme generates a series oftrapezoidal fa
tor matri
es during the fa
torization phase due to whi
h the substi-tution phase has only one forward substitution
omponent and, unlike the regularsubstitution algorithms, it does not possess a ba
k substitution
omponent. Thus thebidire
tional algorithm is well suited for situations where the system of equations hasto be solved for multiple b-ve
tors. We have demonstrated the e�e
tiveness of thebidire
tional algorithm by
omparing it with the regular methods for solving sparsesymmetri
 systems. Further work is possible in the dire
tion of in
reasing the amountof parallelism in the fa
torization and substitution phases of the bidire
tional algorith-m. In this work, we have
onsidered a situation where
omputations on a parti
ular
olumn, say i, for both forward and ba
kward fa
torizations are handled by the samepro
essor. However, the
omputations for forward and ba
kward fa
torizations areindependent of ea
h other (i.e.,
on
urrent) at every stage s. Same is the
ase withthe
omputations on a
olumn i in substitution phase. This
on
urren
y has not been79

suÆ
iently exploited in the present work. In pla
e of using p pro
essors, we
an use 2ppro
essors, su
h that two pro
essors are responsible for
omputations on ea
h
olumn- one handling
omputations related to forward fa
torization and the other related toba
kward fa
torization. Developing su
h a s
heme is an open problem.

80

Chapter 4
A New Algorithm for Dire
t Solution ofGeneral Sparse Linear Systems4.1 Introdu
tionIn this
hapter, we
onsider the problem of solving general sparse system of linearequations of the form Ax = b, where the
oeÆ
ient matrix A has a general stru
ture(i.e., A
an be either symmetri
 or non-symmetri
 in nature), and is of dimensionN � N , and x and b are N -ve
tors. Su
h equations arise in various appli
ationssu
h as stru
tural engineering,
hemi
al engineering,
uid
ow problems and nu
learphysi
s. As with the sparse symmetri

oeÆ
ient matrix
ase, the traditional pro
essfor obtaining dire
t solution of a general sparse system of linear equations, Ax = b,involves the following four distin
t phases.� Ordering : Apply an appropriate symmetri
 permutation matrix P su
h thatthe new system is of the form (PAP T)(Px) = (Pb).� Symboli
 fa
torization : Set up the appropriate data stru
tures for the numeri
alfa
torization phase.� Numeri
al fa
torization : Fa
torize the
oeÆ
ient matrix A to the form A = LU ,where L is a lower triangular matrix and U is an upper triangular matrix.� Substitution : Determine the solution ve
tor x by �rst solving the forward trian-gular system Ly = b and then solving the ba
kward triangular system Ux = y.For solution of multiple b-ve
tors, the �rst three phases are
arried out only on
efollowing whi
h the substitution phase is repeated for ea
h b-ve
tor in order to obtaina di�erent solution ve
tor x in ea
h
ase. Thus, in problems whi
h involve solution of81

multiple b-ve
tors, the time taken by repeated exe
ution of substitution phase dom-inates the overall solution time. Although eÆ
ient parallel algorithms exist for thenumeri
al fa
torization phase [5, 2, 44, 14, 11, 20, 30℄, not mu
h progress has beenmade in the
ase of substitution phase [14, 22, 29℄ due to the limited amount of paral-lelism inherent in this phase.In this
hapter we present a new bidire
tional algorithm, based on LU fa
torization,for the solution of general sparse system of linear equations. As in the sparse sym-metri

ase, the numeri
al fa
torization phase is
arried out in su
h a manner that theentire ba
k substitution
omponent of the substitution phase is repla
ed by a singlestep division. However, due to absen
e of symmetry, important di�eren
es arise inthe ordering te
hnique, the symboli
 fa
torization phase, and message passing duringnumeri
al fa
torization phase. The bidire
tional substitution phase for solving generalsparse systems is the same as that for sparse symmetri
 systems (see se
tion 3.3).It is known that for sparse non-symmetri
 problems, pivoting is ne
essary to en-sure numeri
al stability during numeri
al fa
torization phase. In this work, however,we
onsider the
ase where bidire
tional fa
torization is done without pivoting so as tomaintain
larity and
on
entrate more on other basi
 issues su
h as exploiting parallelis-m and redu
ing
ommuni
ation overheads. Existing work on bidire
tional fa
torizationalgorithm based on LU fa
torization with partial pivoting for dense linear systems
anbe found in [42℄.The rest of the
hapter is organized as follows. In se
tion 4.2, we present thebidire
tional sparse fa
torization algorithm based on LU fa
torization for general sparsematri
es. In se
tion 4.3, we develop a bidire
tional heuristi
 algorithm whi
h produ
esa reordered
oeÆ
ient matrix suitable for numeri
al fa
torization phase. In se
tion 4.4,we look at a symboli
 fa
torization algorithm whi
h sets up data stru
tures required bythe numeri
al fa
torization phase. In se
tion 4.5, we evaluate the performan
e of thebidire
tional algorithm on hyper
ube multipro
essors and present
omparison of ouralgorithm with the existing s
heme based on sparse LU fa
torization. In se
tion 4.6,we
on
lude the work with some observations about possible future improvements tothe bidire
tional s
heme.
82

4.2 The Bidire
tional Sparse Fa
torization (BSF) AlgorithmUnlike the regular LU fa
torization algorithm whi
h fa
torizes A to the form A = LU ,the BSF algorithm fa
torizes A into a series of trapezoidal matri
es of multipliers. Thisseries of trapezoidal matri
es remove the need for the ba
k substitution
omponent inthe substitution phase.In this se
tion, we �rst present an overall view of the
on
ept of bidire
tionalfa
torization. We then pro
eed to des
ribe the manner in whi
h the sparsity of the
oeÆ
ient matrix
an be exploited to obtain higher degree of parallelism. Followingthis we present the details of implementing BSF algorithm on multipro
essor systems.4.2.1 Bidire
tional Fa
torization - The Con
eptThe basi

on
ept behind the bidire
tional fa
torization algorithm is the same as thatpresented in se
tion 3.2.1. For logN stages, we repeatedly halve the size of sub-matri
es through simultaneous fa
torizations in both forward and ba
kward dire
tions(generating lower and upper trapezoidal fa
tor matri
es in the pro
ess) and double thenumber of sub-matri
es through
opying at ea
h stage. Finally, we end up with Nsub-matri
es of order 1 � 1 (see �gure 3.1). Ea
h pivot
olumn operation during theforward and ba
kward fa
torization is the same as in LU fa
torization. The substitutionphase (des
ribed earlier in se
tion 3.3)
onsists of moving the b-ve
tor down the treeof trapezoids to produ
e N equations with one variable ea
h, whi
h are then solved bya single step division to produ
e the solution ve
tor x (see �gure 3.4).4.2.2 Exploiting the Sparsity of the CoeÆ
ient Matrix AIn this se
tion we look at the notion of elimination tree and
onsider as to how thisnotion abstra
ts the level of
on
urren
y available during fa
torization pro
ess.In regular sparse LU fa
torization, let F be the �lled matrix obtained after fa
tor-izing the
oeÆ
ient matrix A. An elimination tree
ontains a node
orresponding toea
h
olumn of the
oeÆ
ient matrix. The parent of a node i is de�ned asparent(i) = min fj j j > i and F [i; j℄ 6= 0g :83

The elimination tree de�nes a partially ordered pre
eden
e relation whi
h determineswhen a
ertain
olumn
an be used as pivot.Similarly, in BSF algorithm, we
an de�ne the notions of forward elimination treeand ba
kward elimination tree. At some stage s 2 f1 � � � logNg, let Ax0 be a sub-matrixbeing fa
torized in the forward dire
tion and Ax1 be a sub-matrix being fa
torized inthe ba
kward dire
tion (x being a possibly empty string of 0's and 1's). Let Fx0 andFx1 be the respe
tive �lled sub-matri
es generated at the end this fa
torization step.The forward parent of node i, is de�ned asfparent(i; Ax0) = min fj j j > i and Fx0[i; j℄ 6= 0g :Similarly, the ba
kward parent of node i, is de�ned asbparent(i; Ax1) = max fj j j < i and Fx1[i; j℄ 6= 0g :For a
hieving a high degree of parallelism during fa
torization phase, both theforward and the ba
kward elimination trees should be as short and wide as possible.This is the fun
tion of the ordering phase (des
ribed in se
tion 4.3).In the next subse
tion, we examine the parallel implementation of BSF algorithmon multipro
essors.4.2.3 Implementing the BSF Algorithm on Multipro
essorsFor our present study, we
onsider themedium grain model of parallelism in whi
h tasksperform
oating point operations over nonzero elements of entire
olumns of
oeÆ
ientmatrix. The following elementary tasks are
onsidered for the BSF algorithm.� fdivide(i,s) divides by Ax0[i; i℄, every nonzero element of the sub-diagonal partof the ith
olumn of sub-matrix Ax0.� bdivide(i,s) divides by Ax1[i; i℄, every nonzero element of the super-diagonal partof the ith
olumn of sub-matrix Ax1.� fmodify(i,ve
torj,s) subtra
ts an appropriate multiple of ve
torj from the ith
olumn of a sub-matrix Ax0, at stage s 2 f1 � � � logNg. ve
torj
ontains the84

ontents of some
olumn j of Ax0, whi
h modi�es
olumn i dire
tly in forwarddire
tion at stage s.� bmodify(i,ve
torj,s) subtra
ts an appropriate multiple of ve
torj from the ith
olumn of a sub-matrix Ax1, at stage s 2 f1 � � � logNg. ve
torj
ontains the
ontents of some
olumn j of Ax1, whi
h modi�es
olumn i dire
tly in ba
kwarddire
tion at stage s.To keep tra
k of the
olumns that ea
h pivot should modify at ea
h of the logNstages, we maintain the following data stru
tures.� F (s)i denotes the set of all
olumns with indi
es smaller than i that modify theith
olumn in the forward dire
tion at stage s.� B(s)i denotes the set of all
olumns with indi
es greater than i that modify theith
olumn in the ba
kward dire
tion at stage s.These data stru
tures are generated during the symboli
 fa
torization phase. Thisphase is des
ribed in se
tion 4.4. In the remaining part of this se
tion, we des
ribethe implementation of BSF algorithm on a message passing multipro
essor for the
asewhere the number of pro
essors p is less than or equal to the order N of the
oeÆ
ientmatrix.In parallel fan-in BSCF algorithm (des
ribed in se
tion 3.2), the symmetri
 natureof
oeÆ
ient matrix is exploited to redu
e the
ommuni
ation overheads. Multiplesof various
olumns lo
ated in the same pro
essor, whi
h modify a parti
ular
olumn jlo
ated in some other pro
essor, are added into a single message ve
tor whi
h is thensent over to the destination pro
essor. In parallel BSF algorithm, on the other hand,the absen
e of symmetry in the
oeÆ
ient matrix does not permit su
h an optimization.Thus for every
olumn i, whi
h modi�es
olumn j in the forward (ba
kward) dire
tion(i.e., i belongs to the set F (s)j (B(s)j)), a separate message ve
tor
ontaining
olumn iis sent to the pro
essor storing
olumn j.In algorithm 1 below, we in
orporate the above idea in the BSF algorithm andpresent the fan-out BSF algorithm. The set Listmyid is the set of
olumns stored inpro
essor Pmyid. If
olumn i is to modify
olumn j in forward dire
tion at stage s then,85

after performing fdivide(i; s) operation, the pro
essor whi
h stores the
olumn i, sendsa message
ontaining the
ontents of
olumn i to the pro
essor storing the
olumn j.Similar me
hanism operates for fa
torization in ba
kward dire
tion.Algorithm 1 (*The parallel fan-out BSF algorithm for
ase p � N*)beginfor s := 1 to logN doparbeginForward fa
torize(Listmyid,s);Ba
kward fa
torize(Listmyid,s);parendendpro
edure Forward fa
torize(List,s)beginwhile List 6= � doif 9i 2 List su
h that fve
torj has been re
eived for all j 2 F (s)i thenLet
olumn i belong to the forward sub-matrix Ax0 at stage s;for k := 0 to i� 1 doif k 2 F (s)i then fmodify(i; fve
torj; s);if
olumn i belongs to the �rst half of sub-matrix Ax0 thenfdivide(i; s);for all j su
h that i 2 F (s)j dofve
tori := Ax0[�; i℄;send a message of the form (j,fve
tori,s)to pro
essor storing
olumn j;else if s < logN then(*
opy
olumn i of Ax0 to
olumn i of Ax00 and Ax01*)Ax00[�; i℄ := Ax0[�; i℄;Ax01[�; i℄ := Ax0[�; i℄;List := List� i;if there is an in
oming message then re
eive and store the message;86

endpro
edure Ba
kward fa
torize(List,s)beginwhile List 6= � doif 9i 2 List su
h that bve
torj has been re
eived for all j 2 B(s)i thenLet
olumn i belong to the ba
kward sub-matrix Ax1 at stage s;for k := N � 1 downto i+ 1 doif k 2 B(s)i then bmodify(i; bve
torj; s);if
olumn i belongs to the se
ond half of sub-matrix Ax1 thenbdivide(i; s);for all j su
h that i 2 B(s)j dobve
tori := Ax1[�; i℄;send a message of the form (j,bve
tori,s)to pro
essor storing
olumn j;else if s < logN then(*
opy
olumn i of Ax1 to
olumn i of Ax10 and Ax11*)Ax10[�; i℄ := Ax1[�; i℄;Ax11[�; i℄ := Ax1[�; i℄;List := List� i;if there is an in
oming message then re
eive and store the message;endAs noted in se
tion 3.2.3, a spe
ial situation arises when the number of pro
essorsp = 2d (as in hyper
ube multipro
essors) and N = 2n (n; d 2 N). Assume that wemap the equations on the pro
essors in a blo
k wrap manner (as shown in �gure 3.3).Thus ea
h pro
essor holds Np = 2n�d
onse
utive equations. At the end of d = log pstages of the fan-out BSF algorithm, ea
h pro
essor
ontains an independent systemof Np equations. This independent system
an be fa
torized within a single pro
essorwithout any
ommuni
ation with any other pro
essor. Sin
e, on a single pro
essor,regular sequential sparse LU fa
torization performs more eÆ
iently than the fan-out87

BSF algorithm, we
an swit
h over to this regular sequential version after log p stagesand fa
torize the
oeÆ
ient matrix (say Aind) of this independent system into theform Aind = LindUind. This results in enhan
ing the performan
e of the fan-out BSFalgorithm.4.3 Ordering the General Sparse Matrix for Bidire
tional Fa
torizationAs noted earlier, the basi
 aim of the ordering phase is to reorder the
olumns of the
oeÆ
ient matrix in su
h a manner that during the fa
torization phase, the amount of�ll-in is minimized and the degree of parallelism is maximized. The prin
ipal orderingte
hnique used for reordering the general sparse matri
es for regular LU fa
torizationalgorithms involves two stages. In the �rst stage, a �ll redu
ing ordering, su
h asminimum degree ordering [12℄, is applied to the
oeÆ
ient matrix A. This is followedby appli
ation of Liu's s
heme of elimination tree rotation [38, 39℄ whi
h
auses aredu
tion in the height of the elimination tree without a�e
ting the amount of �ll-inin the upper triangular fa
tor U . The resulting elimination tree is more appropriatefor parallel LU fa
torization.The ordering resulting from the above s
heme is, however, not suited for the BSFalgorithm due to reasons given below. Re
all that in se
tion 4.2.2 we de�ned the
on-
epts of forward elimination tree and ba
kward elimination tree for the BSF algorithm.The degree of parallelism while fa
torizing in forward dire
tion depends on the shape ofthe forward elimination tree and that for fa
torizing in ba
kward dire
tion depends onthe shape of the ba
kward elimination tree. An ideal ordering for the BSF algorithm isone in whi
h both the elimination trees are as short and wide as possible. The forwardelimination tree obtained from the above s
heme is short and wide and hen
e desirablefor parallel fa
torization. On the other hand the ba
kward elimination tree obtainedfrom the above s
heme is lean and tall and hen
e undesirable for parallel fa
torization.In the remaining part of this se
tion we des
ribe how the above s
heme
an beextended to yield ordering suitable for the BSF algorithm. We
all the new heuristi
as the alternate stripe reordering method and it pro
eeds as follows. First we apply a�ll redu
ing ordering, su
h as the minimum degree ordering, followed by Liu's heightredu
ing elimination tree rotation s
heme to obtain a reordered matrix whose forward88

..� -� -� -� - x x x x x x x x xx

x1 2 3 4 5 6 7 8 9123456789

x xx x
x

x x xx x x xxx x xx x xx xx xx
x x x x x x x x

x x

x
xx xxx xxx x xx x xxxx x x

x
x xxx

x
x

stripe 1 stripe 2 stripe 3 stripe 41 2 3 4 5 6 7 8 9123456789 (b) 9 x 9 alternate stripe reordered matrix(a) 9 x 9 striped sparse matrixFigure 4.1: Ordering of a 9� 9 matrix using alternate stripe reordering.elimination tree has low height. Let the reordered matrix be A0. The following stepsof alternate stripe reordering method are applied to the matrix A0.� Step 1 : Stripe the matrix A0 into groups of
olumns as shown in �gure 4.1.The grouping of
olumns into stripes is done a

ording to the following
riteria.Column i and
olumn i+1 belong to the same stripe if A0[i; i+1℄ 6= 0. Otherwise,
olumn i and
olumn i + 1 belong to
onse
utive stripes.� Step 2 : Initialize upCount to 1 and downCount to N . Maintain an arraynewOrder of size N to store the new ordering.� Step 3 :For ea
h su

essive
olumn i of stripe 1 do{ newOrder[i℄ := upCount;{ upCount = upCount+ 1;For ea
h su

essive
olumn i0 of stripe 2 do89

{ newOrder[i0℄ := downCount;{ downCount = downCount� 1;� Step 3 : The above numbering method is repeated for ea
h su

essive pair ofstripes i.e.,
olumns belonging to odd stripes are numbered by in
rementingupCount and
olumns belonging to even stripes are numbered by de
rementingdownCount.� Step 4 : The row i and
olumn i of matrix A0 are numbered as row newOrder[i℄and
olumn newOrder[i℄ in the �nal reordered matrix.A little thought reveals that the alternate stripe reordering method is a gener-alization of the bidire
tional nested disse
tion method des
ribed in se
tion 3.4. Thelatter method
an be alternatively viewed as
onsisting of two stages - (i) applying theregular nested disse
tion method to the k � k grid followed by (ii) applying alternatestripe reordering to the matrix obtained from the �rst stage. It will be shown throughexperimental results at the end of this
hapter that the new reordering s
heme doesindeed yield reorderings better suited to parallel bidire
tional fa
torization than thes
heme based on �ll-redu
tion and elimination tree rotations alone.In the next se
tion we look at the bidire
tional symboli
 fa
torization algorithmwhi
h allo
ates memory and sets up the appropriate data stru
tures prior to the BSFalgorithm.4.4 The Bidire
tional Symboli
 Fa
torization AlgorithmThe bidire
tional symboli
 fa
torization algorithm, whi
h pre
edes the BSF phase, doesthe following.� It determines apriori, the stru
ture of ea
h one of the �lled sub-matri
es, Fx, atea
h of the logN stages and� It initializes the data stru
tures for the sets F (s)i and B(s)i whi
h are requiredduring the BSF algorithm.
90

We de�ne Colstru
t(Ax0; i) to denote the set of row indi
es of nonzeros in the
olumn i of forward matrix Ax0.Colstru
t(Ax0; i) = fj j Ax0[j; i℄ 6= 0g :In a similar fashion, we de�ne Colstru
t0(Ax1; i) to denote the set of row indi
es ofnonzeros in the
olumn i of the ba
kward matrix Ax1.Colstru
t0(Ax1; i) = fj j Ax1[j; i℄ 6= 0g :We now des
ribe the bidire
tional symboli
 fa
torization algorithm.Algorithm 2 (*The bidire
tional symboli
 fa
torization algorithm*)beginfor s := 1 to logN dofor
ol := 1 to N doF (s)
ol := �;B(s)
ol := �;for s := 1 to logN dofor
ol := 1 to N doForward SF(
ol,s);for
ol := N downto 1 doBa
kward SF(
ol,s);endpro
edure Forward SF(
ol,s)beginLet Ax0 be the forward sub-matrix that
ontains
olumn
ol at stage s;if
ol belongs to the �rst half of Ax0 thenCal
ulate fparent(
ol; Ax0) using de�nition given in se
tion 4.2.2;if fparent(
ol; Ax0) belongs to the �rst half of Ax0 thenColstru
t(Ax0; fparent(
ol; Ax0)) :=Colstru
t(Ax0; fparent(
ol; Ax0) [Colstru
t(Ax0;
ol);for all j su
h that j belongs to se
ond half of Ax0 and Ax0[
ol; j℄ 6= 0 doColstru
t(Ax0; j) := Colstru
t(Ax0; j) [Colstru
t(Ax0;
ol);for all j su
h that j 2 Colstru
t(Ax0;
ol) and j <
ol do91

F (s)
ol := F (s)
ol [fig;elseColstru
t(Ax00;
ol) := Colstru
t(Ax0;
ol);Colstru
t0(Ax01;
ol) := Colstru
t(Ax0;
ol);endpro
edure Ba
kward SF(
ol,s)beginLet Ax1 be the ba
kward sub-matrix that
ontains
olumn
ol at stage s;if
ol belongs to the se
ond half of Ax1 thenCal
ulate bparent(
ol; Ax1) using de�nition given in se
tion 4.2.2;if bparent(
ol; Ax1) belongs to the se
ond half of Ax1 thenColstru
t0(Ax1; fparent(
ol; Ax1)) :=Colstru
t0(Ax1; fparent(
ol; Ax1) [Colstru
t0(Ax1;
ol);for all j su
h that j belongs to �rst half of Ax1 and Ax1[
ol; j℄ 6= 0 doColstru
t0(Ax1; j) := Colstru
t0(Ax1; j) [Colstru
t0(Ax1;
ol);for all j su
h that j 2 Colstru
t0(Ax1;
ol) and j >
ol doB(s)j := B(s)j [f
olg;elseColstru
t(Ax10;
ol) := Colstru
t0(Ax1;
ol);Colstru
t0(Ax11;
ol) := Colstru
t0(Ax1;
ol);endThe bidire
tional symboli
 fa
torization algorithm des
ribed above has time
om-plexity proportional to the number of nonzero elements stored in trapezoids at ea
hstage.4.5 Experimental Results and Performan
e AnalysisTo evaluate the performan
e of the entire bidire
tional s
heme presented in this work,we implemented a hyper
ube simulator in C language and
ompared the speedups92

obtained from the bidire
tional s
heme with those obtained from the regular s
heme.We used the SPARC Classi
 ma
hine to
arry out our simulations.In the bidire
tional s
heme, we implemented ea
h of the four phases as follows.� Ordering : The alternate stripe reordering method des
ribed in se
tion 4.3.� Symboli
 fa
torization : The sequential bidire
tional symboli
 fa
torization al-gorithm des
ribed in se
tion 4.4.� Numeri
al fa
torization : The parallel fan-out BSF algorithm des
ribed in se
-tion 4.2.� Substitution :The parallel BS algorithm des
ribed in se
tion 3.3.In the regular s
heme, we implemented ea
h of the four phases as follows.� Ordering : The �ll redu
ing minimum degree ordering [12℄ followed by Liu'selimination tree rotation s
heme [38℄.� Symboli
 fa
torization : The sequential symboli
 fa
torization algorithm pre-sented in [16℄.� Numeri
al fa
torization : The parallel fan-out algorithm given in [4, 30℄.� Substitution :The elimination tree based forward and ba
k substitution algo-rithms given in [29℄.Mapping of
olumns onto pro
essors is an important issue. For the bidire
tionals
heme, we have used the blo
k wrap around mapping using gray
ode whereas forthe regular algorithm we have used the subtree-to-pro
essor mapping [17℄ based onelimination tree.For the purpose of simulation we used three test matri
es, des
ribed in table 4.1,from the Harwell-Boeing Colle
tion. Due to memory
onstraints, the maximum di-mension of the test matrix
onsidered was 343� 343. The parameters that were variedwere the number of pro
essors p (1 to 128), the number of b-ve
tors for whi
h solutionve
tor x was obtained, and the C=E ratio i.e., the ratio of time for
ommuni
atinga
oating point data between two neighbouring pro
essors to the time for a
oating93

Table 4.1: Matri
es from Harwell-Boeing
olle
tionNumber of Number ofequations nonzeros in A Des
ription199 701 WILL199 : pattern of stress analysis matrix.216 876 GRE216A : unsymmetri
 matrix from Grenoble.343 1435 GRE343 : unsymmetri
 matrix from Grenoble.point operation (50 and 100). Figures 4.2, 4.3, and 4.4 show the
omparison of themeasured speedups of the two s
hemes for various values of the above parameters.As mentioned earlier in se
tion 4.1, the �rst three phases, namely ordering, sym-boli
 fa
torization, and numeri
al fa
torization, are exe
uted only on
e and the substi-tution phase is repeatedly exe
uted for ea
h one of the di�erent b-ve
tors. The outputof the fa
torization phase of the bidire
tional algorithm is a series of trapezoidal fa
tormatri
es whereas the output of the regular fa
torization algorithm is the pair of lowerand upper triangular fa
tor matri
es. As a result, the inputs to the substitution phaseof bidire
tional and regular algorithms also di�er. For separate
omparison of the twophases of bidire
tional and regular algorithms, we have
onsidered a pseudo-speedupratio for the bidire
tional algorithm. This is a ratio of the time taken by the best se-quential regular algorithm for the fa
torization (substitution) phase to the time takenby the parallel bidire
tional algorithm for the fa
torization (substitution) phase.Therefore �gures 4.2(a), 4.2(d), 4.3(a), 4.3(d), 4.4(a), and 4.4(d)
ompare thepseudo-speedup of the bidire
tional algorithm with the speedup of the regular algo-rithm for the �rst three phases put together. The �gures 4.2(b), 4.2(e), 4.3(b), 4.3(e),4.4(b), and 4.4(e)
ompare the pseudo-speedup of the bidire
tional algorithm with thespeedup of the regular algorithm for the substitution phase alone. The �gures 4.2(
),4.2(f), 4.3(
), 4.3(f), 4.4(
), and 4.4(f) plot the a
tual speedups of bidire
tional andregular algorithms for all the four phases put together versus the number of b-ve
torsfor whi
h substitution phase is repeatedly exe
uted. In �gure 4.2(
), this
omparisonhas been shown for the
ase when p = 16, N = 199, and C=E = 50 sin
e, for this
ombination of parameters, bidire
tional fa
torization phase gives maximum speedupat p = 16. Same logi
 holds for �gures 4.2(f), 4.3(
), 4.3(f), 4.4(
), and 4.4(f). These94

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(a) fa
torization, C/E=50 0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(d) fa
torization, C/E=100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(b) substitution, C/E=50 0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(e) substitution, C/E=100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

20 40 60 80 100 120 140 160 180 200

S
p

e
e
d

u
p

No. of b-vectors

Bidirectional algo
Regular algo

(
) solving multiple b-ve
torswith 16 pro
essors, C/E=50 0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200

S
p

e
e
d

u
p

No. of b-vectors

Bidirectional algo
Regular algo

(f) solving multiple b-ve
torswith 8 pro
essors, C/E=100Figure 4.2: Speedups obtained for bidire
tional algorithm versus regular algorithm forWILL199. 95

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(a) fa
torization, C/E=50 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(d) fa
torization, C/E=100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(b) substitution, C/E=50 0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(e) substitution, C/E=100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250

S
p

e
e
d

u
p

No. of b-vectors

Bidirectional algo
Regular algo

(
) solving multiple b-ve
torswith 8 pro
essors, C/E=50 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250

S
p

e
e
d

u
p

No. of b-vectors

Bidirectional algo
Regular algo

(f) solving multiple b-ve
torswith 8 pro
essors, C/E=100Figure 4.3: Speedups obtained for bidire
tional algorithm versus regular algorithm forGRE216A. 96

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(a) fa
torization, C/E=50 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(d) fa
torization, C/E=100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(b) substitution, C/E=50 0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8 16 32 64 128

S
p

e
e
d

u
p

No. of processors

Bidirectional algo
Regular algo

(e) substitution, C/E=100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

100 150 200 250 300 350 400 450 500

S
p

e
e
d

u
p

No. of b-vectors

Bidirectional algo
Regular algo

(
) solving multiple b-ve
torswith 16 pro
essors, C/E=50 0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 200 300 400 500 600 700

S
p

e
e
d

u
p

No. of b-vectors

Bidirectional algo
Regular algo

(f) solving multiple b-ve
torswith 8 pro
essors, C/E=100Figure 4.4: Speedups obtained for bidire
tional algorithm versus regular algorithm forGRE343. 97

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8 16 32 64 128

P
se

ud
o-

S
pe

ed
up

No. of processors

Liu
ASR

(a) WILL199 matrix
0.1

0.2

0.3

0.4

0.5

1 2 4 8 16 32 64 128

P
se

ud
o-

S
pe

ed
up

No. of processors

Liu
ASR

(b) GRE216A matrix
0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4 8 16 32 64 128

P
se

ud
o-

S
pe

ed
up

No. of processors

Liu
ASR

(
) GRE343 matrixFigure 4.5: Pseudo-speedups obtained for bidire
tional fa
torization with matri
es reorderedby ASR method versus those reordered by Liu's rotation method. C=E = 50.98

�gures
learly indi
ate that with in
reasing number of b-ve
tors, the speedup obtainedfrom our bidire
tional s
heme steadily be
omes higher than that obtained from the reg-ular s
heme. In
reasing the C=E ratio
auses a de
rease in the magnitude of speedupobtained.Figures 4.5(a), (b), and (
)
ompare the pseudo-speedup of the bidire
tional fa
-torization phase with two di�erent reorderings of ea
h of the
oeÆ
ient matri
es - oneobtained using the ASR heuristi
 proposed in se
tion 4.3 and the other obtained usingLiu's s
heme [38℄. The graphs
learly indi
ate that BSF algorithm gives higher speedupwhen the
oeÆ
ient matrix is reordered using the ASR heuristi
 rather than with Liu'ss
heme.4.6 Con
lusionsIn this
hapter, we have proposed a new bidire
tional algorithm for dire
t solution ofgeneral sparse system of linear equations. This s
heme generates a series of trapezoidalfa
tor matri
es during the fa
torization phase due to whi
h the substitution phase hasonly one forward substitution
omponent. Unlike the regular substitution algorithms,it does not possess a ba
k substitution
omponent in the substitution phase. Thus thebidire
tional algorithm is well suited for situations where the system of equations hasto be solved for multiple b-ve
tors. We have demonstrated the e�e
tiveness of the bidi-re
tional algorithm by
omparing it with the regular methods for solving general sparsesystems. Further work is possible in the dire
tion of in
orporating partial pivoting inthe present parallel bidire
tional s
heme. This will
all for modi�
ation of the bidire
-tional symboli
 fa
torization method sin
e, the stru
ture of the �lled sub-matri
es atea
h stage of fa
torization will depend not only on the stru
ture of
oeÆ
ient matrixA, but also on the row inter
hanges that o

ur due to partial pivoting. Also, as inthe sparse symmetri

ase, the amount of parallelism
an be in
reased by using 2ppro
essors, instead of p pro
essors, for handling the forward and ba
kward operationson separate pro
essors.
99

Chapter 5
Con
lusionsIn this thesis, we have addressed the problem of solving three important
lasses ofsparse linear systems - (i) blo
k tridiagonal linear systems, (ii) sparse symmetri
 linearsystems, and (iii) general sparse linear systems. In the �rst
lass, we have proposedan improved mapping of
y
li
 elimination (CE) algorithm onto hyper
ube multipro-
essors whi
h a
hieves desirable mapping through judi
ious use of the
on
ept of datarepli
ation. For the se
ond and third
lasses of problems, we have proposed new bidi-re
tional algorithms whi
h, due to the absen
e of ba
k-substitution
omponent in thesubstitution phase, are very well suited for solving multiple b-ve
tor systems. Most ofthe existing parallel algorithms for solving sparse linear systems attempt to parallelizetheir good sequential
ounterparts. This approa
h has not borne fruit, sin
e the basi
goal of a good sequential algorithm i.e., minimizing the total operation
ount,
on
i
tswith the basi
 goal of a good parallel algorithm, whi
h is maximizing the number of
on
urrent sub-problems. By exploiting the higher degree of parallelism available inthe problem itself, the new algorithms proposed in our work a
hieve better performan
ethan the traditional algorithms.5.1 SummaryIn
hapter 2, we have proposed an improved mapping of the
y
li
 elimination algorithmfor the solution of the blo
k-tridiagonal linear systems onto hyper
ube multipro
essors.Unlike the previous mapping s
hemes, our improved mapping uses the
on
ept of datarepli
ation to a
hieve only neighbouring pro
essor
ommuni
ation at all stages of pro-
essing. Our improved mapping s
heme is shown to be e�e
tive by
omparing it withthe existing mapping of the
y
li
 redu
tion (CR) algorithm onto hyper
ubes usingboth analyti
al and simulation methods. The
omparison shows that as the number of100

pro
essors in
reases, our improved mapping steadily overtakes the existing mapping ofthe CR algorithm in terms of speedup. Two signi�
ant features of our algorithm arethat, the
omputational load is balan
ed among all pro
essors at all stages of the algo-rithm and se
ondly, mu
h of the
ommuni
ation gets overlapped with the
omputationgiving an overall better performan
e.In
hapter 3, we have proposed a new bidire
tional algorithm for the dire
t solu-tion of sparse symmetri
 system of linear equations. This s
heme generates a series oftrapezoidal fa
tor matri
es during the fa
torization phase due to whi
h the substitutionphase has only one forward substitution
omponent and, unlike the regular substitu-tion algorithms, it does not possess a ba
k-substitution
omponent. For the numeri
alfa
torization phase, we have proposed a fan-in bidire
tional sparse Cholesky fa
toriza-tion (BSCF) algorithm. For the substitution phase, we have proposed a bidire
tionalsubstitution algorithm in whi
h the b-ve
tor gets modi�ed by the tree of trapezoidsprodu
ed during the fa
torization phase. For the ordering phase, we have proposeda bidire
tional nested disse
tion algorithm whi
h produ
es orderings suited to parallelfa
torization using BSCF algorithm. Further, we have developed bidire
tional symboli
fa
torization algorithm whi
h sets up the appropriate data stru
tures required duringthe BSCF algorithm.In
hapter 4, we have addressed the problem of solving general sparse linear sys-tems using the bidire
tional s
heme. For the fa
torization phase, we have developed afan-out bidire
tional sparse fa
torization (BSF) algorithm based on LU fa
torization.The bidire
tional algorithm for the substitution phase is the same as that for the s-parse symmetri

ase. In the ordering phase, we have proposed an alternate stripesreordering algorithm whi
h produ
es orderings suited to parallel fa
torization using B-SF algorithm. We have also developed a bidire
tional symboli
 fa
torization algorithmfor setting up the appropriate data stru
tures required during the BSF algorithm.In order to demonstrate the e�e
tiveness of the two bidire
tional s
hemes presentedin
hapters 3 and 4, we have
ondu
ted extensive simulation studies on the performan
eof these algorithms on hyper
ube multipro
essors. We have
ompared the speedupsobtained from the entire bidire
tional s
heme for solving the sparse symmetri
 linearsystems with those obtained from the regular Cholesky fa
torization based s
hemes.101

Similarly, we have
ompared the speedups obtained from the entire bidire
tional s
hemefor solving the general sparse linear systems with those obtained from the regular LUfa
torization based s
hemes. The results indi
ate that, when solving for multiple b-ve
tors, the speedups obtained from the bidire
tional s
hemes steadily overtake thoseobtained from the regular s
hemes, as the number of b-ve
tors for whi
h the system issolved in
reases.5.2 Suggestions for Future WorkFurther work
an be done in the following dire
tions.� In
hapter 1, the degree of parallelism in the improved mapping of
y
li
 elimi-nation algorithm onto hyper
ube multipro
essors
an be
ontrolled by swit
hingover to the sequential algorithm for solving blo
k-tridiagonal systems at a stageearlier than logN . Determining the optimal stage k, at whi
h this swit
hingshould o

ur is an open problem.� In the bidire
tional algorithms for solving sparse linear systems in
hapters 3 and4, further
on
urren
y
an be exploited by assigning the
omputation of forwardand ba
kward fa
torization phases to separate pro
essors. This will mean usingtwi
e the number of pro
essors
urrently being
onsidered.� In
hapter 4, the bidire
tional algorithms presented for solving general sparselinear systems
an be modi�ed to in
lude pivoting whi
h is widely
onsidered tobe
ru
ial for ensuring the stability.

102

Bibliography[1℄ J.C.Agui and J.Jimenez, A binary tree implementation of a parallel distributedtridiagonal solver, Parallel Computing, Vol. 21, No. 2, 1995, pp. 233-241.[2℄ G.Alaghband and H.Jordan, Multipro
essor sparse L/U de
omposition with
on-trolled �ll-in, Te
hni
al Report 85-48, ICASE, NASA Langey Resear
h Center,Hampton, VA 1985.[3℄ P.Amodio, Optimised
y
li
 redu
tion for the solution of linear tridiagonal sys-tems on parallel
omputers, Computers and Mathemati
s with Appli
ations, Vol.26, No. 3, 1993, pp. 45-53.[4℄ C.Ash
raft, S.C.Eisenstat and J.W.H.Liu, A fan-in algorithm for distributedsparse numeri
al fa
torization, SIAM J. S
i. Stat. Comput., Vol. 11, No. 3,1990, pp. 593-599.[5℄ C.Ash
raft, S.C.Eisenstat, J.W.H.Liu, and A.H.Sherman, A
omparison ofthree
olumn based distributed sparse fa
torization s
hemes, Te
hni
al ReportYALEU/DCS/RR-810, Yale University, New haven, CT, 1990.[6℄ D.P.Bertsekas and J.N.Tsitsiklis, Parallel and Distributed Computation - Nu-meri
al Methods, Prenti
e-Hall, Engelwood Cli�s, New Jersy, 1989.[7℄ B.L.Buzbee, G.H.Golub and C.W.Nielson, On dire
t methods for solving Pois-son's equations, SIAM J. Numer. Anal., Vol. 7, 1970, pp. 627-655.[8℄ J.M.Conroy, Parallel nested disse
tion, Parallel Computing, Vol. 16, 1990, pp.139-156.[9℄ I.S.Du� and J.K.Reid,Multifrontal solution of inde�nite sparse symmetri
 linearequations, ACM Trans. Math. Soft., Vol. 9, May 1983, pp. 302-325.[10℄ A.George, Nested disse
tion of a regular �nite element mesh, SIAM J. Numer.Anal., Vol. 10, No. 2, 1973, pp. 345-363.[11℄ A.George and E.Ng, Parallel sparse Gaussian elimination with partial pivoting,Annals of Operations Resear
h, Vol. 22, 1990, pp. 219-240.[12℄ A.George and J.W.H.Liu, The evolution of minimum degree ordering algorithm,SIAM Review, Vol. 31, No. 1, 1989, pp. 1-19.103

[13℄ A.George, M.T.Heath, J.W.H.Liu and E.Ng, Computer Solution of Large SparsePositive De�nite Systems Prenti
e Hall, Englewood Cli�s, NJ, 1981.[14℄ A.George, M.T.Heath, J.W.H.Liu and E.Ng, Solution of sparse positive de�nitesystems on hyper
ube, J. Comput. Applied Math., Vol. 27, 1989, pp. 129-156.[15℄ A.George, M.T.Heath, J.W.H.Liu and E.Ng, Sparse Cholesky fa
torization on alo
al memory multipro
essor, SIAM J. S
i. Stat. Comput., Vol. 9, No. 2, 1988,pp. 327-340.[16℄ A.George, M.T.Heath, E.Ng and J.W.H.Liu, Symboli
 Cholesky fa
torization onlo
al memory multipro
essor, Parallel Computing, Vol. 5, 1987, pp. 85-95.[17℄ A.George, J.W.H.Liu and E.Ng, Communi
ation results for parallel sparse C-holesky fa
torization on hyper
ube, Parallel Computing, Vol. 10, No. 3, 1989, pp.287-298.[18℄ J.R.Gilbert and H.Hafsteinsson, Parallel symboli
 fa
torization for sparse linearsystems, Parallel Computing, Vol. 14, 1990, pp. 151-162.[19℄ G.H.Golub, and C.F.V.Loan, Matrix Computations : Se
ond Edition, John Hop-kins University Press, Baltimore, MD, 1989.[20℄ M.T.Heath, E.Ng and B.W.Peyton, Parallel algorithms for sparse linear systems,SIAM Review, Vol. 33, 1991, pp. 420-460.[21℄ D.Heller, A survey of parallel algorithms in numeri
al linear algebra, SIAM Re-view, Vol. 20, No. 4, O
t. 1978, pp. 740-777.[22℄ C.W.Ho, Fast Parallel Algorithms Related to Chordal Graphs, Ph.D. Thesis,Institute of Computer and De
ision S
ien
es, National Tsing Hua University,Hsin
hu, Taiwan, Republi
 of China, 1988.[23℄ C.T.Ho and S.L.Johnsson, Optimizing tridiagonal solvers for alternating dire
-tion methods on boolean
ube multipro
essors, SIAM J. S
i. Stat. Comput., Vol.11, No. 3, May 1990, pp. 563-592.[24℄ R.Ho
kney, A fast dire
t solution of Poisson's equation using Fourier analysis,J. ACM, Vol. 12, 1965, pp. 95-113.[25℄ R.W.Ho
kney and C.R.Jesshope, Parallel Computers, Adam Hilger Ltd, 1981.[26℄ J.Jess and H.Kees, A data stru
ture for parallel L/U de
omposition, IEEE Trans.on Computers, C-31, 1982, pp. 231-239.
104

[27℄ S.L.Johnsson, Odd-even Cy
li
 Redu
tion on Ensemble Ar
hite
ture and the So-lution of Tridiagonal Systems of Equations, Te
hni
al Report DCS-RR339, De-partment of Computer S
ien
e, Yale University, New Haven, CT, 1984.[28℄ P.S.Kumar, M.K.Kumar and A.Basu, A parallel algorithm for elimination tree
omputation and symboli
 fa
torization, Parallel Computing, Vol. 18, 1992, pp.849-856.[29℄ P.S.Kumar, M.K.Kumar and A.Basu, Parallel algorithms for sparse triangularsystem solution, Parallel Computing, Vol. 19, 1993, pp. 187-196.[30℄ V.Kumar, A.Grama, A.Gupta, and G.Karypis, Introdu
tion to Parallel Com-puting - Design and Analysis of Algorithms, Benjamin/Cummings PublishingCompany In
., 1994.[31℄ S.Lakshmivarahan and S.K.Dhall, Analysis and Design of Parallel Algorithms -Arithmeti
 and Matrix Problems, M
Graw- Hill Publishing Company, 1990.[32℄ C.E.Leiserson and T.G.Lewis, Orderings for parallel sparse symmetri
 fa
toriza-tion, In Pro
eedings of the Third SIAM Conferen
e on Parallel Pro
essing forS
ienti�
 Computing, 1987, pp. 27-32.[33℄ T.G.Lewis, B.W.Peyton, and A.Pothen, A fast algorithm for reordering sparsematri
es for parallel fa
torization, SIAM J. S
i. Stat. Comput., Vol. 10, 1989,pp. 1146-1173.[34℄ G.Li and T.F.Coleman, A new method for solving triangular systems on dis-tributed memory message passing multipro
essors, SIAM J. S
i. Stat. Comput.,Vol. 10, 1989, pp. 382-396.[35℄ W.Y.Lin and C.L.Chen, A parallel algorithm for solving tridiagonal linear sys-tems on distributed memory multipro
essors, Intl. J. High Speed Comput., Vol.6, No. 3, 1994, pp. 375-386.[36℄ J.W.H.Liu, Computational models and task s
heduling for parallel sparse C-holesky fa
torization, Parallel Computing, Vol. 3, 1986, pp. 327-342.[37℄ J.W.H.Liu, Role of elimination trees in sparse fa
torization, SIAM J. MatrixAnal. App., Vol. 11, 1990, pp. 134-172.[38℄ J.W.H.Liu, Reordering sparse matri
es for parallel elimination, Parallel Com-puting, Vol. 11, 1989, pp. 73-91.[39℄ J.W.H.Liu, Equivalent sparse matrix reordering by elimination tree rotations,SIAM J. S
i. Stat. Comput., Vol. 9, 1988, pp. 424-444.105

[40℄ J.W.H.Liu, The multifrontal method for sparse matrix solution: Theory andpra
ti
e, SIAM Review, Vol. 34, 1992, pp. 82-109.[41℄ J.W.H.Liu, Modi�
ation of minimum degree algorithm by multiple elimination,ACM Trans. Math. Soft., Vol. 11, 1985, pp. 141-153.[42℄ K.N.B.Murthy, New Algorithms for Parallel Solution of Linear Equations onDistributed Memory Multipro
essors, Ph.D. Thesis, Department of ComputerS
ien
e and Engineering, Indian Institute of Te
hnology, Madras, India, 1995.[43℄ K.N.B.Murthy and C.S.R.Murthy, A new Gaussian elimination based algorith-m for parallel solution of linear equations, Computers and Mathemati
s withAppli
ations, Vol. 29, No. 7, 1995, pp. 39-54.[44℄ E.Ng, Parallel dire
t solution of sparse linear systems, Parallel Super
omputing:Methods, Algorithms and Appli
ations, John Wiley and Sons Ltd., 1989.[45℄ J.M.Ortega and R.G.Voigt, Solution of partial di�erential equations on ve
torand parallel
omputers, SIAM Review, Vol. 27, No. 2, June 1985, pp. 149-240.[46℄ R.P.Pargas, Parallel solution of ellipti
 partial di�erential equations on a treema
hine, Ph.D. Thesis, University of North Carolina, Chapel Hill, 1982.[47℄ F.Peters, Parallel pivoting algorithms for sparse symmetri
 matri
es, ParallelComputing, Vol. 1, 1984, pp. 99-110.[48℄ E.M.Reingold, J.Nievergelt, and N.Deo, Combinatorial Algorithms : Theory andPra
ti
e, Prenti
e Hall, Englewood Cli�s, NJ, 1977.[49℄ C.H.Romine and J.M.Ortega, Parallel solution of triangular systems of equa-tions, Parallel Computing, Vol. 6, 1988, pp. 109-111.[50℄ A.H.Sameh and D.J.Ku
k, On stable parallel linear system solvers, J. ACM, Vol.25, No. 1, January 1978, pp. 81-91.[51℄ G.Spaletta and D.J.Evans, The parallel re
ursive de
oupling algorithm for solvingtridiagonal linear equations, Parallel Computing, Vol. 19, January 1993, pp. 563-576.[52℄ H.S.Stone, Parallel tridiagonal equation solvers, ACM Trans. Math. Soft., Vol.1, No. 4, 1975, pp. 289-307.
106

Publi
ations from this Work\An Improved Mapping of Cy
li
 Elimination onto Hyper
ubes using Data Repli-
ation", submitted to Journal of Parallel Algorithms and Appli
ations.\New Algorithms for Dire
t Solution of Sparse Linear Systems: Part I - Symmetri
CoeÆ
ient Matrix", under preparation.\New Algorithms for Dire
t Solution of Sparse Linear Systems: Part II - Nonsym-metri
 CoeÆ
ient Matrix", under preparation.

107

