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a b s t r a c t

A quick method of solution for multiple integral equations which are defined over a parti-
tion consisting of three intervals of the positive axis and whose kernel is the combination
of trigonometric functions has been explained. The solution procedure can be extended to
deal with similar integral equations defined over any finite partition of the positive axis.
To represent the solution uniquely, certain solvability criteria are obtained in terms of the
forcing functions involved. Limiting cases of dual integral equations over two disjoint in-
tervals are discussed.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Solving boundary value problems with mixed boundary conditions in different branches of mathematical physics is of
long-standing interest to scientists and engineers and the problem is often reduced to that of solving dual integral equations
(see [1,2]). Chakrabarti et al. [3,4] studied linear water wave scattering by vertical barriers by reducing the corresponding
boundary value problem to dual integral equations with a trigonometric kernel. The behavior of one of the integrals of these
dual integral equations at the point where the boundary condition changes plays a crucial role in determining their solution.

The motivation for handling these kinds of integral equations is manyfold in the context of the capillary–gravity or
structural gravity wave scattering in deep water. In fact, while performing the weakly nonlinear analysis on the time-
harmonic capillary–gravity or flexural gravitywave scattering in deepwater, with the aid of the small wave slope parameter,
a leading order solution is required to deal with the higher order problems. In two-dimensional wave scattering by rigid
vertical barriers, this leading order boundary value problem is peculiar in the sense that the solution satisfies the Laplace
equation with higher order boundary conditions. Rhodes-Robinson (see [5–7]) handled a variety of these problems in the
context of water wave problems under the surface tension effect.

Evans [8] first studied the effect of surface tension on the surface water waves scattered by partial vertical barriers
via a complex variable technique. Later, Rhodes-Robinson (see [9]) obtained results for the same problem by extending
William’s [10] so called reduction method. However, these kinds of boundary value problems can be reduced to multiple
integral equations with trigonometric kernels. These integral equations may be defined over many disjoint intervals for a
physical situation of structural water waves involving vertical barriers with a single gap or many gaps in it and are handled
here to obtain their solution.

The multiple integral equations under consideration are
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and ci, i = 0, 1, 2, . . . , n, are real or complex constants. These integral equations can be uniquely solvable when the
functions g and f are suitably differentiable. They arise in the capillary–gravity or flexural gravity wave scattering in deep
water by partial vertical wave-makers or barriers or a vertical barrier with a gap in it (see [8,9,11]). In this context, L
represents the complement of the vertical wave-maker or barrier position along the positive axis.

In the present note, an attempt has been made to solve the above multiple integral equations (1.1) completely by
converting them into a set of logarithmic singular integral equations.With the aid of the bounded solutions of these singular
integral equations, a possible unique solution for the multiple integral equations is obtained under certain restrictions or
conditions on the forcing functions f and g .

2. The method of solution

For solving the multiple integral equations (1.1) with L = (a, b), they can be equivalently written as a set of differential
equations
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where T =
∑n

k=0 ck
∂2k+1

∂y2k+1 + c0. Upon solving the above (2n + 1)th-order ordinary differential equations, they are
transformed into a new set of multiple integral equations
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where T −1
[f (y)], T −1
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[g2(y)] are the particular integrals with respect to the differential operator T , λk, k =
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to be determined.

In the context of deep water waves, the dispersion relation is a polynomial equation
∑n

k=0 ckx
2k+1

+ c0 = 0, for some
specified constants ck (k = 0, 1, 2, . . . , n). The constants are so defined that the dispersion relation has a unique positive
real root which accounts for a progressive wave mode in a homogeneous fluid. Physically, complex roots represent either
dissipative progressive wave modes or evanescent wave modes. The degree of the dispersion relation is the same as the
order of the boundary condition at the undisturbed interface between the floating structure and water surface. The degrees
are 3 and 5 for the cases of capillary or membrane-coupled gravity waves and flexural gravity waves respectively.

Making y → 0, we have from Eq. (2.2) that
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where the superscript in parentheses hereafter denotes the order of differentiation.
The multiple integral equations (2.1) and (2.2) can be differentiated up to 2i times, i = 0, 1, 2, . . . , n, and the resulting

sets of multiple integral equations are given by
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it becomes clear that P2i+1(y) = P (2i)
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Application of the Fourier sine transform on Eqs. (2.5) and (2.6) gives
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It is clear from the relation (2.7) that the unknown function A(ξ) can be represented in n + 1 different ways. Hence certain
compatible conditions must be satisfied for A(ξ) to be the same and they are determined as
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At this stage it may be remarked here that, even after converting the multiple integral equations (2.4) and (2.5) into a
logarithmic singular integral equation, the bounded solution will not be in a suitable form for computing its derivatives for
use in the relations (2.9) and (2.10). Hence, these relations are required to be in a suitable form to represent in terms of the
unknown constants involved.

The restriction of the bounded solution P (2i)
1 (u) is because of its natural utility in applications and the nature of the

bounded solution will be clear from what follows.
Substituting ξ 2iA(ξ), i = 0, 1, 2, . . . , n, from Eq. (2.7) into the relation (2.4) yields a set of singular integral equations

1
π

∫ b

a
P (2i)
1 (u) log

u + t
u − t

 du = −

∫ a

0
h(2i)
2 (u) log

u + t
u − t

 du −

∫
∞

b
h(2i)
3 (u) log

u + t
u − t

 du + h(2i)(y)
1

≡ Ri(t), i = 0, 1, 2, . . . , n, (2.11)
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The bounded solutions of the logarithmic singular integral equations (see [13]), described by the relation (2.11), are given
by
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The bounded property of the solutions is that P (2i)

1 (u) = 0, i = 0, 1, 2, . . . , n, at the end points a and b.
The conditions (2.9) and (2.10) have to be modified into an alternative form. This can be achieved in many ways by using

the solution (2.12). By multiplying by uj on both sides of the relation (2.12) and integrating from a to b, one may obtain an
integral relation involving the left hand sides of (2.9) and (2.10) for each positive integer j. The required quantities d2i+1P1
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of obtaining the modified conditions as shown below, j is chosen to be an odd integer for the sake of obtaining simplified
integral relations.
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Secondly, by multiplying the relation (2.12) by u and integrating from a to b, it can be obtained that
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Thus, the relations (2.3), (2.8), (2.13), (2.14), (2.18) and (2.19) together will determine the 6n + 3 unknown parameters
that appear in Eqs. (2.1) and (2.2) completely. Thus, we conclude here that the multiple integral equations (1.1) have a
solution (possibly unique) provided a set of solvability criteria are satisfied by the forcing functions f and g .

It may be remarked that in Eq. (2.5), accommodating infinity along the y axis, one can equate certain constants, whose
coefficients eλky with the rootλk have a positive real part, to zero. These extra conditions are naturally utilized in the physical
problems of practical interest. Also, it may be worth here discussing the limiting cases of a → 0 or b → ∞ and comparing
with the corresponding dual integral equations defined over two disjoint intervals. In the former case, the dual integral
equations are of a special type having an isolated point at y = 0 in the definition, while in the latter case, the integral
equations are reduced to those defined over two disjoint intervals and the formal conditions of solvability exactly match
those of [14]. However, it is not straightforward to obtain the limit of themodified solvability criteria involving the functions
h(2i+1)
k (y), k = 1, 2, 3, as given in the relations (2.18) and (2.19).
For multiple integral equations over disjoint intervals greater than what was considered, the reduced weakly singular

integral equations are defined over the same number of intervals. Their bounded solution provides a set of solvability criteria
(see [15]). In fact, one may get a number 2l of solvability conditions for the multiple integral equations defined over the
positive real axis, where l is the number of finite intervals of type (L1, L2) with L1 > 0.

3. Conclusions

A quick and elementary method of solution has been worked out for some special multiple integral equations defined
over disjoint intervals with trigonometric functions as the kernel. These equations arise in connection with the scattering
of time-harmonic capillary or membrane-coupled gravity waves or flexural gravity waves in deep water by partial vertical
barriers or a vertical barrier with single or many gaps in it. The multiple integral equations which are worked out here
govern the physical problem of deep water wave scattering by a complete barrier with a single gap in it. When the barrier
has many gaps, governing multiple integral equations are defined over many disjoint intervals along the depth. In this case,
they can be reduced to a weakly singular integral equation over that many disjoint intervals and upon utilizing the solution
and solvability criteria as given in [15], one can work out the unique solution for these integral equations.
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