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In this paper we analyse non-supersymmetric single centred extremal black hole solutions in N = 2
supergravity theory coupled to n vector multiplets with purely cubic pre-potential in four dimensions. 
We consider the algebraic attractor equations in their most general form at the black hole horizon. 
We explicitly construct a new class of solutions for these attractor equations. These solutions are 
characterised by a set of involutory matrices. These involutions are obtained from a constraint involving 
the parameters in the pre-potential and generate new attractor points in the moduli space.
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1. Introduction

The attractor mechanism plays a central role in understanding 
the macroscopic origin of black hole entropy in gravity theories 
coupled to scalar fields [1]. The mechanism shows that the scalar 
fields must run into a fixed point at the horizon irrespective of the 
value they take at the asymptotic infinity, with their values at the 
fixed point being entirely determined by the black hole charges. 
This explains why the black hole entropy is only a property of its 
horizon and must be independent of the asymptotic data involving 
the scalar fields.

The attractor mechanism has first been realised for supersym-
metry preserving black holes in the context of four dimensional 
N = 2 supergravity coupled with arbitrary number of vector mul-
tiplets [2]. Soon it has been generalised for dyonic black holes 
[3]. Various aspects of the mechanism have been studied subse-
quently. One issue of great importance pertaining to the attractor 
mechanism is the existence of non-supersymmetric attractors [4,
5]. Subsequently, it has been shown that the attractor mechanism 
is really a consequence of extremality of the black holes. An ex-
tremal black hole may or may not be supersymmetric, however it 
always exhibits the attractor behaviour.

One of the reasons the attractor mechanism plays an impor-
tant role in understanding black hole entropy is the uniqueness of 
these attractors [6]. Though a given single centre charge config-
uration appears to admit a unique supersymmetric attractor, it is 
not always the case. For example, the five dimensional supergrav-
ity admits multiple basin of supersymmetric attractors [7]. This, 
of course, depends on the topology of the moduli space of scalar 
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fields coupled to the gravity multiplet [8]. For supersymmetric at-
tractors in four dimensions, a classification of charged orbits has 
been carried out when the moduli space is a symmetric space [9]. 
More recently the uniqueness issue of supersymmetric attractors 
carrying D0 − D4 − D6 charges has been investigated in detail [10]. 
A classification of all the supersymmetric solutions has been car-
ried out for the above charge configuration. For this class of black 
holes it has been shown that there exist domains in the charge lat-
tice such that the attractor solution is unique in a given domain. 
The moduli space metric becomes degenerate at the boundaries of 
these domains and hence single centre black hole ceases to exist 
at these boundaries. However the black hole undergoes a kind of 
phase transition as one changes the values of the charges from one 
domain to the other. The functional form of the attractor point as 
well as the entropy changes as well.

The non-supersymmetric attractors are very similar to their su-
persymmetric counterparts in a number of aspects [11]. For exam-
ple, the functional forms of the respective entropies are identical 
for a given charge configuration. In the case of axion free attrac-
tors, there is a set of first order flow equations determining the 
exact behaviour of the black hole in space–time [12,13]. These 
equations are obtained upon the extermization of a fake super-
potential which is analogous to the central charge for supersym-
metric black holes. Thus it is worth asking if there exist analogous 
results in the case of non-supersymmetric attractors.

The goal of the paper is to explore these new branches in non-
supersymmetric extremal black holes. In the next section we will 
review the required background to study these solutions. In §3 we 
will briefly outline the previously known extremal configurations. 
Subsequently in §4 we will analyse the attractor equations and will 
solve them with a specific ansatz. Finally, we will summarise our 
results in §5.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. The model

In the present work we will focus N = 2 supergravity theory 
in four dimensions coupled to n abelian vector multiplets. The 
bosonic part of the Lagrangian density is given by

L = − R

2
+ gab̄∂μxa∂ν x̄b̄hμν − μ��F�

μνF�
λρhμλhνρ

− ν��F�
μν ∗F�

λρhμλhνρ . (2.1)

We use the standard notations and conventions as in [4] to de-
scribe the system. In particular, we use hμν to denote the four 
dimensional space–time metric with R being the corresponding 
Ricci scalar. The complex scalars xa parametrise the moduli space 
for n scalar fields in the vector multiplet and gab̄ is the metric on 
it. F�

λρ is the field strength for the gauge fields A�
μ . The indices 

�, � take n + 1 values due to the presence of an additional gauge 
field coming from the gravity multiplet. The gauge couplings μ��

and ν�� are derived from the N = 2 pre-potential F . In this paper 
we will entirely focus on the purely cubic pre-potential.

For static, spherically symmetric configurations carrying dyonic 
charges (p�, q�) the system reduces to an effective one dimen-
sional theory with the Lagrangian density:

L(U , xa(τ ), x̄a(τ )) =
(

dU

dτ

)2

+ gab̄

dxa

dτ

dx̄b

dτ
+ e2U V eff , (2.2)

with the corresponding Hamiltonian density being constrained to 
vanish [4]. Here U is the warp factor appearing in the space–time 
metric:

ds2 = e2U (τ )dt2 − e−2U (τ )(d�x)2 , (2.3)

and τ is the inverse of the radial separation τ = 1/r. The effec-
tive black hole potential V eff is determined in terms of the Kähler 
potential K and the superpotential W which in turn are derived 
from the pre-potential F by:

K = − ln
(

i
n∑

�=0

[
X̄�∂� F (X) − X�∂̄� F̄ (X)

])
, (2.4)

and

W =
n∑

�=0

(
q� X� − p�∂� F

)
. (2.5)

The superpotential W is related to the central charge Z by Z =
eK/2W . Note that the physical scalar fields xa (a = 1, . . . , n) ap-
pearing in the effective one dimensional Lagrangian (2.2) as well 
as in the supergravity Lagrangian (2.1) are given in terms of the 
symplectic sections X� as xa = Xa/X0. The effective potential V eff
has the expression [4]:

V eff = eK [
gab̄∇a W (∇b W )∗ + |W |2], (2.6)

where the action of the Kähler covariant derivative on W is given 
by ∇a W ≡ ∂a W + ∂a K W .

The supersymmetric attractors are obtained by extremising the 
central charge. The condition can be expressed in terms of the su-
perpotential W as

∇a W = 0 . (2.7)

The supergravity theory however admits more general black hole 
configurations. For extremal black holes, existence of a regular 
horizon requires that the effective potential V eff is extremized on 
it. For the effective potential (2.6) this condition can explicitly be 
stated as [11]:
gbc̄∇a∇b W ∇c W + 2∇a W W + ∂a gbc̄∇b W ∇c W = 0 . (2.8)

Clearly, the supersymmetric configurations do satisfy the above 
equation. However there is a possibility more general configura-
tions exist, which solve (2.8) and for which ∇a W �= 0. Such non-
supersymmetric extremal black hole attractors have been explored 
extensively during the past decade and their properties have been 
studied in detail. In the remaining part of this paper we will ex-
amine the equations of motion (2.8) more carefully and find some 
new solutions which were previously unknown.

3. Extremal solutions

In the present work we will entirely focus on N = 2 supergrav-
ity theories with the purely cubic pre-potential:

F = Dabc
Xa Xb Xc

X0
(3.1)

The parameters Dabc are totally symmetric and take arbitrary val-
ues in general. This pre-potential takes a prominent role because of 
its appearance in large volume compactification of type I I A string 
theory on a Calabi–Yau manifold M. In this case the parameters 
Dabc are no longer arbitrary and are given in terms of the triple 
intersection numbers of M:

Dabc = 1

6

∫
M

αa ∧ αb ∧ αc , (3.2)

with {αa} denoting a basis of the integral cohomology group 
H2(M, Z).

We will focus on configurations carrying {q0, pa, p0} charges. 
From the string theory point of view these will correspond to 
D0 − D4 − D6 configurations carrying q0 number of D0-branes, 
pa number of D4-branes wrapping four cycles dual to αa and p0

number of D6 branes wrapping M.
For convenience we will set xa = Xa/X0 and choose the gauge 

X0 = 1. With this choice of the gauge, the Kähler potential K and 
the superpotential W , for the above configuration, respectively, 
have the expressions

K = − ln
( − iDabc(xa − x̄a)(xb − x̄b)(xc − x̄c)

)
, (3.3)

and

W = (q0 − 3Dabxaxb + p0 Dabcxaxbxc) . (3.4)

This configuration admits the well known supersymmetry pre-
serving solution [14],

xa = pat

with

t = 1

2D

(
−p0q0 ± i

√
q0(4D − (p0)2q0)

)
. (3.5)

Here we use the notation D = Dabc pa pb pc . For the attractor solu-
tion to be non-singular, we require q0(4D − (p0)2q0) > 0.

The attractor equation (2.8) however admits a more general 
extremal solution. The existence of such non-supersymmetric at-
tractors was first investigated in [11] with the ansatz xa = pat . The 
real and imaginary parts of t are given respectively by

t1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
s

(
1+ p0

s

)1/3

−
(

1− p0

s

)1/3

(
1+ p0

s

)4/3
+

(
1− p0

s

)4/3 | s
p0 | > 1

2
p0

(
1− s

p0

)1/3+
(

1+ s
p0

)1/3

(
1− s

0

)4/3+
(

1+ s
0

)4/3 | s
p0 | < 1 ,

(3.6)
p p
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and

t2 =
⎧⎨
⎩

4s
(s2−(p0)2)1/3

(
(s+p0)4/3+(s−p0)4/3

) | s
p0 | > 1

4s
((p0)2−s2)1/3

(
(|p0|+s)4/3+(|p0|−s)4/3

) | s
p0 | < 1 .

(3.7)

Here we introduced the variable s =
√

(p0)2 − 4D
q0

for convenience. 
Note that the above non-supersymmetric solution is non-singular 
provided q0(4D − (p0)2q0) < 0.

4. New branches

More recently the supersymmetric conditions for black holes 
carrying D0 − D4 − D6 charges were analysed in more detail [10]. 
It was realised that the configuration described by (3.5) is not the 
most general solution for supersymmetric attractor carrying these 
charges. There exists a family of solutions determined by involu-
tory matrices Ia

b satisfying

Dabc Ib
e Ic

f = Daef . (4.1)

The most general solution for (2.7) is given by xa = xa
1 + ixa

2 with

xa
1 = 1

p0

(
pa − D − 1

2 q0 p02

Dc Ic
d pd

Ia
b pb

)
, (4.2)

xa
2 = 1

p0

(
1 −

(
D − 1

2 q0 p02

Dc Ic
d pd

)2 )1/2

Ia
b pb . (4.3)

For all these solutions the charges must satisfy q0(4D − (p0)2q0) >
0. However, this is not the only criteria for the existence of a 
smooth solution. A more fundamental requirement is the positive 
definiteness of the moduli space metric at the attractor point. This 
requirement divides the charge lattice into several domains and 
different involutions give rise to unique attractor configurations in 
each such domain of the charge lattice [10].

In the following we will derive analogous solutions for the non-
supersymmetric attractors. We will first obtain the equations of 
motion in its general form for the pre-potential (3.1) and then 
analyse them to obtain specific solutions. Let us now compute var-
ious terms in (2.8). We write, xa = xa

1 + ixa
2, and introduce the 

notation Dab = Dabc pc, Da = Dab pb, νab = Dabcxc
2, νa = νabxb

2, ν =
νaxa

2 for convenience. We further introduce the variable ωa =
(pa/p0) − xa

1 and define μab = Dabcω
c, μa = μabω

b, μ = μaω
a for 

easy reading of the equations. The superpotential W can now be 
expressed as

W = X1 + iY1 (4.4)

with

X1 = q0 − 2D

(p0)2
+ 3

Daω
a

p0
+ 3p0νaω

a − p0μ

Y1 = −p0ν − 3Daxa
2

p0
+ 3p0μaxa

2 (4.5)

The covariant derivative of the superpotential ∇a W is given by

∇a W = 3

2

((
− 2Da

p0
+ 2p0μa − 2p0νa − νa

ν
Y1

)

+ i
(

− 4p0νabω
b + νa

ν
X1

))
(4.6)

The supersymmetric solutions are obtained by setting the real 
and imaginary parts of ∇a W to zero. The most general solu-
tion to these equations is given by eqs. (4.2) and (4.3). For non-
supersymmetric configurations we also need to compute ∇a∇b W . 
The real and imaginary parts of the above quantity are given re-
spectively by

3

2ν

(
νab − 3

νaνb

ν

)
X1 + 9p0

ν

(
νaνbc + νbνac

)
ωc − 6p0μab

and

6p0νab + 3

2ν

(
νab − 3

νaνb

ν

)
Y1

− 9

2ν

(
1

p0

(
νa Db + νb Da

) + 2p0νaνb − p0(μaνb + μbνa
))

We also need the inverse of the moduli space metric and its 
derivative:

gbc̄ = −2ν

3

(
νbc − 3

ν
xb

2xc
2

)

∂a gbc̄ = i
(
νaν

bc ν

3
Dadeν

bdνce − δb
a xc

2 − δc
axb

2

)

We now substitute the above expressions in the equations of 
motion (2.8). After a straightforward, but tedious computation we 
obtain:

3(p0)2νaνbω
b + νabω

b p0(Y1 − p0ν
)

+ (
X1 − 3p0νbω

b)(
Da/p0 − p0μa

)

+ p0ννbcμab

(
Dc/p0 − p0μc

)
= 0 , (4.7)

for the real part of the equations of motion, and

νa
(
2X2

1 − 12p0 X1νcω
c + 36(p0)2(νcω

c)2 + Y 2
1 − (p0)2ν2

+ 2p0Y1ν
) + 2Y1ν

(
Da/p0 − p0μa

)

− ν2νbdνce Dade

(
Db/p0 − p0μb

)(
Dc/p0 − p0μc

)

− 24(p0)2ννabω
bνcω

c + 2ν2(Da + (p0)2μa
) = 0. (4.8)

for the imaginary part. This is the most general form of the non-
supersymmetric equation of motion. Because of the complicated 
structure it is extremely hard to obtain the most general solution 
for the above equations. However, taking the clue from the existing 
solutions for their supersymmetric counter part we can look for 
appropriate ansatz to construct a class of new non-supersymmetric 
solutions for the above equations. We set

xa
2 = Ia

b pbx and ωa = Ia
b pbω , (4.9)

where the involution Ia
b is assumed to satisfy (4.1).1 Substituting 

the above in eqs. (4.7) and (4.8) we find, after a bit simplification:

2(p0)3χx4ω + (1 − (p0)2ω2)(X1 − 2p0χx2ω) + (p0)2x ωY1

= 0 (4.10)

2x2 X2
1 − 12p0 X1χx4ω + 12(p0)2χ2x6ω2 + x2Y 2

1

− (p0)2χ2x8 + 2p0χY1x5 + 2χ2x6 + 2(p0)2χ2x6ω2

+ (
2Y1/p0

)
χx3(1 − (p0)2ω2) − (

χ/p0
)2

x4(1 − (p0)2ω2)2 = 0

(4.11)

We reproduce the expressions for X1 and Y1 after substituting the 
ansatz (4.9) in (4.5):

1 Note that it is not possible to redefine the charges pa to get rid of the Ia
b

dependence because of the shift involved in defining ωa .
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X1 = q0 − (2D/(p0)2) + (3χ/p0)ω + 3χ p0ωx2 − p0 Dω3

Y1 = − (3χ/p0) x
(
1 − (p0ω)2) − p0χx3 .

Here for easy reading of the equations we have defined χ =
Da Ia

b pb . This gives a considerable simplification as we need to 
solve them only for the variables x and ω in terms of the quanti-
ties p0, q0, D and χ . These equations can further be simplified by 
noting that they contain only even powers of x. Setting x2 = y and 
eliminating y and ω respectively we find the following factorized 
form:

f1(ω) f3(ω)F3(ω) = 0 , (4.12)

and

g1(y)g3(y)G3(y) = 0 . (4.13)

Here fk(ω), gk(y) are polynomials of degree k with respect to their 
arguments. Their explicit expressions are given by

f1(ω) = 2χ p0ω + (p0)2q0 − 2D ,

g1(y) = 4χ2(p0)2 y − ŝ ,

and

f3(ω) = (2χ2 + ŝ)(p0)3ω3 − 3χ(p0)2(2D − (p0)2q0
)
ω2

+ 6χ2 p0ω − χ
(
2D − (p0)2q0

)
g3(y) = χ2(p0)6(2χ2 + ŝ

)2
y3 − 9χ4(p0)4 ŝ y2

+ 6χ2(p0)2(ŝ)2 y − (ŝ)3

with ŝ = (
2D − (p0)2q0

)2 − 4χ2. Solving the linear equations 
f1(ω) = 0 = g1(y) gives rise to the supersymmetric attractors de-
scribed in [10]. We will now focus on the cubic polynomials. The 
discriminants of f3(ω) and g3(y) are given by −27χ2(ŝ)3(p0)6

and −27χ4(p0)12(ŝ)7(2χ2 + ŝ)2
(
2D − (p0)2q0

)2
respectively. Both 

become negative for ŝ > 0 and hence f3(ω) = 0 = g3(y) admit 
unique real valued solutions for ω and y. It is straightforward to 
verify that the resulting ω, y indeed provides a non-susy solution 
for the equations of motion (4.10), (4.11). Further, it can be veri-
fied that the cubic polynomials F3(ω) and G3(y) do not provide 
any solution for the equations of motion.

To express the non-supersymmetric solution orderly in a closed 
form we will make the following rescaling of the variables:

ω → ω̃/p0, y → ỹ/(p0)2, q0 → (q̃χ+2D)/(p0)2 . (4.14)

The equations f3(ω) = 0 = g3(y) now take the simple form

(q̃2 − 2)ω̃3 + 3q̃ω̃2 + 6ω̃ + q̃ = 0

(q̃2 − 2)2 ỹ3 − 9(q̃2 − 4) ỹ2 + 6(q̃2 − 4)2 ỹ − (q̃2 − 4)3 = 0

and the corresponding attractor solution is given by

ω̃ = f−(q̃) − f+(q̃) − 21/3q̃

21/3(q̃2 − 2)
, (4.15)

ỹ = g+(q̃) − g−(q̃) + 21/33(q̃2 − 4)

21/3(q̃2 − 2)2
, (4.16)

with

f±(q̃) = (
(q̃2 − 2)(q̃2 − 4)3/2 ± q̃(q̃2 − 4)2)1/3

,

g±(q̃) = (q̃2 − 4)

(
q̃(q̃2 − 2)3

√
q̃2 − 4

± (q̃8 − 8q̃6 + 6q̃4 + 40q̃2 − 2)

)1/3

.

The non-supersymmetric attractors can now be constructed from 
the above using (4.9) and the rescaling (4.14).

5. Conclusion

In this paper we have studied non-supersymmetric attractors 
in four dimensional N = 2 supergravity coupled to n vector mul-
tiplets with the purely cubic pre-potential. We have expressed the 
most general form of the equations of motion in terms of a set 
of convenient variables involving the moduli fields (ωa and xa

2). 
We have used a generalized ansatz involving a constrained invo-
lutory matrix to solve the equations of motion. This gives rise to 
new branches of non-supersymmetric attractors for every consis-
tent choice of involutions.

It was possible to obtain an exact analytic expression for the so-
lution because of the factorization in (4.12) and (4.13). It would be 
interesting to see if it is possible to obtain an analogous expres-
sion without assuming any ansatz for the moduli. This will help 
in classifying all non-supersymmetric attractors in these type of 
supergravity theories. It would also be interesting to consider the 
flow equations and obtain generalized attractor equations to solve 
them. A first step towards this would be to construct a fake super-
potential for these non-supersymmetric attractors. Incorporating 
stringy corrections to the pre-potential too gives rise to rich struc-
tures. An issue of greater import is to look into the microscopic 
description of these new branches of attractors in both supersym-
metric as well as non-supersymmetric cases. Localization proves 
to be a powerful technique to obtain the exact partition function 
which captures sub-leading corrections to the entropy. It is worth 
exploring whether it can be used to understand the origin of these 
new branches in N = 2 theories.
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