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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Grinding is an expensive and complex machining process, characterized by cutting grits undergoing non-uniform wear. The worn 
out grits influence the surface finish of the part, necessitating timely dressing. Conventionally, the dressing interval is decided 
either based on the wheel life end criteria viz. visual identification of the workpiece burn mark, chatter occurrence and deterioration 
in the part finish or on the number of parts produced. Improper dressing interval increases auxiliary machining time and grinding 
wheel wastage. Prevailing demands towards next generation smart manufacturing include product and process related benefits such 
as low operational cost, better customer service support, operation optimization and control. In the present work, we propose a low 
cost, process non-intrusive sensor technology with IoT enabled operational intelligence platform to estimate the redress life of 
grinding wheel based on wheel condition. Traverse grinding tests were carried out in a CNC surface grinding machine installed 
with Al2O3 wheel against D2 tool steel under wet condition. During experimentation, the spindle motor current, grinding forces 
and grinding wheel surface images were acquired using the Hall-effect sensor, dynamometer, and CCD camera respectively. Data 
acquisition, network connectivity, and cloud communication were empowered by serial output. Statistical time, frequency and 
wavelet domain features signifying the wheel life characteristic were extracted. To show the usefulness of motor current signals, 
the extracted features thereof were confirmed against grinding forces and wheel surface images. A time series Auto-Regressive 
Moving Average (ARMA) predictive model was developed to estimate the grinding wheel redress life using the selected root mean 
square (RMS) feature of a current signal. An android application was also developed for a graphical visualization of dressing time 
based on the RMS value of the spindle motor current signal. The developed methodology thus, allows operators and machines with 
sensors to communicate with each other and facilitates real-time traceability, visibility and control over the dressing action to 
perform automatic dressing before the wheel reaches its end of life. 
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1. Introduction 

Manufacturing industries demand increased 
productivity with high precision and accuracy. 
Grinding is one such technique widely used to meet 
the aforementioned criteria. A typical grinding wheel 
is composed of randomly distributed abrasive grits 
embedded in a binding matrix. The material process is 
based on abrasive machining process. The quality of 
the process is dependent on wheel topography and 
deviation in the wheel profile leads to a loss in the 
desired workpiece quality. Thus, the wheel dressing of 
grinding wheel is essential after specific tool life. 
Dressing causes wheel loading which primes to faster 
wheel wear. Commonly in the shop floor, the dressing 
interval is decided by the operator based either on the 
end of wheel life criteria such as burn marks, chatter 
occurrence, deterioration of part finish or on the 
number of parts produced. Both of these are not 
precise. This is because, in the former, the part surface 
damage and the dimensionality error occur whereas, in 
the latter, the grinding wheels are not utilized to its 
maximum life; thus frequent dressing causes the 
grinding wheel wastage and increases in the process 
time and the overall cost. It is thus necessary to 
propose a structured dressing of the grinding wheel 
based on the instantaneous wheel condition. This can 
be achieved through wheel condition monitoring [1-
2].  

Several researchers have carried out condition 
monitoring of grinding wheel using several static and 
dynamic monitoring methods. Chai and Rowe [3] 
reviewed three different topography measurement 
methods using vitrified CBN grinding wheels. The 
interferometer and the laser triangulation method were 
best suited for three dimensional measurements of the 
small and the large area of both the wheel and the 
replica respectively. Darafon et al., [4] introduced a 
three dimensional non-contact wheel scanning system 
to measure and characterize the grinding wheel 
topography. It was observed that the cutting edge 
width and the spacing were exponentially distributed 
whilst the protrusion height was normally distributed.  

Arunachalam and Ramamoorthy [5] performed 
texture analysis of grinding wheel wear assessment 
using machine vision technique. The texture analysis 
methods based on the histogram, grey level co-
occurrence method (GLCM) and grey level average 

parameter (Ga) were used on the images to quantify 
the significant change in the texture of the grinding 
wheel. Arunachalam and Vijayaraghavan [6] used 
texture features of the grinding wheel images to 
determine the number of passes required to dress the 
grinding wheel. It was observed from the images, the 
bright spots in the images or the percentage loaded 
areas decreased with increasing number of dressing 
passes.   

Lezanski [7] proposed an intelligent system for 
condition monitoring of the grinding wheel using AE 
sensor, vibration meter, and piezoelectric transducer. 
ANN and neuro-fuzzy models were developed to 
classify the condition of the grinding wheel. It was 
concluded that for the development of a fuzzy logic 
system with many input variables, the neuro-fuzzy 
algorithm is the only effective application. The 
performance of such system could be lower than the 
neural network system due to its limited potential to 
extract the knowledge from the fuzzy rule base. 
Moreover, in such systems, the performance index 
decreases increasing set of rules. Eun-Sang et al., [8] 
used the spindle motor current and AE signals to 
investigate the plunge grinding process and 
established its relationship with the grinding material 
removal rate in terms of the infeed rate. The variations 
in the motor current with the grinding parameters were 
also discussed. It was observed that the measured 
motor current is directly proportional to the infeed rate 
and the wokpiece velocity, whilst it is inversely 
proportional to the grinding speed. For practical 
applications, spindle motor current information is 
preferable over AE energy signal.  

Yao et al., [9] have used complex continuous 
wavelet coherence technique which combines the 
cross wavelet transform (XWT) and the wavelet 
coherence (WTC) to perform a quantitative correlation 
analysis of the motor current and the chatter vibration 
in grinding. It was established that as the chatter occurs 
during grinding, a clear inner correlation between the 
motor current and the chatter vibration is observed. 
Karpuschewski.et.al. [10] developed a condition 
monitoring system based on power and AE sensors. 
The FFT of the enveloped AE signal was analyzed by 
using a three-layered back propagation neural 
network. This has been used to detect the disturbances 
and for wheel life estimation. A fuzzy based system 
that combines the AE and the power signals were 
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deployed for optimizing the grinding cycle. Kwak and 
Ha [11] detected the dressing time for the grinding 
using tool dynamometer based on the discrete wavelet 
decomposition. It was observed that the grinding force 
increased linearly up to a 45th piece of the specimen. 
Further, machining decreased the grinding force due 
to wheel dulling and wheel loading. Thus the critical 
limit of the wheel was measured. 

A revolution of next-generation smart 
manufacturing, “Internet of Things” (IoT) has 
emerged in a profound manner. IoT based 
manufacturing include process and product-related 
benefits such as lower operational costs, better 
customer or service support, operation optimization 
and control, product or service improvement and 
innovation, better supply chain management and 
logistics. From a service perspective, customer 
satisfaction and time to repair metrics are the main 
focuses of manufacturers. The shop floor workers, 
have an increasing amount of data, however, they 
struggle to quickly interpret the data representation. 
Thus, there is a lack of connects between the shop 
floor and the execute suite in providing real-time 
analytics to the key decision makers [12-13]. It is thus 
essential to include IoT enabled operational 
intelligence platform with connected products to 
bridge the gap between the real-time machine-level 
data to the business intelligence to deal with increasing 
market complexity, demand variability, and machine 
accuracy.  

Starly et al., [14] have built a virtual machine tool 
(digital twin) by fusing manufacturing process and the 
sensor data information as a step towards cyber-
physical manufacturing. The developed digital twin 
was tested on a milling machine. The system aims at 
diagnosis, prognosis, and optimization by virtual 
machine tool integration, to enhance the accuracy and 
the operating capability of the machine. However, as 
the data storage is limited to local PC, the developed 
system lacks accessibility to multiple remote users. 
Pellegrino et al., [15] have reported the important 
findings in the Prognostics and Health Management 
(PHM) manufacturing techniques, metrics, 
performance assessment, infrastructure and expansion 
to smart manufacturing. It is mentioned that the high-
level goal for PHM infrastructure must include 
diagnosis and prognosis maintenance with 95% 
uncertainty, unrestricted data access and management, 
adaptive security and easily configurable and portable 
software tools. The priority challenges with the 

present infrastructure lie with the development of a 
budgetary system which includes retrofittable sensors, 
open source model, and timely information access. 
Ray [16] has discussed the state of art of present IoT 
architectures based on various domains namely 
physical, network, application, cloud service, etc. 
Based on cloud services, several IoT architectures 
such as IoTMaaS (Monitoring as a Service), IoTPaaS 
(Platform as a Service), IoTIaaS (Infrastructure as a 
Service), and IoTSaaS (Software as a Service have 
been reviewed. IoTPaaS is seen to be popular among 
others due to its domain independency support, 
runtime deployment of application tool and API’s, 
multiple tenancy management and integration with 
other web services and databases.  

Many researchers have made efforts in the - (a) 
measurement of wheel topography, (b) analysis of the 
effect of wheel wear on the grinding performance, (c) 
modeling of grinding wheel wear, (d) detection of 
dressing time and (e) the development of intelligent 
manufacturing system.  However, no commercially 
successful system is available for in-process 
redressing of the grinding wheel with the IoT 
communication platform. The proposed work differs 
from the existing literature in the following aspects: 
(1) Grinding wheel wear analysis during traverse 
surface grinding is studied; (2) Online monitoring and 
detection of grinding wheel redress life using process 
non-intrusive low-cost sensor technology is 
developed; (3) Data analytics of motor current signal 
in various domains such as time, frequency, time-
frequency and entropy measures are performed; (4) A 
predictive model for the grinding wheel redress life 
estimation is proposed and (5) IoT platform with cloud 
service and Android application to track, visual and 
control dressing action based on wheel condition is 
developed as an approach towards present industrial 
evolution. 

 
2. Material and Methods 
 
2.1. Experimental set-up 
 

Grinding experiments were carried out in a CNC 
Chevalier surface grinding machine under wet 
grinding condition. The specimens made of D2 tool 
steel with initial dimensions 50 x 35 x 20 (mm) were 
ground using Al2O3 grinding wheel during the 
experiments. Stock removal of 1mm divided in to 
roughing (20μm), semi-finishing (10μm) and finishing  
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Table 1. Experimental Conditions 

 
(5μm) operations on each specimen. Before the start 
of experiment, the grinding wheel was dressed                                                                             
using a single point diamond tip dresser. A schematic 
representation of the experimental setup is shown in 
Fig. 1. and the corresponding grinding conditions [17] 
are listed in Table 1. The 9257B Kistler dynamometer 
was fixed to the grinding table over which the 
workpiece was mounted. LEM 25-PA current 
transducers were wound around each wires of the 3 
phase asynchronous spindle motor.  The wheel surface 
images were acquired using a CCD digital camera. To 
ensure the same positioning of the image acquisition, 
an infra-red based position sensor was attached to the 
wheel guard. 

2.2. Signals and Image Acquisition 

 During the grinding operation, material removal 
was carried out along one direction as shown in Fig. 
2a. For each workpiece, spindle motor current and 
grinding forces were measured for 30s with 16 KHz 
sampling frequency. The measured signals were 
transferred to a PC for further processing. 

Parameters Operating Conditions 

Type of Grinding  Traverse 

Tool  

Wheel specification AA46K5V8 

Wheel Outer Diameter 180 mm  

Wheel Bore Diameter 31.75 mm 

Workpiece  

Material D2 Tool steel 

Length 50 mm 

Width 35 mm 

Thickness 20 mm 

Grinding parameters  

Wheel velocity 2500 rpm 

Workpiece velocity 8 m/min 

Depth of cut Roughing (20µm, 2 passes) 

Semi-Finishing (10µm, 4 passes) 

Finishing (5µm, 4 passes) 

Dressing tool Diamond tip single point 

Dressing feed rate 0.2 mm/rev 

Dressing depth 0.01 mm 

Grinding environment Wet 

Coolant Water soluble oil (20:1) 

Fig.  1. Experimental set-up 

Fig.  2. (a) Grinding direction; (b) Workpiece burn mark 
occurrence 
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Workpiece  

Material D2 Tool steel 

Length 50 mm 

Width 35 mm 

Thickness 20 mm 

Grinding parameters  

Wheel velocity 2500 rpm 

Workpiece velocity 8 m/min 

Depth of cut Roughing (20µm, 2 passes) 

Semi-Finishing (10µm, 4 passes) 

Finishing (5µm, 4 passes) 

Dressing tool Diamond tip single point 

Dressing feed rate 0.2 mm/rev 

Dressing depth 0.01 mm 

Grinding environment Wet 

Coolant Water soluble oil (20:1) 

Fig.  1. Experimental set-up 

Fig.  2. (a) Grinding direction; (b) Workpiece burn mark 
occurrence 
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Consecutively, the grinding wheel surface images 
after each grounded workpiece were captured at 12 
different positions in the wheel periphery. The 
acquired images were then transferred through frame 
grabber and stored in PC for further processing.  The 
experiments were continued until a burn mark which 
signifies the end of wheel life is observed on the 
workpiece as shown in Fig. 2b. 

3. Multi-domain signal analyses 

3.1.1 Current Signal Denoising 

The spindle motor current analyses were 
performed considering 1st, 3rd and 6th passes of 
grinding. However, the results are shown only for the 
6th pass. Based on the minimum entropy and the 
maximum energy criteria [18-19], in the present study, 
level 5 of Daubechies wavelet is selected to perform 
the signal denoising. Fig. 3 shows the original and the 
de-noised spindle motor current signals of the 6th pass. 
The de-noised signal has been analyzed further in the 
time domain to study the variation in motor current 
signal for changing grinding characteristics over the 
number of workpieces. 

3.2.2. Time Domain Analysis 
 

The time domain indices such as RMS, variance, 
kurtosis, skewness, shape factor and crest factor of 
motor current signals were evaluated. It is observed, 

that the changing trend of RMS is more evident. This 
is because, as the spindle motor current during 
roughing draws higher current due to increased 
material removal, thus increased force. Also during 
semi-finishing and finishing, less material removal 
results in less force and hence drop in the motor 
current of the grinding spindle is observed.  Fig. 4. 
shows the grinding wheel spindle motor current 
variation for varying depth of cuts (20µm, 10µm, and 
5µm). The motor current signal at varying depth of 
cuts showed fluctuating trend till 7th workpiece. These 
fluctuations are due to one of the following: (a) wear 
flat, (b) loading, (c) self-sharpening effects of the 
cutting edges. The useful life limit of the grinding 
wheel is confirmed by a substantial increase in the 
motor current RMS signal after the 7th workpiece at 
which burn marks on the ground workpieces are 
witnessed.  

In the time domain analysis, RMS is proven to be 
varying with the grinding wheel performance and 
found to track the dressing time more evidently than 
the other time domain features. Though the time 
domain parameter (RMS) is popularly used in real 
time due to its simplicity and lesser time complexity 
[20], to obtain more information on the measured 
current signal and to confirm that the increase in the 
RMS is solely dependent on wheel degradation, rather 
than the drop in the supply voltage or the motor 
overload or failures in the rotor and the stator windings 
[21], frequency and time-frequency domains analyses 
have been carried out.  

 
3.2.3. Frequency Domain Analysis 
 

Any undesirable events such as drop in the supply 
voltage, bearing failure, winding failures shows a 

Fig.  3. (a) Original; (b) De-noised current signal 

Fig.  4. Variation in grinding spindle motor current for different 
depths of cut over number of workpieces 
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significant peak at respective frequencies along with 
the supply frequency and the harmonic content of the 
current signal in the frequency domain. The power 
spectral density (PSD) of the spindle motor current is 
computed as shown in Fig 5.  Dominant peaks are 
observed only at supply (50Hz) and harmonics 
frequencies (100Hz, 150Hz). Thus, from the PSD it is 
evident that the increase in the RMS is purely due to 
the wheel degradation. 

Further, it was observed that the changing trend of 
peak spectral area ratio is more obvious, with varying 
wheel characteristics against the number of 
workpieces. Fig. 6. shows the variation in the spectral 
area ratio of PSD of the motor current signal for 
different depth of cuts (20µm, 10µm, and 5µm) over 
the grinding life period.  At the initial stage of grinding 
zone, the grinding force is unstable; hence an increase 
in the spectral ratio was observed at workpiece 2. 
Further, as the workpiece conforms to the wheel, a 
steady state was reached, where the forces remain 
almost constant and thus the spectral ratio maintains 
minimum variation. Whereas, it is evident that after 
the 7th workpiece, where burn marks were witnessed 

on the workpieces, a sharp sustained increase in 
spectral area ratio was observed due to increased force 
indicating the end of wheel life. 

3.2.4. Wavelet Analysis 

Wavelet transform supports multi-resolution 
analysis and represents short time interval with precise 
high-frequency details and lengthy time interval with 
low-frequency details [22]. The measured motor 
current signal is decomposed into 7 levels approximate 
(A7) and detailed (D7) coefficients using db5 wavelet. 
The detailed coefficients of each level were compared 
and it was found that the approximate and detailed 
coefficients of 6th and 7th levels had a clear signal over 
time with reduced noise. Hence, the wavelet 
decomposed components of the 6th and 7th levels were 
combined in the reconstruction of the signal. Features 
such as energy, variance were computed from the 
reconstructed signal. It was observed that, the energy 
variation over the number of workpieces showed a 
clear trend compared to that of other features. Fig. 7. 
shows the wavelet energy variation for different depth 
of cuts over the number of workpieces. In the present 
observation, the wavelet energy revealed that the 
critical wear instant begins at the 7th workpiece, where 
a burn mark occurrence on the workpiece is seen. 

3.2.5. Entropy Measures 

Different entropies such as approximate entropy, 
Shannon entropy, sample entropy, fuzzy entropy, 
permutation entropy, conditional entropy and 
corrected conditional entropy were computed for the 
motor current signals. It was observed that the 
Shannon Entropy showed more significant variation 

Fig.  6. Variation in first peak spectral area ratio of grinding motor 
current for varying depth of cut over number of workpieces 

Fig.  7. Variation in wavelet energy of motor current for varying 
depth of cuts over number of workpieces 

Fig.  5. Power spectral density of grinding spindle motor current 
signal 



 Kalpana Kannan et al. / Procedia Manufacturing 26 (2018) 1230–1241 1235
 Kalpana Kannan et al / Procedia Manufacturing 00 (2018) 000–000 5 

Consecutively, the grinding wheel surface images 
after each grounded workpiece were captured at 12 
different positions in the wheel periphery. The 
acquired images were then transferred through frame 
grabber and stored in PC for further processing.  The 
experiments were continued until a burn mark which 
signifies the end of wheel life is observed on the 
workpiece as shown in Fig. 2b. 

3. Multi-domain signal analyses 

3.1.1 Current Signal Denoising 

The spindle motor current analyses were 
performed considering 1st, 3rd and 6th passes of 
grinding. However, the results are shown only for the 
6th pass. Based on the minimum entropy and the 
maximum energy criteria [18-19], in the present study, 
level 5 of Daubechies wavelet is selected to perform 
the signal denoising. Fig. 3 shows the original and the 
de-noised spindle motor current signals of the 6th pass. 
The de-noised signal has been analyzed further in the 
time domain to study the variation in motor current 
signal for changing grinding characteristics over the 
number of workpieces. 

3.2.2. Time Domain Analysis 
 

The time domain indices such as RMS, variance, 
kurtosis, skewness, shape factor and crest factor of 
motor current signals were evaluated. It is observed, 

that the changing trend of RMS is more evident. This 
is because, as the spindle motor current during 
roughing draws higher current due to increased 
material removal, thus increased force. Also during 
semi-finishing and finishing, less material removal 
results in less force and hence drop in the motor 
current of the grinding spindle is observed.  Fig. 4. 
shows the grinding wheel spindle motor current 
variation for varying depth of cuts (20µm, 10µm, and 
5µm). The motor current signal at varying depth of 
cuts showed fluctuating trend till 7th workpiece. These 
fluctuations are due to one of the following: (a) wear 
flat, (b) loading, (c) self-sharpening effects of the 
cutting edges. The useful life limit of the grinding 
wheel is confirmed by a substantial increase in the 
motor current RMS signal after the 7th workpiece at 
which burn marks on the ground workpieces are 
witnessed.  

In the time domain analysis, RMS is proven to be 
varying with the grinding wheel performance and 
found to track the dressing time more evidently than 
the other time domain features. Though the time 
domain parameter (RMS) is popularly used in real 
time due to its simplicity and lesser time complexity 
[20], to obtain more information on the measured 
current signal and to confirm that the increase in the 
RMS is solely dependent on wheel degradation, rather 
than the drop in the supply voltage or the motor 
overload or failures in the rotor and the stator windings 
[21], frequency and time-frequency domains analyses 
have been carried out.  

 
3.2.3. Frequency Domain Analysis 
 

Any undesirable events such as drop in the supply 
voltage, bearing failure, winding failures shows a 

Fig.  3. (a) Original; (b) De-noised current signal 

Fig.  4. Variation in grinding spindle motor current for different 
depths of cut over number of workpieces 
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significant peak at respective frequencies along with 
the supply frequency and the harmonic content of the 
current signal in the frequency domain. The power 
spectral density (PSD) of the spindle motor current is 
computed as shown in Fig 5.  Dominant peaks are 
observed only at supply (50Hz) and harmonics 
frequencies (100Hz, 150Hz). Thus, from the PSD it is 
evident that the increase in the RMS is purely due to 
the wheel degradation. 

Further, it was observed that the changing trend of 
peak spectral area ratio is more obvious, with varying 
wheel characteristics against the number of 
workpieces. Fig. 6. shows the variation in the spectral 
area ratio of PSD of the motor current signal for 
different depth of cuts (20µm, 10µm, and 5µm) over 
the grinding life period.  At the initial stage of grinding 
zone, the grinding force is unstable; hence an increase 
in the spectral ratio was observed at workpiece 2. 
Further, as the workpiece conforms to the wheel, a 
steady state was reached, where the forces remain 
almost constant and thus the spectral ratio maintains 
minimum variation. Whereas, it is evident that after 
the 7th workpiece, where burn marks were witnessed 

on the workpieces, a sharp sustained increase in 
spectral area ratio was observed due to increased force 
indicating the end of wheel life. 

3.2.4. Wavelet Analysis 

Wavelet transform supports multi-resolution 
analysis and represents short time interval with precise 
high-frequency details and lengthy time interval with 
low-frequency details [22]. The measured motor 
current signal is decomposed into 7 levels approximate 
(A7) and detailed (D7) coefficients using db5 wavelet. 
The detailed coefficients of each level were compared 
and it was found that the approximate and detailed 
coefficients of 6th and 7th levels had a clear signal over 
time with reduced noise. Hence, the wavelet 
decomposed components of the 6th and 7th levels were 
combined in the reconstruction of the signal. Features 
such as energy, variance were computed from the 
reconstructed signal. It was observed that, the energy 
variation over the number of workpieces showed a 
clear trend compared to that of other features. Fig. 7. 
shows the wavelet energy variation for different depth 
of cuts over the number of workpieces. In the present 
observation, the wavelet energy revealed that the 
critical wear instant begins at the 7th workpiece, where 
a burn mark occurrence on the workpiece is seen. 

3.2.5. Entropy Measures 

Different entropies such as approximate entropy, 
Shannon entropy, sample entropy, fuzzy entropy, 
permutation entropy, conditional entropy and 
corrected conditional entropy were computed for the 
motor current signals. It was observed that the 
Shannon Entropy showed more significant variation 

Fig.  6. Variation in first peak spectral area ratio of grinding motor 
current for varying depth of cut over number of workpieces 

Fig.  7. Variation in wavelet energy of motor current for varying 
depth of cuts over number of workpieces 

Fig.  5. Power spectral density of grinding spindle motor current 
signal 
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with wheel characteristics over the grinding period 
than the other measured entropies. Fig. 8. shows the 
variation in the motor current Shannon entropy over 
increasing workpieces for different grinding stages 
(roughing, semi-finishing and finishing). With 
grinding time, the grinding wheel undergoes attrition 
wear and loading which results in the motor current 
signal irregularity. A rapid drop of Shannon Entropy 
from the 5th to the 6th workpiece followed by a 
sustained decrease after the 7th workpiece (burn mark 
occurred) during roughing clearly depicts the end of 
wheel life.  

From the above analyses four features namely, 
RMS, peak spectral area ratio, energy and Shannon 
entropy were observed to signify the wheel 
characteristics effectively over the grinding period. To 
select the best feature among the extracted features 
prognostic metrics such as monotonicity, 
prognosability and trendability were evaluated. 

 
3.2.6. Prognostic metrics evaluation 
 

The best feature among the extracted features such 
as the spindle motor current RMS, peak spectral area 
ratio, energy and Shannon entropy is selected based on 
the following ideal prognostic parameters such as 
monotonicity (m), prognosability (p) and trendability 
(t) [23-24]. The prognostic parameters evaluated for 
the extracted features for different depth of cuts are 
tabulated in Table 2. The results clearly depict that, at 
all grinding stages (roughing, semi-finishing, 
finishing), the motor current RMS value is observed to 
have high monotonicity, prognosability and 
trendability characteristics than that of peak spectral 
area ratio, energy, and Shannon entropy. It was also 

verified that the motor current RMS variation is purely 
based on wheel degradation by performing frequency 
and time-frequency domain analysis. This attributes 
that the motor current RMS feature has the advantage 
of perfectly representing the grinding wheel end of life 
information over varying operating conditions without 
any need of prior knowledge.  

 
Table 2. Prognostic Metrics 
Depth of 
cut (µm) 

Motor current features m p t 

20 RMS 0.5 0.872 0.961 

 Peak spectral area ratio 0.25 0.326 0.260 

 Energy 0.859 0.693 0.5 

 Shannon Entropy 0.625 0.752 0.863 

10 RMS 1 0.928 0.985 

 Peak spectral area ratio 0.33 0.685 0.722 

 Energy 0.203 0.387 0.833 

 Shannon Entropy 0.571 0.786 0.930 

5 RMS 0.833 0.904 0.958 

 Peak  spectral area ratio 0.33 0.62 0.657 

 Energy  0.833 0.725 0.67 

 Shannon Entropy 0.833 0.892 0.952 

4. Wheel Surface Image Analysis 

The wheel surface images acquired during the 
grinding tests are shown in Fig. 9. Wide optical 
characteristic discrimination between the abrasive, the 
bond and the metal chip in the grinding wheel is 
observed due to the variation in the intensity of the 
reflected light. The image size of 768 x768 with grey 
scale range 0-255 is used in the analysis.  

Fig.  8. Variation in Shannon entropy of motor current for varying 
depth of cuts over number of workpieces 

Fig.  9. Grinding wheel surface images 
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 4.1. Image Processing 
 

Image processing is carried out to identify the 
intrinsic features signifying the end of wheel life. Fig. 
10. shows the illustration of each steps carried out in 
processing the grinding wheel surface images. The 
original wheel surface image as shown in Fig. 10a is 
segmented by region growing technique. Fig. 10b 
shows the segmented image which clearly defines the 
abrasive wear flats or loaded metal chips from 
background due to its high pixel intensities.  

Image threshold is applied to discriminate between 
wheel loadings and wear flat percentage in the wheel 
surface based on variation in their pixel intensities. As 
the metal chip adhered to the wheel has high pixel 
intensity than the wear flat, the grey scale pixel 
intensity greater than 250 is considered as loaded 
particle. The wear flat pixel intensity range is 
considered between 150 and 250. Fig. 10c shows the 
loaded image discriminated from wear flat by 
threshold. The image is further dilated as shown in Fig. 
10d to evidently define the loaded region. Fig. 10 
shows the binary image with filled holes forming 
closed contour pixel outlining well defined chip 
loaded area. Finally, the image is smoothened as 
shown in the Fig. 10f. 

 
4.2. Percentage variation in loaded and wear flat 
areas to wheel surface 
 
a) Wheel loading 

 
Fig. 11. shows the processed images that illustrate 

the loaded area variation over the grinding period. The 
percentage of loaded area is computed from the 

processed image by dividing the pixels of area of 
interest by total number of pixels of the image. The 
percentage variation of loaded area over the period of 
end of wheel life is plotted in Fig. 13. As the number 
of pores in a newly dressed wheel is more, a gradual 
increase in loaded percentage at the initial stages of 
grinding is observed. The sudden drop in the loaded 
percentage at the 5th workpiece indicates the 
dislodgment of loaded debris due to its stack up effect. 
Rapid increase in wheel loading percentage is 
observed after the 7th workpiece, where burn mark is 
observed on the workpiece. 

b) Wear flat 

Wear flats in grinding are due to rubbing action of 
abrasive cutting edges against the workpiece. Over the 
period of grinding, the cutting edges losses its cutting 
ability results in glaze flat areas. These glaze flats have 

Fig.  10. (a) Original image; (b) Region-Growing Segmented image; 
(c) Loaded image; (d) Dilated image; (e) binary hole filled image; (f) 
smoothened image Fig. 11. Grinding wheel surface loaded images over number of 

workpieces 

Fig. 12. Percentage loaded wheel load and wear flat to the 
grinding wheel over number of workpieces 
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with wheel characteristics over the grinding period 
than the other measured entropies. Fig. 8. shows the 
variation in the motor current Shannon entropy over 
increasing workpieces for different grinding stages 
(roughing, semi-finishing and finishing). With 
grinding time, the grinding wheel undergoes attrition 
wear and loading which results in the motor current 
signal irregularity. A rapid drop of Shannon Entropy 
from the 5th to the 6th workpiece followed by a 
sustained decrease after the 7th workpiece (burn mark 
occurred) during roughing clearly depicts the end of 
wheel life.  

From the above analyses four features namely, 
RMS, peak spectral area ratio, energy and Shannon 
entropy were observed to signify the wheel 
characteristics effectively over the grinding period. To 
select the best feature among the extracted features 
prognostic metrics such as monotonicity, 
prognosability and trendability were evaluated. 

 
3.2.6. Prognostic metrics evaluation 
 

The best feature among the extracted features such 
as the spindle motor current RMS, peak spectral area 
ratio, energy and Shannon entropy is selected based on 
the following ideal prognostic parameters such as 
monotonicity (m), prognosability (p) and trendability 
(t) [23-24]. The prognostic parameters evaluated for 
the extracted features for different depth of cuts are 
tabulated in Table 2. The results clearly depict that, at 
all grinding stages (roughing, semi-finishing, 
finishing), the motor current RMS value is observed to 
have high monotonicity, prognosability and 
trendability characteristics than that of peak spectral 
area ratio, energy, and Shannon entropy. It was also 

verified that the motor current RMS variation is purely 
based on wheel degradation by performing frequency 
and time-frequency domain analysis. This attributes 
that the motor current RMS feature has the advantage 
of perfectly representing the grinding wheel end of life 
information over varying operating conditions without 
any need of prior knowledge.  

 
Table 2. Prognostic Metrics 
Depth of 
cut (µm) 

Motor current features m p t 

20 RMS 0.5 0.872 0.961 

 Peak spectral area ratio 0.25 0.326 0.260 

 Energy 0.859 0.693 0.5 

 Shannon Entropy 0.625 0.752 0.863 

10 RMS 1 0.928 0.985 

 Peak spectral area ratio 0.33 0.685 0.722 

 Energy 0.203 0.387 0.833 

 Shannon Entropy 0.571 0.786 0.930 

5 RMS 0.833 0.904 0.958 

 Peak  spectral area ratio 0.33 0.62 0.657 

 Energy  0.833 0.725 0.67 

 Shannon Entropy 0.833 0.892 0.952 

4. Wheel Surface Image Analysis 

The wheel surface images acquired during the 
grinding tests are shown in Fig. 9. Wide optical 
characteristic discrimination between the abrasive, the 
bond and the metal chip in the grinding wheel is 
observed due to the variation in the intensity of the 
reflected light. The image size of 768 x768 with grey 
scale range 0-255 is used in the analysis.  

Fig.  8. Variation in Shannon entropy of motor current for varying 
depth of cuts over number of workpieces 

Fig.  9. Grinding wheel surface images 
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 4.1. Image Processing 
 

Image processing is carried out to identify the 
intrinsic features signifying the end of wheel life. Fig. 
10. shows the illustration of each steps carried out in 
processing the grinding wheel surface images. The 
original wheel surface image as shown in Fig. 10a is 
segmented by region growing technique. Fig. 10b 
shows the segmented image which clearly defines the 
abrasive wear flats or loaded metal chips from 
background due to its high pixel intensities.  

Image threshold is applied to discriminate between 
wheel loadings and wear flat percentage in the wheel 
surface based on variation in their pixel intensities. As 
the metal chip adhered to the wheel has high pixel 
intensity than the wear flat, the grey scale pixel 
intensity greater than 250 is considered as loaded 
particle. The wear flat pixel intensity range is 
considered between 150 and 250. Fig. 10c shows the 
loaded image discriminated from wear flat by 
threshold. The image is further dilated as shown in Fig. 
10d to evidently define the loaded region. Fig. 10 
shows the binary image with filled holes forming 
closed contour pixel outlining well defined chip 
loaded area. Finally, the image is smoothened as 
shown in the Fig. 10f. 

 
4.2. Percentage variation in loaded and wear flat 
areas to wheel surface 
 
a) Wheel loading 

 
Fig. 11. shows the processed images that illustrate 

the loaded area variation over the grinding period. The 
percentage of loaded area is computed from the 

processed image by dividing the pixels of area of 
interest by total number of pixels of the image. The 
percentage variation of loaded area over the period of 
end of wheel life is plotted in Fig. 13. As the number 
of pores in a newly dressed wheel is more, a gradual 
increase in loaded percentage at the initial stages of 
grinding is observed. The sudden drop in the loaded 
percentage at the 5th workpiece indicates the 
dislodgment of loaded debris due to its stack up effect. 
Rapid increase in wheel loading percentage is 
observed after the 7th workpiece, where burn mark is 
observed on the workpiece. 

b) Wear flat 

Wear flats in grinding are due to rubbing action of 
abrasive cutting edges against the workpiece. Over the 
period of grinding, the cutting edges losses its cutting 
ability results in glaze flat areas. These glaze flats have 

Fig.  10. (a) Original image; (b) Region-Growing Segmented image; 
(c) Loaded image; (d) Dilated image; (e) binary hole filled image; (f) 
smoothened image Fig. 11. Grinding wheel surface loaded images over number of 

workpieces 

Fig. 12. Percentage loaded wheel load and wear flat to the 
grinding wheel over number of workpieces 
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pixels with high grey scale values as the polished surface 
of the wear flats reflects more light. The percentage of 
wear flat area is calculated by dividing the number of 
white pixels present in the wear flat area by total 
number of pixels of the image. Fig. 12 shows the 
processed images showing wear flat areas. The 
percentage variation of wear flat area over the period 
of end of wheel life is plotted in Fig. 13. The wear flat 
percentage is observed to increase gradually till 7th 
workpiece. After the 7th workpiece, burn mark 
occurrence is observed on the workpiece where the 
percent wear flat areas increased rapidly.  

5. Redress life Model development and Validation 

5.1 Auto-Regressive Moving Average  

ARMA model combines Auto-Regression and 
Moving Average methods to predict a well behaved 
time series data. ARMA considers time series as 
stationary and assumes its approximate uniform 
fluctuate approximately uniform around the time-
invariant mean. Thus, ARMA is more adequate for 
prediction of stationary time series. In the present 
work, though grinding is a stochastic process, the 
motor current RMS utilized in the development of 
redress life model exhibits stationarity in time series 
as the signals were recorded at a discrete equally 
spaced time interval. Thus in the present work, an 
ARMA model, used for modeling and forecasting 
univariate linear time series data, is developed to 
anticipate the grinding wheel redress life estimation.  
An AR(a) model of order ‘a’ uses a linear combination 

of the past ‘a’ observations of the time series along 
with a random error component to model the future 
values. MA(m) model, uses the past ‘m’ error 
components to model the future values. ARMA (a, m) 
forecasting model for time series v(t) is given by [25-
26], 

 
𝑣𝑣(𝑡𝑡) = 𝐻𝐻(𝑞𝑞−1)𝑒𝑒(𝑡𝑡)                                                       (1) 
 

 𝐻𝐻(𝑞𝑞−1) = 1+∑ 𝑐𝑐𝑖𝑖𝑞𝑞−1𝑎𝑎
𝑖𝑖=1

1+∑ 𝑑𝑑𝑖𝑖𝑞𝑞−1𝑎𝑎
𝑖𝑖=1

                                                  (2) 

where, H(q-1) is a lag or shift operator, e(t) is the 
unpredictable ideal random component at time t, ‘a’ 
and ‘m’ represents orders of AR and MA model, ci, and 
di represents the coefficients of AR and MA model 
respectively.  

Based on the minimum Normalized Mean Square 
Error criterion [27], ARMA (3, 3) model is chosen to 
predict the grinding wheel redress life before the 
wheel reaches its end of life. The forecast length is 
considered as 5. Fig. 14. shows the time series 
predicted motor current RMS values for different 
depth of cuts (20µm, 10µm, 5µm) signifying the 
redress time of the grinding wheel. Table 3 shows the 
measured and predicted values of last 5 data points of 
the motor current RMS. The threshold is fixed based 
on burn mark occurrence observed on the workpiece 
during grinding.   

Table 3. Experimental runs and results 
Time (s) Predicted (RMS) Actual (RMS) 

2745 1.375 1.467 

2925 1.224 1.316 

3105 0.928 1.012 

3195 1.370 1.462 

3240 1.413 1.501 

Fig. 14. Prediction of grinding wheel redress life 

Fig. 13. Percentage loaded wheel load and wear flat to the grinding 
wheel over a number of workpieces 
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pixels with high grey scale values as the polished surface 
of the wear flats reflects more light. The percentage of 
wear flat area is calculated by dividing the number of 
white pixels present in the wear flat area by total 
number of pixels of the image. Fig. 12 shows the 
processed images showing wear flat areas. The 
percentage variation of wear flat area over the period 
of end of wheel life is plotted in Fig. 13. The wear flat 
percentage is observed to increase gradually till 7th 
workpiece. After the 7th workpiece, burn mark 
occurrence is observed on the workpiece where the 
percent wear flat areas increased rapidly.  

5. Redress life Model development and Validation 

5.1 Auto-Regressive Moving Average  

ARMA model combines Auto-Regression and 
Moving Average methods to predict a well behaved 
time series data. ARMA considers time series as 
stationary and assumes its approximate uniform 
fluctuate approximately uniform around the time-
invariant mean. Thus, ARMA is more adequate for 
prediction of stationary time series. In the present 
work, though grinding is a stochastic process, the 
motor current RMS utilized in the development of 
redress life model exhibits stationarity in time series 
as the signals were recorded at a discrete equally 
spaced time interval. Thus in the present work, an 
ARMA model, used for modeling and forecasting 
univariate linear time series data, is developed to 
anticipate the grinding wheel redress life estimation.  
An AR(a) model of order ‘a’ uses a linear combination 

of the past ‘a’ observations of the time series along 
with a random error component to model the future 
values. MA(m) model, uses the past ‘m’ error 
components to model the future values. ARMA (a, m) 
forecasting model for time series v(t) is given by [25-
26], 

 
𝑣𝑣(𝑡𝑡) = 𝐻𝐻(𝑞𝑞−1)𝑒𝑒(𝑡𝑡)                                                       (1) 
 

 𝐻𝐻(𝑞𝑞−1) = 1+∑ 𝑐𝑐𝑖𝑖𝑞𝑞−1𝑎𝑎
𝑖𝑖=1

1+∑ 𝑑𝑑𝑖𝑖𝑞𝑞−1𝑎𝑎
𝑖𝑖=1

                                                  (2) 

where, H(q-1) is a lag or shift operator, e(t) is the 
unpredictable ideal random component at time t, ‘a’ 
and ‘m’ represents orders of AR and MA model, ci, and 
di represents the coefficients of AR and MA model 
respectively.  

Based on the minimum Normalized Mean Square 
Error criterion [27], ARMA (3, 3) model is chosen to 
predict the grinding wheel redress life before the 
wheel reaches its end of life. The forecast length is 
considered as 5. Fig. 14. shows the time series 
predicted motor current RMS values for different 
depth of cuts (20µm, 10µm, 5µm) signifying the 
redress time of the grinding wheel. Table 3 shows the 
measured and predicted values of last 5 data points of 
the motor current RMS. The threshold is fixed based 
on burn mark occurrence observed on the workpiece 
during grinding.   

Table 3. Experimental runs and results 
Time (s) Predicted (RMS) Actual (RMS) 

2745 1.375 1.467 

2925 1.224 1.316 

3105 0.928 1.012 

3195 1.370 1.462 

3240 1.413 1.501 

Fig. 14. Prediction of grinding wheel redress life 

Fig. 13. Percentage loaded wheel load and wear flat to the grinding 
wheel over a number of workpieces 
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5.2. Validation  
 

To ascertain the validity of the developed model, 
further 2 sets of experiment were performed for the 
same operating conditions as tabulated in Table 1. Fig. 
15. shows the measured RMS values for 20μm depth 
of cut of the three experimental runs. In the second and 
third runs, burn marks were observed at 6th and 8th 
workpieces respectively. The Fit Percent of the 
predicted value to the measured value evaluated by 
Normalized Root Mean Square and the gained residual 
error expressing the differences between the measured 
and estimated behavior given by Mean Square Error 
(MSE) were chosen to validate the developed model 
[27].  The evaluated Fit Percent and MSE for the three 
experimental runs are tabulated in Table 4. 

𝐹𝐹𝐹𝐹𝐹𝐹 = 100 ∗ (   1−|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴|
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ) %             (3)     

  
𝑀𝑀𝑀𝑀𝑀𝑀 = (𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴)2                               (4) 
 
Table 4. Experimental runs and results 
Experiments FPT (%) MSE 

1 75.87 0.0084 

2 72.58 0.0103 

3 75.48 0.0075 

6. Development of IoT platform  

Based on cloud services, IoT architectures are 
categorized as IoTMaaS, IoTPaaS, IoTIaaS, and 
IoTSaaS.  IoTPaaS are found to be widespread among 
other architectures due to the following salient features 
[16],  

 Allows connectivity of any physical devices 
to the IoT platform, supports any IoT 
transmission protocol over various 
communication network and thus provides 
domain independent services. 

 Enables rapid development and deployment 
of runtime, application tools and API’s based 
on client application requirement. 

 Allows concurrent users to provide control 
over device capability, cloud resources and 
application management through 
virtualization due to its multiple tenancy 
ability.  

In the present work, IoTPM2.5 architecture, based 
on IoTPaaS, is chosen for the development of IoT 
platform [28]. Fig. 16. shows the architecture of the 
developed IoT platform. It consists of five layers, 
namely the physical layer, the transport layer, the 
processing layer, the application layer and the business 
layer. The physical layer integrates the sensors where 
the information of the grinding wheel is recorded. In 
the transport layer, the sensed information along with 
the machining details are transferred to a local PC 
where the information is processed. The processed 
information is later communicated through a wireless 
gateway module to the IoT cloud server. The IoT cloud 
server is a type of Internet-based computing service 
that provides shared computer storage and information 
access to other devices or computers on demand. Any 
further processing of the information can also be 
carried out in the gateway. The information thus stored 
in the IoT cloud can be accessed anytime from 
anyplace and can trigger the control of dressing system 
to enable automatic dressing based on the wheel 
condition. 

Fig. 15. Comparison of motor current RMS for 3 sets of experiments 

 

Fig. 16. IoT architecture 
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7. Results and Discussion 

7.1. Reliability evaluation of prognostic parameter 

The usefulness and the reliability of the identified 
prognostic parameter of the spindle motor current are 
validated by wheel surface images and grinding 
forces. Fig. 17. shows the comparative results of motor 
current RMS, the percentage grinding wheel surface 
wear flat area and the grinding forces variation over 
the number of workpieces for different depth of cuts. 

It is apparent from the above graphs that the motor 
current RMS follows trends similar to grinding force 
and the percentage wear flat area. It is also observed 
that the motor current RMS effectively differentiates 
the roughing, semi-finishing and finishing stages of 
grinding. Thus the motor current RMS is proven to be 
an effective prognostic parameter in the estimation of 
grinding wheel redress life. 

7.2. Prediction Accuracy 

From Table 4, it is observed that the fit percentage 
between the predicted and measured motor current 
RMS shows about 75% accuracy with a minimum 
mean squared error. Thus predicted values of motor 
current RMS are observed to have a good correlation 
with the measured motor current RMS. Hence the 
developed model will be useful in predicting the 
dressing life of the grinding wheel before the wheel 
reaches the end of the life.  

7.3. Real-Time tracking and graphical visualization of 
dressing time 

For real-time tracking and visualization of grinding 
wheel redress time, IoT cloud server based android 

application is developed using Android Studio 2.3.2. The 
information on prognostic parameter variation over the 
number of workpieces processed in the local host is 

transferred and stored to the cloud server. The developed 
android application shown in Fig.18. allows real-time 
tracking and graphical visualization of prognostic 
parameter variation during grinding and allows decision 
makers to make an instant decision on grinding wheel 
redress time. 
 
8. Conclusion 
 

In this study, a remote system to detect the grinding 
wheel redress life using a cost-effective sensor 
technology has been developed. Based on the results, 
the following conclusions are drawn, 

 
 Low cost, simple installation, and process 

non-intrusive monitoring efficiency of the 
current sensor allows development of 
economical and effective grinding wheel 
condition monitoring system. 

 Based on prognostic metrics (Monotonicity, 
Prognosability, and Trendability) evaluation, 
RMS of the spindle motor current was found to 
be an effective grinding wheel redress life 
prognostic parameter. 

 Multi-domain signal analyses evidence that 
RMS variation is solely due to wheel 
degradation.  

 The usefulness of motor current RMS 
variation in assessing the grinding wheel end 
life during various grinding stages (Roughing, 

Fig. 17. Motor current RMS, Grinding forces, Percentage Wear 
flat, variation over number of ground workpieces 

Fig. 18. Grinding wheel redress life estimation- Android 
application 
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Semi-Finishing, and Finishing) was 
confirmed by comparing with grinding wheel 
surface images and grinding forces. 

 The time series ARMA model was developed 
and validated to predict the grinding wheel 
redress life with 75% prediction accuracy with 
motor current RMS as an input. 

 An IoT platform was developed which allows 
integration of sensor information, processes 
information and operators to communicate 
with each other and facilitate real-time 
traceability and visibility on grinding wheel 
redress life from anyplace and control over the 
dressing unit to perform automatic dressing 
before the wheel reaches its end of life. Thus, 
prevents and maintains the part quality with 
specific surface tolerance.   
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7. Results and Discussion 

7.1. Reliability evaluation of prognostic parameter 

The usefulness and the reliability of the identified 
prognostic parameter of the spindle motor current are 
validated by wheel surface images and grinding 
forces. Fig. 17. shows the comparative results of motor 
current RMS, the percentage grinding wheel surface 
wear flat area and the grinding forces variation over 
the number of workpieces for different depth of cuts. 

It is apparent from the above graphs that the motor 
current RMS follows trends similar to grinding force 
and the percentage wear flat area. It is also observed 
that the motor current RMS effectively differentiates 
the roughing, semi-finishing and finishing stages of 
grinding. Thus the motor current RMS is proven to be 
an effective prognostic parameter in the estimation of 
grinding wheel redress life. 

7.2. Prediction Accuracy 

From Table 4, it is observed that the fit percentage 
between the predicted and measured motor current 
RMS shows about 75% accuracy with a minimum 
mean squared error. Thus predicted values of motor 
current RMS are observed to have a good correlation 
with the measured motor current RMS. Hence the 
developed model will be useful in predicting the 
dressing life of the grinding wheel before the wheel 
reaches the end of the life.  

7.3. Real-Time tracking and graphical visualization of 
dressing time 

For real-time tracking and visualization of grinding 
wheel redress time, IoT cloud server based android 

application is developed using Android Studio 2.3.2. The 
information on prognostic parameter variation over the 
number of workpieces processed in the local host is 

transferred and stored to the cloud server. The developed 
android application shown in Fig.18. allows real-time 
tracking and graphical visualization of prognostic 
parameter variation during grinding and allows decision 
makers to make an instant decision on grinding wheel 
redress time. 
 
8. Conclusion 
 

In this study, a remote system to detect the grinding 
wheel redress life using a cost-effective sensor 
technology has been developed. Based on the results, 
the following conclusions are drawn, 

 
 Low cost, simple installation, and process 

non-intrusive monitoring efficiency of the 
current sensor allows development of 
economical and effective grinding wheel 
condition monitoring system. 

 Based on prognostic metrics (Monotonicity, 
Prognosability, and Trendability) evaluation, 
RMS of the spindle motor current was found to 
be an effective grinding wheel redress life 
prognostic parameter. 

 Multi-domain signal analyses evidence that 
RMS variation is solely due to wheel 
degradation.  

 The usefulness of motor current RMS 
variation in assessing the grinding wheel end 
life during various grinding stages (Roughing, 

Fig. 17. Motor current RMS, Grinding forces, Percentage Wear 
flat, variation over number of ground workpieces 

Fig. 18. Grinding wheel redress life estimation- Android 
application 
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Semi-Finishing, and Finishing) was 
confirmed by comparing with grinding wheel 
surface images and grinding forces. 

 The time series ARMA model was developed 
and validated to predict the grinding wheel 
redress life with 75% prediction accuracy with 
motor current RMS as an input. 

 An IoT platform was developed which allows 
integration of sensor information, processes 
information and operators to communicate 
with each other and facilitate real-time 
traceability and visibility on grinding wheel 
redress life from anyplace and control over the 
dressing unit to perform automatic dressing 
before the wheel reaches its end of life. Thus, 
prevents and maintains the part quality with 
specific surface tolerance.   
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