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Abstract: Most AFMs use piezoelectric tube nanopositioners for scanning. Fast actuation of
piezoelectric tubes are restricted due to the presence of low mechanical resonant modes. These
resonances, when excited, set off vibrations that cause loss of precision and repeatability of
the scans. Thereby restricting the scanning frequencies to less than 1% of the first resonance
frequency. Here, an innovative multivariable control design methodology for damping the
resonant modes of the tube is presented. This methodology exploits the symmetry present
in transfer-functions relating the input and output, and converts the multivariable control
design problem into independent SISO designs. This methodology in conjunction with Integral
Resonant control is used for damping the first resonant mode of the tube, and enables scans
upto 10% of the first resonant mode. The proposed methodology can be applied to a large class
of parallel kinematics nanopositioners used in scanning probe microscopes and probe-based data
storage systems.

Keywords: Atomic Force Microscopes, Piezoelectric tubes, Nanopositioners, Resonance,
Multivariable Control and Integral Resonant Control.

1. INTRODUCTION

Atomic Force Microscopes (AFMs) were invented in the
mid 80’s, G. Binning, C. F. Quate and C.Gerber (1986), for
generating topographical maps of solid surfaces at micro
to atomic resolution.

In an AFM, a cantilever with a sharp probe (of few
atomic dimensions in width) is placed in contact with the
material sample for which a topographical map is desired.
A laser source is focused on the probe end of the cantilever,
and the reflection from the cantilever is captured by a
Photo Sensitive Diode (PSD), see Figure 1. The given
sample is scanned by moving it in a raster pattern, which
causes the cantilever to deflect due to variations in the
sample topography. These deflections vary the intensity
of light captured by the PSD, which, in turn, is used
for generating the topography of the surface. In many
commercial microscopes samples are scanned by placing
them on a piezoelectric tube and actuating it in a raster
pattern.

When actuating the piezoelectric tube in a raster pattern,
the tube tracks a triangular waveform along the x-axis and
a slowly increasing ramp, or a slowly increasing staircase
function, along the y-axis. The fundamental frequency of
the triangular waveform is referred to as the scanning
rate. Actuation of piezoelectric tubes are hampered by the
presence of low mechanical resonances. Higher scanning
rates excite the resonance, inducing mechanical vibrations.

Typically, to avoid vibrations, the scanning rates are
restricted to 1% of the resonance frequency, Fleming et al.
(2008).

A standard paradigm for the actuation of a piezoelectric
tube has been to design a feedback controller that would
damp the resonance along the x axis, Bhikkaji et al.
(2007). This would enable the tube to track triangular
waveforms with higher fundamental frequencies than 1%
of the resonance frequency (or achieve higher scanning
rates). The actuation along the y axis is done is open loop,
as the tracking signal therein is either a slowly varying
ramp or a stair case function. However, this would not
completely eliminate vibrations, as there would be cross
coupling between the x and y axis. A more comprehensive
paradigm would be to design a multivariable controller
that would damp resonances of all the transfer-functions
involved. Though this has been attempted before, the
design methodologies followed have been simplistic (by
ignoring the cross coupling and assuming the dynamics
along the x and y axis to be independent), A. Daniele, S.
Salapaka, M. V. Salapaka and M. Daleh (1999); Schitter
et al. (2003). This paper presents an elegant method for
designing a multivariable controller for piezoelectric tubes.
Unlike the above mentioned papers, here the presence of
cross coupling between the axes are not neglected.

Due to symmetry, the dynamic response of piezoelectric
tubes to inputs along x and y axis are similar. This allows
for the decoupling of the tube dynamics. A multi-variable

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

2030



Laser

Position-

sensitive-

diode (PSD)

Micro-cantilever

Sample

Piezoelectric

Tube Scanner

Capacitive

sensorVx

Vy

Fig. 1. Schematic of an AFM

+x-x

+y

-y

+x-x -y

+z

Fig. 2. Schematics of the piezoelectric tube scanner

controller with a similar structure enables the conversion
of MIMO control design into independent SISO designs.
Here, a multivariable Integral Resonant controller bearing
the same structure as the plant is designed to achieve
good damping of the resonances. The design procedure
presented here is simple, tractable and very efficient.

2. EXPERIMENTAL SETUP

The piezoelectric tube scanner considered here is a thin
walled cylindrical tube made of a piezoelectric material.
The inner and outer layers of the tube are coated with a
layer of silver. The external electrode of the tube scanner
is quartered into four equal sections, see Figure 2 for
an illustration. It also has a small continuous electrode
at the top of the tube for z-axis actuation. The inner
continuous electrode is always grounded. One end of the
tube scanner is fixed to a base. An aluminum cube is
glued to the free end of the tube, this serves as a stage
over which a sample is placed. In Figure 2, x+ and y+
are the actuation points, while x− and y− denote the
sensing points. When voltage signals vx+ and vy+ are
applied at x+ and y+, respectively, the piezoelectric tube
deforms inducing voltages vx− and vy− at x− and y−,
respectively. These voltages are recorded as outputs. For
z-axis actuation, a voltage is applied to the continuous
z-electrode.

An NT-MDT NTEGRA scanning probe microscope (SPM)
is used for performing experiments. This SPM is capable
of performing scans in air and liquid. The SPM software
limits the image resolution relative to scanning speed. At
the highest resolution, 256 × 256 scan lines, the fastest

achievable scanning frequency is limited to 31 Hz. The
SPM is configured to operate as an AFM. The piezoelec-
tric tube scanner of the SPM is replaced by the above
mentioned tube scanner. The x+ and y+ axes of the tube
are driven by a NANONIS bipolar high voltage amplifier
HVA4. This amplifier has a maximum gain of 40 and
a voltage range of 400 V. Two ADE Technologies 8810
capacitive sensors were placed in close proximity to the
adjacent surfaces of the sample holder (aluminum cube)
to observe the displacements of the tube along the x
and y axes see Figure 1. The AFM controller was used
to generate the x+ and y+ signals. These were accessed
through the AFM signal access module and were applied
to the controlled piezoelectric tube scanner through the
high voltage amplifiers. A dSPACE-1103 rapid prototyping
system was used to implement the x and y axes feedback
controllers in real-time. The z-axis displacement was con-
trolled using the AFM software and circuitry.

The nanopositioning system is interpreted as having two
linear subsystems

Yv(s) = Gv(s)U(s) (1)

and

Yd(s) = Gd(s)U(s) (2)

where Yv(s) is the Laplace transform of [vx−, vy−]
⊤

, volt-
ages induced at the sensing patches x− and y−, Yd(s) is

the Laplace transform of [dx,dy]
⊤

, displacement measure-
ments of the capacitive sensors along x and y directions,

U(s) is the Laplace transform of [vx+, vy+]
⊤

, voltage sig-
nals applied at the x+ and y+ electrodes,

Gv(s) =

[

Gxx(s) Gxy(s)
Gyx(s) Gyy(s)

]

(3)

and

Gd(s) =

[

Gdxx(s) Gdxy(s)
Gdyx(s) Gdyy(s)

]

, (4)

transfer-functions relating the inputs [vx+, vy+]
⊤

and the

outputs [vx−, vy−]
⊤

and [dx,dy]
⊤

respectively.

3. SYSTEM IDENTIFICATION

Swept sine waves vx+ and vy+, within the frequency
range of 10 Hz to 10 kHz, are applied at the x+ and
y+ electrode respectively. The corresponding voltages vx−

and vy− induced at x− and y− electrodes are recorded.
The frequency response functions (FRF) relating the in-

puts [vx+, vy+]
⊤

and the recorded outputs [vx−, vy−]
⊤

are
plotted in Figures 3 and 4. The displacements dx and
dy measured by the capacitive sensors are also recorded

and the FRFs relating them to the input [vx+, vy+]
⊤

are
plotted in Figures 5 and 6.

Here, subsystem (1) will be used for control design while
the capacitive sensor responses, i.e., subsystem (2), will be
used for monitoring the displacements along x and y axes.
Therefore, only transfer-functions of the matrix Gv(s), (1),
are modeled.
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Fig. 3. Magnitude of the Frequency response functions

(FRFs) relating the inputs [vx+, vy+]
⊤

and the out-

puts [vx−, vy−]
⊤

. Dashed plots (−−) denote the mag-
nitude response of the models estimated, while the
continuous (–) plots denote the experimentally deter-
mined magnitude response.
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Fig. 4. Phase of the Frequency response functions (FRFs)

relating the inputs [vx+, vy+]
⊤

and the outputs

[vx−, vy−]
⊤

. Dashed plots (−−) denote the phase re-
sponse of the models estimated, while the continuous
(–) plots denote the experimentally determined phase
response.

Since the tube is symmetrically segmented one would
expect that Gxx(jω) = Gyy(jω) and Gxy(jω) = Gyx(jω).
However, invariably due to errors introduced when man-
ufacturing tube (like the tube being not uniformly thick
or not having a constant density), unsymmetrical gluing
of the aluminum cube and uneven fastening of to the tube
to the base, they can be only approximately equal. This is
evident from Figure 3. Nevertheless for control design, it is
assumed that Gxx(jω) = Gyy(jω) and Gxy(jω) = Gyx(jω).
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Fig. 5. Magnitude of the Frequency response functions

(FRFs) relating the he inputs [vx+, vy+]
⊤

and the

Capacitive sensor outputs [dx,dy]
⊤
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Fig. 6. Phase of the Frequency response functions (FRFs)
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⊤

and the Capacitive
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.

The following models have been fit for the FRF data
plotted in Figure 3,

G1(s) =
2.851e006

s2 + 225s + 9.432e006
(5)

and

G2(s) =
−0.27

(

s2 + 160s + 7.2e06
)

(s2 + 225s + 9.432e06)

×

(

s2 − 600s + 1.1e07
)

(s2 + 225s + 9.432e06)
, (6)

where G1(s) = Gxx(s) = Gyy(s) and G2(s) = Gxy(s) =
Gyx(s).
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Fig. 8. Multivariable control of the piezoelectric tube.

4. CONTROL METHODOLOGY

The standard paradigm for control of piezoelectric tubes
has been to damp the resonance along the x axis. That is to
damp the resonance of Gxx(s), using a feedback controller,
and to actuate the tube in a raster pattern, see Figure 7.
This, however, does not completely eliminate vibrations,
as the resonance along the y axis is not damped.

In order to damp resonances along both the axes a mul-
tivariable controller, Figure 8, that regulates both inputs
have to be designed. In Mahmood and Moheimani (2009);
A. Daniele, S. Salapaka, M. V. Salapaka and M. Daleh
(1999); Schitter et al. (2003) the authors have ignored cross
coupling, i.e., have set Gxy(s) = Gyx(s) = 0 in (3), and
designed controllers of the form

C(s) =

[

Cxx(s) 0
0 Cyy(s)

]

(7)

to damp resonances along both the axes. This could result
in closed-loop instabilities. For example, it can be checked
that (7), with

Cxx(s) = Cyy(s) =
−10000

s + 5000
(8)

will stabilize Gv(s), (3), when G1(s) = Gxx(s) = Gyy(s),
and Gxy(s) = Gyx(s) = 0. But, it will not stabilize Gv(s)
with Gxy(s) = Gyx(s) = G2(s).

To the best of authors knowledge fully multivariable con-
trollers of the form

C(s) =

[

Cxx(s) Cxy(s)
Cyx(s) Cyy(s)

]

(9)

are rarely designed.

Note that

Gv(s) =

[

Gxx(s) Gxy(s)
Gyx(s) Gyy(s)

]

=

[

G1(s) G2(s)
G2(s) G1(s)

]

= M⊤

[

G+(s) 0
0 G−(s)

]

M, (10)

where

M = M⊤ =
1
√

2

[

1 1
1 −1

]

, (11)

G+(s) = G1(s) + G2(s) (12)

and

G−(s) = G1(s) − G2(s). (13)

Similarly, in C(s), (9), if C1(s) = Cxx(s) = Cyy(s) and
C2(s) = Cxy(s) = Cyx(s) then

C(s) = M⊤

[

C+(s) 0
0 C−(s)

]

M, (14)

where

C+(s) = C1(s) + C2(s) (15)

and

C−(s) = C1(s) − C2(s). (16)

This implies that Loop transfer-function of Figure 8 is

L(s) = Gv(s)C(s)

= M⊤

[

C+(s)G+(s) 0
0 C−(s)G−(s)

]

M. (17)

Hence the closed loop poles are zeros of

I + L(s) = I + Gv(s)C(s)

= M⊤

[

1 + C+(s)G+(s) 0
0 1 + C−(s)G−(s)

]

M, (18)

where I is the 2 × 2 identity matrix. This in turn implies
that the closed loop poles are zeros of

1 + C+(s)G+(s) = 0 (19)

and

1 + C−(s)G−(s) = 0. (20)

Thus designing a multivariable controller now boils down
to designing controllers C+(s) and C−(s) for scalar
transfer-functions G+(s) and G−(s) respectively. De-
signing controllers for SISO plants are mathematically
tractable and their stability properties can be easily an-
alyzed using root-locus plots. Here, Integral resonant con-
trol (IRC), described by Aphale et al. (2007), is used for
designing controllers C+(s) and C−(s), as they are known
to give good performance and posses a simple model struc-
ture.
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5. EXPERIMENTAL RESULTS

Design of IRC using root locus is discussed in detail in
Aphale et al. (2007) and Bhikkaji and Moheimani (2008).
Here, it suffices to say that we have chosen

C+(s) = C−(s) =
−104

s + 8000
. (21)

The choice was made, using the root-locus procedure
outlined in the above mentioned references, such that the
closed-loop system is sufficiently damped.

In Figure 9, open loop data, presented in Figures 3 and
4, is plotted along with the simulated closed loop model.
Simulations predict a 20dB damping. As done in Section 3,
swept sine waves, within the frequency range of 10 Hz
to 10 kHz, are applied at at the x+ and y+ electrodes,
and the corresponding voltages induced at the x− and
y− electrodes are measured in closed loop. The closed
loop FRFs relating the inputs applied at x+ and y+
electrodes and outputs recorded at x− and y− electrodes
are plotted in Figure 9. It can be observed from the plots
that simulations closely match the experimental results.
A similar damping can be observed in the closed loop
FRFs relating the inputs and the capacitive sensor outputs
plotted in Figure 10.
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6. AFM IMAGES

In this section, scan images of a calibration grating are
obtained to evaluate the performance of the damping
controller. A MikroMasch TZG2 calibration grating which
has parallel rectangular features, with 3 µm period and
108nm height, was used for experiments. A contact mode
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.
Dashed plot (- -) denotes open loop FRFs and con-
tinuous (–) plots denote experimentally determined
closed loop FRFs.

cantilever with a resonance frequency of 13kHz was used to
perform scans. The first dominant mode of the x and y axes
was suppressed in closed-loop using the Integral Resonant
control technique presented in Sec. 4. 4µm×4µm open- and
closed-loop images with 256×256 lines of the grating were
obtained in constant height contact mode at 5Hz, 10Hz,
15.6Hz and 31.25Hz.

Figs. 11 and 12 show the open- and closed-loop images
(with activated IRC) respectively. Oscillations are visible
in all open-loop scans which distort the images severely,
in particular at 31.25Hz. Oscillations are also observed
in time signals. With the IRC activated, oscillations are
eliminated in all four scan frequencies.

7. CONCLUSION

Atomic Force microscopes (AFM) use piezoelectric tubes
for nanopositioning. Piezoelectric tubes possess lightly
damped resonant modes that cause mechanical vibrations.
Thereby, restricting the scanning rates to less than 1% of
the first resonance frequency. In this paper a symmetrically
quartered piezoelectric tube, typically used in AFMs as
nanopositioner, was considered. In order to actuate this
tube in a raster pattern, resonant modes along both x
and y axes have to be damped. It was noted control
designs that neglect the cross coupling in the tube dy-
namics could cause closed loop instability. As the tube
is symmetrically quartered the transfer-function matrix
relating the voltages applied at the x+ and y+ electrodes
and the voltages induced at the x− and y− electrodes
is symmetric. A controller with a similar structure as
the plant was found to convert the MIMO control design
problem into independent SISO designs. IRC controllers
were designed for the individual SISO plants. A 20 dB
damping was achieved along both the x and y axes. Scan
images were recorded in open- and closed-loop at 5Hz,
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Open-loop images
5Hz 10Hz 15.6Hz 31.25Hz

3D view

Fig. 11. Open-loop images (256×256 scan lines) of a 4µm×4µm scan area.

Closed-loop images
5Hz 10Hz 15.6Hz 31.25Hz

3D view

Fig. 12. Closed-loop images (256×256 scan lines) of a 4µm×4µm scan area.

10Hz, 15.6 Hz and 31.5Hz. With the damping controller
activated, oscillations in the scan images were eliminated
which improve the image quality substantially.
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