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In this paper, a generalized description of the complex topology of turbulent premixed flames

stabilized in a model gas turbine combustor is obtained using network analysis. Networks are

created using the visibility algorithm applied to points on the flame edge obtained from Hydroxyl

radical (OH)—Planar Laser Induced Fluorescence images of turbulent premixed flames. The

network structure thus obtained showed the emergence of a few massively connected nodes which

were found to represent the folded regions of the flame front. These nodes, which are called the

hubs of the network, are vital for determining the overall structure of the flame front. Degree

distribution of the formulated networks is used to characterize the flame-turbulence interaction

inherent in the system. Turbulent flame front networks were found to be rigid enough to be unaf-

fected by random perturbations but highly vulnerable towards coordinated removal of hubs or

folds. These findings could serve as the first network-analytic approach to characterize turbulence-

flame interaction dynamics with the use of a flourishing network theory, which enhances ongoing

works based on vortex dynamics, hydrodynamic stability, and thermo-acoustic instability.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4980135]

The network theory has been utilized in a diverse set of
problems in the recent past. It has provided critical
insights and modeling directions in systems as varied as
the world wide web, disease spread to vortex dynamics in
turbulent flows, and thermo-acoustic instability. These
phenomena are highly non-linear and quite complex to
study. In the present work, we use a network theoretic
approach to study the topology of premixed turbulent
flames, pervasive in modern propulsion engines or in a
supernova Ia. Networks created from the flame fronts
help us identify the critical regions on the flame, which
appear to be the most vital for the constructed flame
front networks. So far, probability density functions of
single point descriptors, e.g., curvature, flame surface
density function, or a global descriptor such as a fractal
dimension of the entire flame contour could be found in
the literature. However, these canonical local or global
descriptors do not account for the mutual interaction
between the neighboring flame elements. Instead, the net-
work approach helps us study flame front dynamics as an
aggregate of such interacting flame elements. The con-
structed networks appear to be resilient towards random
perturbations but highly vulnerable to the removal of
identified vital network nodes.

I. INTRODUCTION

The network theory has evolved in recent times to

model real-world networks: artificial or natural, such as the

internet and biochemical networks.1–4 The application of the

network theory has elucidated the dynamics of an epidemic

spread5 or an impending thermoacoustic instability in a

combustor.6 The analyses are based on the selection of net-

work nodes and their mutual connectivity from available

spatial or temporal data. Recently, an algorithm has been

introduced to convert time series data into a network using

the mutual visibility of peak data points as criteria.7 This

algorithm has been used widely to characterize and extract

useful information from temporal data.8–10 Similar to the

network structure from time series data, parallel efforts have

been made to convert spatial data into a network using the

vorticity field of two-dimensional turbulence to understand

its characteristics.11 Network analysis has also been condu-

cive to discriminating the various regions critical to the flow

dynamics in turbulent heated jets.12 These efforts have pro-

vided non-trivial insights into the system dynamics and can

be possibly used to model or predict the investigated

phenomenon.

Nair and Taira13 have recently shown that the sparsifica-

tion of networks formed from the vortical interactions does

not change the spectral properties of these networks.13 Such

sparsification uses algorithms such as Sparsify14 to produce

spectrally similar sparse graphs. These sparse graphs have

shown almost no change in the core vortex structures in vor-

tex networks. These studies indicate that a few interesting

points are sufficient to portray the overall dynamics of turbu-

lent vortical interactions. The aforementioned works moti-

vate the network analysis of a turbulent premixed flame

surface topology presented in this paper. The analysis pre-

sented here could be readily applied onto any convoluted

surface in turbulence, including but not limited to non-

premixed flames, passive scalars, turbulent non-turbulent

interfaces, and the surface of atomizing liquid jets.

Evolution of the flame front in a premixed turbulent

flame is a complex process. Straining, folding of the flame

surface by turbulence, and dilatation of the flow by the flamea)Electronic mail: schaudhuri@aero.iisc.ernet.in
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contribute to a highly convoluted, seemingly chaotic flame

structure. Vortices ranging from the dimension of the order

of the combustion chamber to the smallest Kolmogorov

scales interact with the evolving flame front. These interac-

tions render the multiscale system highly non-linear and

quite complex to study. While most of the research studies in

the field focus on the surface averaged properties of evolving

surfaces15–17 or the ensemble-averaged properties of flame

locations evolving in time,18–21 this work analyses the col-

lective interaction of points embedded on the edge of the

flame using the network theory. Subsequently, we will show

that utilizing the insights obtained from the parameters of

constructed networks, we were able to identify regions on

the flame front, which are able to represent the overall phys-

ics and were key in representing the interaction between the

flame front and turbulence.

II. EXPERIMENTAL METHOD

In the present study, a model gas turbine combustor con-

sisting of three inline swirl burners has been utilized, the

schematic of which is shown in Fig. 1. The air flow is sup-

plied from a compressor through a series of pressure regula-

tors and metered using a mass flow controller (ALICAT

MCR, range: 0–4000 slpm) to obtain the desired mass flow

rate. Fuel (Methane, 99% purity) is metered using a mass

flow controller (ALICAT MCR, range: 0–500 slpm), which

is then premixed with air in a mixing chamber. The mixture

enters the settling chamber through 12 ports and flows

through the ATG (Active turbulence grid) followed by a

square convergent section and into the quartz test section

where it is ignited. The ATG is designed for generating

homogeneous turbulence based on the concepts of Makita,22

Kang,23 and Larssen.24 The winglets in the ATG are placed

in the horizontal position (plane of the burner) throughout

this study. Three fixed vane angle (30�, 5 vaned) swirlers

having an outer diameter (D) of 30mm and a hub diameter

of 10mm are arranged linearly with an edge to edge spacing

of 18mm, which mimics a sector of an annular gas turbine

combustor.

The turbulent cold flow was characterized using a

single-probe hot wire anemometer at the centerline of the

swirlers along the transverse direction to the flow. The mean

and root-mean-square of the fluctuating component of veloc-

ities were obtained from the data measured at a sampling

rate of 10 kHz for a time duration of 5 s. They are denoted by
�U and u0rms, respectively. Figure 2 shows their profiles for

different Reynolds Numbers (Re) obtained at a height of

2mm above the swirler exit.

Planar Laser-Induced Fluorescence (PLIF) diagnostics

was performed for the measurement of hydroxyl (OH) distri-

butions within the premixed methane-air flame. The system

is comprised of a Nd:YAG pump laser (Spectra-Physics

Quanta-Ray lab-Series PRO-230, class IV single-pulsed)

operating at 10Hz and pumping a tunable dye laser (Sirah

PrecisionScan PSCAN-G-30) containing Rhodamine 6G.

The generated laser beam at 567 nm is frequency doubled

using a doubling crystal which emits a UV laser beam of

wavelength 283.54 nm with a beam energy of about 20 mJ

per pulse. The emitted UV beam is passed through cylindri-

cal lenses and a collimator to produce a nearly parallel light

sheet through the region of interest in the combustor test sec-

tion. The fluorescence signal emitted by the excited OH radi-

cal is captured using an intensified relay optics (IRO)

coupled CCD camera (LaVision Imager SX 4M). The light

emitted due to fluorescence is captured using a UV lens and

an enhanced OH filter having a transmission efficiency of

�75% with a central wavelength of 320 nm and a width of

FIG. 1. Schematic of the experimental setup. ATG: Active Turbulence Grid.
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40 nm. The CCD camera was focused on a region of interest

spanning 132mm � 48mm, which corresponds to a scale

factor or resolution (D) of 0.165mm/pixel.

Images were acquired for three values of the Reynolds

number, i.e., 8000, 12 000, and 16 000. For all the three con-

ditions, images were acquired for two values of equivalence

ratios (/), one near blowoff and the other far from blowoff.

The ratios are presented in Table I.

The raw experimental images were corrected for laser

sheet profiles and beam energy fluctuations from the pump

laser. The quartz test section itself was used as a cuvette

filled uniformly with acetone vapor for the laser sheet profile

measurement. The fluorescence from the acetone vapor is

captured with the same output beam energy but with the fil-

ter replaced. The filter used for acetone had a peak transmis-

sion efficiency of �70% at �405 nm, which falls within the

emission spectra of acetone. The sheet correction involved

averaging 100 individual images captured using the CCD

camera. The energy fluctuations are corrected from the data

stored using the energy monitor. Additionally, the scattered

light from the background is subtracted from the images cap-

tured without the laser sheet. The corrected OH-PLIF images

are used to extract the flame front locations. The flame front

is considered to be the location of the maximum gradient in

the OH concentration obtained from the flame images. The

flame front extraction technique and subsequent network for-

mulation are discussed in Section III.

III. EXTRACTING NETWORK FROM PLIF DATA

A. Flame front from PLIF images

The images acquired from PLIF imaging are post-

processed to identify the flame fronts from the flame stabi-

lized at the central swirler. The original images are cropped

to capture a physical area of 36.31mm � 24.22mm with an

image dimension of 220 � 150 pixels as shown in Fig. 3(a).

Although the flame fronts from the three swirlers interact at

some distance from the swirler exit, the region of interest

does not involve any such interaction between flames origi-

nating from different swirlers and captures only the flame

stabilised at the central swirler. We identify the flame front

using the Canny edge detection technique25 which initially

applies the non-maximum suppression to the intensity gra-

dients of the image, then implements double thresholding to

determine the potential edges, and finally tracks the edges by

hysteresis to eliminate spurious edges. Reactant and product

sides are identified using mean intensity values on either side

of the flame front. These are marked in Figure 3(b) with

symbols R and P denoting the reactant and product region,

respectively. Network data will subsequently be extracted

from the flame fronts identified through this process.

B. Flame front to the network

The extracted flame front corresponds to the iso-contour

of the maximum gradient of the hydroxyl radical concentra-

tion. Multi-scale perturbations due to turbulence render the

flame topology wrinkled and folded at multiple scales.

Turbulent flow fluctuations may cause the flame fronts to

entrap the reactant mass while in other instances, it may

cause the flame segment to be detached from the main flame

branch, thus creating a flame island. Therefore, the individ-

ual flame elements on a continuous or discontinuous front

are always in close interaction with each other. Flame surfa-

ces in turbulence are continuously generated by stretching

and annihilated by folding and self-intersection processes

over a range of length and time scales. A folded region of

the flame, such as the one shown in Figure 4(a), gets

detached from the flame front and forms a reactant island.26

Subsequently, the reactants in this island would be con-

sumed, and the flame surface in the erstwhile folded region

will annihilate. This process leads to a major modification in

the parent flame front structure. Carefully examining the fig-

ure, we can see that the flame positions which are the most

susceptible to inducing such modifications have many other

flame positions ‘visible’ from them. Hence, visibility serves

as a combined measure for proximity and interaction

between the flame elements. Conventional Eulerian studies

of turbulent premixed flames generally study the pdf of flame

properties say, for e.g., the curvature of the flame fronts. On

the other hand, Langrangian studies are used to track points

embedded on the flame front and then find the average prop-

erties over those points. In either of these domains of studies,

it is difficult to identify the folded regions of the flame

described above. Using network descriptors, we intend to

highlight these high visibility regions of the flame.

FIG. 2. (a) Mean velocity and (b) rms velocity profile obtained at the center-

line of the swirlers along the transverse direction to the flow.

TABLE I. Values of / for near and far from blowoff cases.

Re 8000 12 000 16 000

Near blowoff 0.60 0.65 0.65

Far from blowoff 0.86 0.85 0.86
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A complex system can be represented by more than one

network, and the manner in which the complex network is

constructed determines the characteristics of the complex

system that is emphasized. Here, we want to emphasize visi-

bility to highlight folds, and a network constructed on similar

lines serves as a simple, yet revealing tool to analyze the

phenomenon.

Efficient visibility algorithms have been formulated to

convert temporal data into a network.7,27 These algorithms

take the visibility of the peaks of temporal fluctuations as the

criteria to develop a network. The rationale behind this is

that a data peak occurring at one instance will influence the

data after it according to its own strength. A similar logic

can be drawn while generating networks from spatial flame

fronts. If there is a perturbation on a front, it will affect other

parts of the flame depending upon the strength of the pertur-

bation or the span of the region from where it can be wit-

nessed. Hence, the visibility of one point from the other also

FIG. 3. Extracting the network from the PLIF image. (a) PLIF image depicting the spatial OH radical concentration variation. (b) Flame front identified from

the PLIF image with reactant and product sides differentiated. (c) Illustration of the algorithm based on visibility to connect the nodes. The red dashed line

means no connection while green lines mean that a connection exists between the respective nodes.

FIG. 4. Interaction between point positions defined in the convoluted region of the flame leading to modifications in the parent flame structure. (a) A branch of

the flame front in which a reactant mass is about to detach itself from the parent flame. (b) The detached reactant island consumes the reactants and annihilates.

Caused by the interactions of point positions defined on the flame front, the formation of such a reactant island modifies the parent flame front to a good extent.

The images are volume slices of temperature (T) obtained from direct numerical simulations. Here, the flame front is identified using the iso-temperature con-

tour corresponding to T¼ 1190K. The square box highlights the detachment and annihilation of a reactant mass from the flame front. Reproduced with permis-

sion from Uranakara et al., Combust. Flame 163, 220–210 (2016). Copyright 2016 Elsevier.26
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captures the influence of a perturbation at one point over the

other.

A set of nodes N and the edges E between them uniquely

define a graph or network G(N, E).3 We select the flame front

positions as the nodes of the network. These are the points in

the pixelated flame front image, which lie on the reaction

front (eg., points N1–N4 in Figure 3(c)). Next, we go on to

choose the edges of the network. An edge between two nodes

indicates that they are in interaction with each other. We

choose edges on the basis of visibility. Looking from the

reactant side, if node Ni is ‘visible’ from node Nj, then they

have an edge between them. The mutual visibility of nodes

is defined as follows. Node Ni will be visible to node Nj if

none of the pixels lying on the two-dimensional line of sight

from Ni to Nj or vice versa represent the product side of the

flame, i.e., all the pixels that best represent a hypothetical

line joining the two nodes fall only on the reactant side or

the flame front itself. The adjacency matrix of the formulated

network is hence defined as

Ai;j ¼
1; if Ni is visible toNj;

0; otherwise:

�

(1)

Pixels which best represent the line-of-sight of Ni from Nj

are found using the Bresenham algorithm.28 This algorithm

determines the points of an n-dimensional raster that should

be selected in order to form a close approximation to a

straight line between two points. A thresholding is used for

the maximum length of connection between two nodes based

on the concept of node similarity.29 This states that any two

of the nodes will be considered for connection only if the

distance between them is less than a particular threshold

value. We have chosen the threshold to be approximately

equal to the integral length scale of flow to take into account

all plausible connections between the nodes. The method dis-

cussed above uniquely identifies an unweighted network

extracted from the flame front and will be consequently uti-

lized to characterize it.

IV. RESULTS AND DISCUSSION

To analyze the topology of networks constructed from

the stated algorithm, we calculate the degree (kn) of the

nodes (i ¼ 1; 2; 3; ::;N, where N is the total number of nodes)

in the network. It is defined as

kn ¼
X

N

i¼1

Ai;n; (2)

where kn is the degree of the nth node. The probability that a

node will have a degree k is denoted by P(k). The variation

of the parameter P(k) with k is important to identify the

dynamics of the system from the network topology.30 It is to

be noted that the image data are discrete and might not give

a perfect representation of connections between adjacent pix-

els due to inaccuracies in the integer value arithmetic opera-

tions of the Bresenham algorithm for neighboring pixels.

Hence, the nodes having a degree less than six are not con-

sidered in the further analysis of turbulent flame fronts.

A. Networks from known curves

The network structure of standard time series has been

established in the literature. Pseudo-periodic time series cor-

respond to random networks with a node degree following

Gaussian distribution whereas chaotic time series generate

networks that exhibit small world and scale-free fea-

tures.30,31 Also, a constant time series gives rise to a network

with a single point degree distribution. For validating the

algorithm developed here, we construct networks from artifi-

cially generated periodic sine-wave and straight line shaped

flame front profiles. The pixel dimensions of the images con-

taining these profiles were kept the same as those of the tur-

bulent flame images. These artificial flame fronts serve as

reference conditions for the more complex multi-scale turbu-

lent flame fronts. Figure 5 shows these two conditions of the

flame front along with their corresponding degree distribu-

tions plotted on a log-log scale. A straight line flame front

gives rise to a network with all the nodes having the same

degree. This is because all the nodes have the same visibility

to all the other flame front nodes. On the other hand, a peri-

odic sine-wave flame front generates a network with near-

Gaussian degree distribution. Figure 5(d) shows the degree

distribution scatter plot of such a sine-wave curve. A curve

fitted to these data is also shown with a dashed line. To show

a comparison with a network having degrees distributed

according to Gaussian probability, we construct such a net-

work with the same number of nodes as the sine-wave profile

network. Nodes in this network have degrees distributed

according to the Gaussian distribution with the same mean

value as the mean of degree distribution of the sine-wave

profile. The degree distribution of such a network is also

plotted in Figure 5(d). The networks are constructed for the

same number of nodes, and degree distribution is plotted

FIG. 5. (a) Flame as a straight line. (b) Corresponding degree distribution

comes out to be a single point as all the nodes have the same degree. (c)

Flame as a sine-wave. (d) Corresponding degree distribution along with a

network having Gaussian degree distribution.
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with identical bin sizes for the two networks. The two degree

distributions show a significant overlap. This is because the

degrees are randomly distributed about a given value in the

case of a periodic curve flame front. Most of the nodes on

the flame front will have a degree value approximately equal

to the mean of the distribution while a few of the nodes

occurring on the crests and the troughs of the front will have

a high and low value of degree, respectively. This reflects

that the periodic flame front cycles or perturbations are

uncorrelated with one another. Thus, a straight line flame

front would produce a constant degree distribution, and a

periodic flame front profile such as a sine-wave would result

in a random graph when processed using the aforementioned

algorithm.

B. Network structure of turbulent premixed flames

We proceed to construct networks from the flame front

profiles obtained from the PLIF images. Unweighted networks

are constructed from images acquired for all six experiment

conditions using the procedure described in Sec. III B. The

degree distribution of the networks constructed from flame

fronts at Re ¼ 8000 and / ¼ 0:60 averaged over 80 flame

images is plotted in Figure 6(a). The color of the scatter plot

changes from red to yellow as the degree of the nodes

increases. In contrast to the near-Gaussian degree distribution

showed by a periodic sine-wave curve, the turbulent flame

front profile gives rise to a network with highly heterogeneous

distribution of degrees. Most of the nodes of this network

have low degree values, exhibited by high P(k) for low k.

These nodes appear as red and black nodes in the degree dis-

tribution. Only a few nodes have a very high degree value.

They appear as orange or yellow in the degree distribution.

These massively connected nodes or so-called hubs emerge in

the network constructed from the turbulent premixed flame.

This gives rise to a right-skewed degree distribution.

Investigating further to find the location of the hubs

emerging in the network over the PLIF images, we color the

flame front positions or nodes in the images according to the

degree they correspond to. Such representative images are

shown in Figures 6(b)–6(d). Interestingly, the nodes which

are having a higher degree represent the folds occurring on

the flame front. It is possible that in convoluted regions such

as these, turbulent vortices compete with the flame front to

align it according to its vortical structures.32,33

The emergence of hubs in the networks constructed from

the acquired images could be attributed to the turbulence-

flame interaction in the corresponding folded regions of the

flame. These folded regions lead to self-intersection towards

reactant island formation and eventually flame surface annihi-

lation26,34 to eventually cause large fluctuations in the turbu-

lent flame speed, i.e., the averaged propagation rate of the

entire flame. Also, recent studies show that these folded

regions are characterized by a very high local displacement

flame speed.18,26 These regions of the flame are represented

by parts of the flame front folded towards the product side,

which are significantly modified by the presence of turbu-

lence. Hence, a strong influence of turbulence over selected

regions of the flame forces these folded regions to appear as

the most significant ones in the network. This contributes to

the highly right-skewed degree distribution of the network.

Visualization of a network helps in determining its struc-

ture. To explicitly differentiate between the structure of net-

works emerging from various profiles of the flame front

studied here, we use the graph visualization software Gephi35

to visualize them. The visualized networks are shown in

Figure 7. The size and the color of the nodes of the network

are decided by the degree they carry. Smaller nodes in the net-

work have lower degree values while larger ones have a

higher degree. Also, the color of the nodes changes from

green to red as we go from lower to higher degree values. For

a straight line flame front profile, we witness a uniform degree

distribution as shown in Figure 7(b). All the nodes have the

same degree and thus have the same size and color. The net-

work structure formed from a sine-wave profile is shown in

Figure 7(d). The degree distribution of such a flame front was

near-Gaussian. This is corroborated by the visualization as

FIG. 6. (a) Scatter plot of the degree distribution networks constructed from

flame fronts at Re¼ 8000 and / ¼ 0:60 averaged over 80 flame images. The

color of the scatter plot changes with the degree of the nodes. (b)–(d)

Representative flame images colored with respect to the degree of the nodes.

Clusters of high degree nodes which denote the folded regions of the flame

front that are marked with dashed circles.
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most of the network nodes appear mid-sized with few large or

small sized nodes.

Figure 7(e) shows a turbulent flame front profile, and

Figure 7(f) shows the corresponding network. Most of the

nodes in the network are small sized green colored nodes.

These nodes carry smaller degree values. Only a few nodes

are large sized red nodes. These are denoted as the hubs of

the network. As we can see, a clear distinction between the

network structure emerging from constant, periodic, and tur-

bulent flame front profiles is made through the presented

visualization. Network hubs emerging in the turbulent flame

network are distinctively seen. It has been established from

Figure 6 that these hubs are folded regions of the flame front

primarily concave towards the reactants’ side of the mixture.

To convey the significance of the hubs of the networks

constructed from turbulent flames, we use a network parame-

ter lnetwork called the characteristic network length or the

average short path length. It is defined as

lnetwork ¼
1

N N � 1ð Þ

X

i 6¼j

d i; jð Þ; (3)

where d(i, j) is the shortest path length between node Ni and

node Nj. This distance is based on the network adjacency

matrix and not the physical distance between the flame front

nodes. We calculate d(i, j) using Dijkstra’s shortest path

algorithm.36 To measure the change in flame front interac-

tion caused by a disturbance in the network, we can consider

how the removal of flame front nodes modifies the character-

istic network length.

The changes in the flame network characteristic length

lnetwork as a result of the removal of network nodes in a ran-

dom manner and in a systematized fashion selectively elimi-

nating the hub nodes are outlined in Figure 8. The systematic

hub node removal is done starting from the highest degree

node downwards. We plot the changes in the normalized

characteristic network length

~lnetwork ¼
lnetwork fð Þ � lnetwork f ¼ 0ð Þ

lnetwork f ¼ 0ð Þ
(4)

for various fractions of node removal f for one of the flame

front networks (flame shown in Figure 3). The flame front

network is resilient towards random perturbations which

occur majorly in the low curvature regions of the flame. This

is apparent from the characteristic network length being

unaffected even for a large fraction f of nodes being

removed. However, the removal of hubs occurring on the

folds greatly modifies the flame network, which is visible

from the substantial change in the network length. A small

value of the average path length, such as in our case, indi-

cates that nodes are linked through a very short path.

However, if we remove hub nodes, i.e., the nodes from the

folded regions of the flame, the average path length increases

dramatically. This suggests that, on the flame, there will be a

sudden drop in the probability of interaction between any

two nodes selected at random, and the network average path

length increases sharply. Hence, even small changes to the

folded structures on the flame front provide a very effective

way to modify the complete flame dynamics.

As seen from the resilience study of the turbulent flame

network, the removal of hub nodes from the network or the

FIG. 7. Pseudo-flame front images of a (a) straight line and (c) periodic sine

curve. The corresponding network structure is shown in (b) and (d), respec-

tively. The size of the nodes shown is set by the degree they carry. Higher

degree nodes are larger than the nodes with a lower degree. Also, the color

of the nodes changes from green to red with an increase in the degree. (b)

Uniform network structure is seen in the case of a straight line flame front.

(d) Random network structure of the sine-wave flame front with most of the

nodes having a mean value of degree. (e) Turbulent flame front profile from

the experiment. (f) Network structure of the corresponding turbulent flame

front profile showing most of the nodes as lower degree green nodes while

only a few appear as highly connected red ones.

FIG. 8. Changes in the normalized characteristic network length D~lnetwork of

a turbulent flame front network for random node and hub node removals. (a)

Near blowoff, (b) far from blowoff, and (c) degree distribution.
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folded regions of the flame results in a substantial increase in

the average path length of the network, while the removal of

network nodes at random does not change the average path

length much. This kind of behavior would not hold for an

unperturbed laminar flame. We can consider the previously

discussed pseudo-straight line flame front as an unperturbed

laminar flame. Such a flame is non-convoluted and does not

undergo turbulence-flame interactions. In the network cre-

ated from such a flame front, the nodes have the same degree

value. Hence, the removal of nodes in any fashion will not

change the average path length in such a network.

Networks were constructed for all six experimental

conditions given in Table I. The degree distribution

obtained from these conditions averaged over 80 flame

front image networks is plotted in Figure 9. The distribu-

tions for the same Reynolds number are plotted together.

As the flame front is turbulent, in all these conditions, we

get a similar degree distribution profile for all the condi-

tions. However, there is a slight shift in the distribution

towards higher probability for higher degree nodes as we

move from far from the blowoff equivalence ratio to the

near blowoff one. The statistical similarity of the near and

far-from blowoff cases for the three Reynolds number was

checked using the Kolmogorov-Smirnoff test.37 The

asymptotic p-value of the test was found to be 0.99, 0.57,

and 0.03 for the case of Re¼ 8000, Re¼ 12 000, and

Re¼ 16 000, respectively. p is the probability of observing

a test statistic as extreme as, or more extreme than, the

observed value under the null hypothesis that the two

cumulative distribution functions are from the same contin-

uous distribution. Hence, the shift is significant only for the

case of Re¼ 16 000 (see Figure 9(i)).

The instantaneous flame front in turbulent premixed

combustion is highly convoluted, and the position of reaction

zones moves rapidly in space. This produces a range of areas

in a two-dimensional space representing the possible flame

front positions. Figure 10 shows the superposition of instan-

taneous reaction fronts at near and far from blowoff condi-

tions for the case of Re¼ 8000 and Re¼ 16 000. The

apparently thick zone created by overlapping fluctuating

flame edges, seen in this figure, is referred to as the turbulent

flame brush. As we move from a higher equivalence ratio to

a lower one, we approach blowoff. This leads to broadening

of the flame brush and causes the degree distribution to shift

FIG. 9. Representative flame front images are shown for the Re¼ 8000 case at (a) near and (b) far from blowoff conditions. Scatter plot of the degree distribu-

tion averaged over 80 images for both the conditions is given in (c). Similarly, (d)–(f) and (g)–(i) correspond to Re¼ 12 000 and Re¼ 16 000, respectively.

With a shift in /, i.e., the equivalence ratio from far from blowoff to near blowoff, a slight shift of the distribution towards higher P(k) for larger k values is

seen for the higher Reynolds number cases. (a) Near blowoff and (b) far from blowoff.
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towards higher k values. The highly distorted flame front

structure near blowoff has been observed using PLIF imag-

ing in the literature,38,39 but here we have quantified the

same using network analysis. This phenomenon is explained

in greater detail in the next paragraph.

For the cases of lower equivalence ratios, the flames are

closer to the leaner blowoff limit and are more susceptible to

flow disturbances.40 This increases the flame brush thickness

for flames near blowoff conditions.41–44 On the other hand,

flames with a higher equivalence ratio, which are far from

blowoff, tend to be more stable and are less susceptible to

local turbulent eddies. This leads to a thinner flame brush.

This increase in the flame brush thickness with decreasing /

is reflected in the increase in the probability of higher degree

network nodes as we go from the far from blowoff to near

blowoff condition. This shift can also be interpreted as fol-

lows. As the flame brush thickness increases when we move

from higher to lower /, there is a higher probability of find-

ing the flame front over a wider range of coordinates, or sim-

ply, the two-dimensional flame front spans through a wider

area. Folds on the flame front extend deeper into the product

side of the front. This further increases the visibility of the

nodes on the folds of the flame making their degree even

higher. Thus, the degree distribution shifts towards higher k

for the hubs of the network as we go from the far from blow-

off to near blowoff case.

The shift in the degree distribution is perceived dis-

tinctly only in the Re¼ 16 000 case and is not substantial for

the lower Reynolds number cases (Re¼ 8000 and Re

¼ 12 000). This is probably due to the better flame stability,

lower lean blowoff limits, and near laminar flamelet behav-

ior for the case of lower Re.40 As such, the flame regime

shifts gradually from the flamelet regime at Re ¼ 8000; /
¼ 0:86 to the thin-reaction zone regime at Re ¼ 16 000; /
¼ 0:65. These regimes can be identified using the Karlovitz

number, Ka, which is the ratio of the turbulence time scales

to the chemical time scales. The regime shifts from the lami-

nar flamelet regime to the thin-reaction zone regime as we

increase the Karlovitz number (tabulated in Table II

(Appendix)).

The flamelet regime occurs when the relevant chemical

time scale is short compared to the convection and diffusion

time scales. In this regime, combustion takes place within

the asymptotically thin layers embedded in the turbulent

flow. These layers, which have a well-defined inner struc-

ture, are called flamelets.45 In the flamelet regime, both the

preheat and reaction zones are thinner than the smallest tur-

bulent eddies. Hence, though curved or stretched, the flame-

let retains the basic structure of a laminar flame. On the

other hand, for flames lying in the thin-reaction-zone

regime, the reaction zone still retains its laminar structure,

whereas the preheat zones are perturbed and thickened by

small-scale turbulent eddies, with temperature fluctuations

observed therein.46 With this shift, the smallest turbulence

scales start to enter and modify the transport within the

reactive states. Small eddies that enter the preheat zone

broaden the flame alongside, increasing the width of the

flame brush. Hence, the degree distribution is shifted

towards higher k values for the near blowoff case (higher

Ka) at higher turbulent intensity conditions (Re¼ 12 000

and Re¼ 16 000).

FIG. 10. Superposition of instantaneous reaction fronts for Re¼ 8000 ((a)

and (b)) and Re¼ 16 000 ((c) and (d)).

FIG. 11. Cumulative distribution function is plotted for the original PLIF images, and the images coarsened to half of the original resolution for two conditions

(a) Re¼ 12 000 and (b) Re¼ 16 000, both far from blowoff. Here, the degree values are normalized (kn) with the maximum degree of the respective network.
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It is worth mentioning that the resolution of the PLIF

images considered in the present study is 0.165mm/pixel,

whereas the flame thickness, which can be considered as a

measure of the smallest length scale for flame perturbation,

is much bigger. 1 pixel from the image is not more than 2.54

times the Kolmogorov length scale (refer Table II).

Typically, DNS is done at a similar spatial resolution. Thus,

the images are well resolved for the present study.

Additionally, to check for the robustness of the present

study, the analysis was repeated for resized images with res-

olution (D) as low as half the resolution of the original

acquired images. The number of nodes, which were in the

range of 30 000–35 000, decreased to about one third, i.e., in

the range of 10 000–12 000. The two-sample Kolmogorov-

Smirnoff statistic test was conducted on degree values of the

nodes obtained from the two images to check whether the

fine and the coarse images resulted in similar probability dis-

tribution. The asymptotic p-value for all the six conditions

was found to be well over the significance level of 0.05. The

null hypothesis is considered untrue if the value of p is less

than a significance level (usually taken as 0.05). Hence, the

distributions are not statistically dissimilar even after

decreasing the image resolution to half the original value.

The comparison of the cumulative distribution functions of

two such conditions is shown in Figure 11. As we make the

images coarser, the distributions diverge. The p-value for the

Kolmogorov-Smirnoff test decreases to a lower value. If we

decrease the resolution further, the number of nodes (data

points) considered would be insufficient to conduct a statisti-

cal test such as a Kolmogorov-Smirnoff test. Hence, images

whose resolution is far less than half the resolution of the

original images, i.e., far less than 110� 75 pixels, would not

give the desired results. However, as seen from the figure,

the distributions do not become statistically dissimilar even

for a 50% reduction in the resolution.

V. CONCLUDING COMMENTS

To the authors’ knowledge, this work is a first effort to

characterize a turbulent flame front using network analysis.

An algorithm is introduced to convert convoluted flame con-

tours into networks on the basis of visibility. Pseudo-flame

front images from known curves were created to establish

the validity of the algorithm. The straight line and periodic

sine-wave flame front gave rise to uniform and random net-

works, respectively. The network structure thus obtained

matches very well with the ones constructed from constant

and pseudo-periodic time series.30

Networks were constructed using the developed algo-

rithm for turbulent flame fronts from images acquired using

PLIF imaging on a model gas turbine combustor. These net-

works had highly right-skewed degree distribution with hubs

emerging on the network. The hubs were found to exist in

the large curvature folded regions of the flame front.

Turbulent eddies distort the flame at these locations and cre-

ate folded structures on the flame front, thus increasing the

visibility of these regions. Hence, the strong influence of tur-

bulence on these selected regions of the flame makes them

appear as the hubs of the network. These networks were

found to be resilient against random perturbations (random

node removal) while they were quite susceptible to the

removal of nodes representing folds (hub nodes).

A shift in the degree distribution was witnessed as we

move from the far from blowoff to near blowoff case for

higher turbulent intensity. This shift is attributed to the thick-

ening of the flame brush as we approach blowoff because the

flame front becomes unstable and more susceptible to modi-

fications from turbulent eddies.

Understanding the dynamics of the flame front in the col-

lective using network analysis gives a new viewpoint of gaining

insight into turbulent combustion. Instead of computing field

properties over a set of points and then calculating an average to

understand the behavior of the system, this method utilizes inter-

actions inherent in the system to characterize it. Conventional

studies, from either the Eulerian or Lagrangian point of view,

presently do not make use of such insights. Analyzing the flame

front using simple mathematical tools from the network theory

has provided us with essential control points of the flame front,

which are highlighted by the degree distributions of the con-

structed networks. Recent studies have suggested methods that

identify the most sensitive points in the network which opens up

the possibility for control.47–49 Controlling each and every flame

front in turbulent combustion is probably impractical. However,

network analysis of the phenomenon provides us with the key

points on the flame front that are most influenced by turbulence.

Hence, network theory based analysis is a simple, yet revealing

alternative to study the turbulent flames.
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APPENDIX: FLAME FLOW PROPERTIES AND
CONVERGENCE OF P(K)

1. Turbulent flame properties

The bulk flow velocity of the reactants through the swir-

lers is calculated as

Ubulk ¼
Q

A
; (A1)

where Q is the volume flow rate of reactants through the

mass flow controller, and A is the effective area of the cross-

section of the swirlers. Re, which is the ratio of inertial

forces to viscous forces is calculated as

TABLE II. Turbulent flame properties.

Re / Ret Ka u0rmsðm=sÞ dL (mm) SL (cm/s) g (mm) D (mm/px)

8000 0.60 237 3.96 0.63 1.11 11.14 0.0992 0.165

0.86 236 0.86 0.63 0.52 32.14 0.0994 0.165

12000 0.65 328 4.01 0.88 0.87 15.23 0.0777 0.165

0.85 328 1.45 0.88 0.53 31.46 0.0778 0.165

16000 0.65 419 5.79 1.12 0.87 15.23 0.0647 0.165

0.86 419 2.02 1.12 0.52 32.14 0.0648 0.165
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Re ¼
UbulkD

�
; (A2)

where D is the outer diameter of the swirler, and � is the

kinematic viscosity of air. The turbulent Reynolds number,

Ret, is calculated as

Ret ¼
hu0rmsiL

�
; (A3)

where hu0rmsi is the mean of the rms of the fluctuating compo-

nent of velocity recorded using a hot wire anemometer over

the length of the combustor (see Figure 2(b)), L is the inte-

gral length scale taken as D=5, and � is the kinematic viscos-

ity of air. We calculate the length scales of smallest turbulent

eddies g using50

g �
L

Re
3=4
t

: (A4)

Finally, we compare the time scales of turbulence with

those of chemical reactions using the Karlovitz number, Ka

(Ref. 50)

Ka �
dL

g

� �2

; (A5)

where dL is the laminar flame thickness calculated using

CHEMKIN with the GRI 3.0 mechanism.51 All the calcu-

lated parameters are provided in Table II.

2. Convergence of P(k)

A convergence study was done to check for the conver-

gence of P(k) values with the number of images processed.

The value of P(k) for a specified number of images I and a

constant value of degree kc is denoted as PkcðIÞ. We plot P

kcðIÞ versus I for the case of Re¼ 8000, / ¼ 0:60 in Figure

12. The plot starts to converge at 20 images and finally con-

verges at around 60 images. We get similar convergence

results for all the six cases examined.
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