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We present experimental results of high Reynolds number motion of partially non-wetting
liquid drops on inclined plane surfaces using (i) water on Fluoro-Alkyl Silane (FAS)
coated glass and (ii) mercury on glass. The former surface is a high hysteresis (35°)
surface while the latter a low hysteresis one (6°). The water drop experiments have
been conducted for Capillary numbers 0.0003 < Ca < 0.0075 and for Reynolds numbers
based on drop diameter 137 < Re < 3142. The range of C'a and Re for mercury on
glass experiments are 0.0002 < Ca < 0.0023 and 3037 < Re < 20069. It is shown
that when Re > 103 for water and Re > 10 for mercury, a boundary layer flow model
accounts for the observed velocities. A general expression for the dimensionless velocity
of the drop, covering the whole Re range, is derived, which scales with the modified
Bond number (Boy,). This expression shows that at low Re, Ca ~ Bo,, and at large
Re, Cav/Re ~ Bo,,. The dynamic contact angle () variation scales, at least to first
order, with Ca; the contact angle variation in water, corrected for the hysteresis, actually
collapse on the low Re data of Le Grand et al. (2005). The receding contact angle variation
of mercury has a slope very different from that in water, but the variation is practically
linear with C'a. We compare our dynamic contact angle data to several models available
in the literature. Most models can describe the data of Le Grand et al. (2005) for high
viscosity silicon oil, but often need unexpected parameters to describe our water and
mercury data. In particular, purely hydrodynamic description requires unphysically small
values of slip length, while the molecular-kinetic model shows asymmetry between the
wetting and dewetting, which is quite strong for mercury. The model by Shikhmurzaev
(1993) is able to group the data for the three fluids around a single curve, thereby
restoring a certain symmetry, by using two adjustable parameters that have reasonable
values. At larger velocities, the mercury drops undergo a change at the rear from an
oval to a corner shape when viewed from above; the corner transition occurs at a finite,
receding contact angle. Water drops do not indicate such a clear transition from oval to
corner shape. Instead, there appears to occur a direct transition from an oval shape to a
rivulet.

1. Introduction

When drops move over surfaces, various regimes of motion occur based on the balance
between the gravitational driving force, the contact line resistance and the viscous fric-
tion forces in the bulk. For the commonly occurring partially non-wetting fluid-surface
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combinations, the lower resistance at the contact line and low kinematic viscosity often
results in high Reynolds number (Re) motion of the drops. However, the Capillary num-
ber (Ca) can be low because common fluids have high surface tension. Such capillary
and inertia dominated drop motion is of importance in spray coating, lithography, micro
fluidics, drop condensation and in flow over hydrophobic coatings. In spite of the practi-
cal importance and the fundamental interest of this regime of drop motion, virtually no
experimental results are available.

Onset of drop motion on an inclined plane occurs at a critical slope angle a, at which
the contact angle resistance is overcome by gravity. For a given drop volume V', a.
depends on the difference between the static advancing (6s,) and the static receding (6s,)
contact angles, i.e. on the contact angle hysteresis 65, — 05, (Bikerman 1950; Furmidge
1962; Dussan & Chow 1983; Dussan 1985). Once the motion is initiated, the drops move
down the inclined surface at constant speed. The conditions at the contact line impose
a resistance to the flow so that the velocity of an advancing liquid front is greater at the
free surface than at the contact line, causing a rolling motion (Dussan & Davis 1974).
By equating the driving gravitational potential energy - corrected for the losses at the
contact line - to the predominant viscous dissipation in the wedge of fluid near the contact
line, C'a, the dimensionless velocity of low Re viscous drops is obtained as,

Ca ~ Bopy, (1.1)

(Durbin 1988; Podgorski, Flesselles & Limat 2001; Kim, Lee & Kang 2002). Here, Ca =
uU/o is the capillary number with U being the velocity of the drop, p the dynamic
viscosity and o the surface tension of the fluid in air. The modified Bond number is,

Bo,, = Bo, — Bo, (1.2)
with the Bond number defined as
Bo, = pV?/3gsin a/o, (1.3)

where p is the density of the fluid, « the angle of inclination of the surface to the horizontal
and g the acceleration due to gravity.

Bo. = cyw(cos s, — cos 95,1)/V1/3, (1.4)

where w is the width of the drop and ¢; a pre-factor of order one. Re = Ud/v is the
Reynolds number, with d being the undeformed drop diameter and v the kinematic
viscosity. The relation (1.1) is valid only when Re is small and when the variation of
the dynamic contact angles (64) are not appreciable from their static values; no general
expression for the velocity of drops on inclines is available.

When the drop moves at appreciable velocities, the wetting or the dynamic advancing
contact angles (,) and the de-wetting or the dynamic receding contact angles (6,.) change
from their static values. Various models relating these dynamic contact angles (64) with
the dimensionless drop velocity, Ca have been proposed (Blake & Haynes 1969; Voinov
1976; de Gennes 1986; Cox 1986, 1998; Shikhmurzaev 1993); a recent review discusses
some of these models (Bonn, Eggers, Indekeu, Meunier & Rolley 2009). All of these
models are of the form

f(04,65) ~ Ca, (1.5)

where 65 denotes the static contact angle that is supposed to be equal to 84, or 0, in
most models, based on whether we consider the advancing or the receding side. f is a
transcendental function when the model is valid for all 84, but usually polynomial forms
of f are obtained by truncating the series expansion of f for small 6;. Le Grand et al.
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(2005) compared the variations of 64, observed in the motion of drops of various silicon
oils at Re < 1 and Ca < 0.006, with some of the models of dynamic contact angles.
It was found that all the models agreed reasonably well with the trend of variation of
64 with Ca, the Cox-Voinov hydrodynamic model (Cox 1986; Voinov 1976) performing
the best, but needing smaller slip lengths A\ with decreasing viscosity. Slip lengths are
the microscopic lengths at which the hydrodynamic analysis has to be terminated to
prevent singularities. However, studying the unsteady motion of the contact line in impact
of drops on horizontal surfaces at Re < 1000, Bayer & Megaridis (2006) found that
unphysically small A are needed for the inertial version of the Cox model (Cox 1998).
Similar need for unphysical A in the viscous Cox-Voinov model (Cox 1986; Voinov 1976)
were also found by Hayes & Ralston (1993) in water and glycerol on PET, at Re <
27. At the same time, Le Grand et al. (2005) found that except for the Cox-Voinov
model (Voinov 1976; Cox 1986), all the other models need an asymmetry in the variation
of f(04,0s) with Ca for the receding and advancing sides to fit the data. Since these
models are local and do not distinguish between 6, and 6,., the change of f(84,60s) with
Ca is expected to be the same for the receding and advancing sides when Ca — 0, at
least in the initial version of these theories.

With increasing speeds of motion, drops also undergo a shape transition at the rear.
Studies by Podgorski et al. (2001) with silicon oil drops showed that the drops first
develop a corner and then a cusp at the rear at two critical speeds. The corner formation
was considered to be a forced wetting transition and was proposed to occur at zero
contact angle. Ben Amar et al. (2003) proposed a model in which such a corner forms
at zero contact angle as a saddle point, but this model neglected the dissipation in
the bulk of the corner. Considering this dissipation, Limat & Stone (2004) then found
theoretically that a corner needs a conical shape of the interface with a non zero contact
angle. In agreement with this theory, Le Grand et al. (2005) found by studying silicon oil
drops of a wide range of viscosities (10cP-1000cP) that the corner transition takes place
at a non-zero receding contact angle, contrary to the assumptions of Blake & Ruschak
(1979) and the hypothesis of Podgorski et al. (2001). The self similar velocity field in
such a corner and its evolution with Ca has then been studied by Snoeijer et al. (2007,
2005), even though no criterion for the formation of the corner is available. Such a forced
wetting transition at a non-zero critical receding contact angle was predicted only by
the de Gennes model(de Gennes 1986); the Cox-Voinov model predicted a forced wetting
transition at 6, = 0. However, the de Gennes model deviated from the experiments of
Le Grand et al. (2005) near the forced wetting transition.

The above-mentioned studies were conducted with viscous and fairly wetting drops,
i.e. small 6, conditions at small Re and Ca. There is no available information on the
velocity and dynamic contact angle variation of partially non-wetting drops with large
04 as a function of the fluid properties and the inclination angles at high Re. However,
the complete non-wetting case have been studied by Mahadevan & Pomeau (1999) and
Richard & Quéré (1999). Since the local Re can be small at the resolution of the contact
angle measurement, even if the Re of the drop is large, the issue of whether 64 depends
on inertia, as has been proposed by Cox (1986), is still not clear. It is therefore of interest
to conduct experiments with drops of large ; and Re, but keeping C'a small. We achieve
such a regime by using mercury drops (65 ~ 140°) on a glass surface and water drops on
Fluoro Alkyl Silane (FAS) coated glass (65 = 90°). The water drops are made to move on
an inclined FAS coated glass plate with a velocity in the range of 0.025ms ™! < U < 0.603
ms~! for an inclination angle range of 26° < a < 62°. For safety reasons, the mercury
drop was placed inside a sealed glass cylinder rotating about a horizontal axis so that the
drop was frozen relative to the observer. The range of velocities for the mercury drops
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are 0.07 ms™! < U < 0.72 ms™!; Re as large as 2 x 10* are achieved, while Cla are small
(Ca < 0.0075).

Drops offer an advantage in exploring the inertial effect on contact angles since straight
contact lines tend to be unstable resulting in a saw tooth pattern (Blake & Ruschak
1979) or fingering (Jerrett & de Bruyn 1992) at large Re. For a film on an inclined
plate at a given Ca, Re, slip length A and «, all the wavelengths larger than a critical
wavelength A, are unstable(Lopez, Bankoff & Miksis 1996; Lopez, Miksis & Bankoff
1997). The advantage of using drops to study contact angles is that small drops cut off
the large wavelengths due to their finite size so that a drop is more stable than a film
at the same Ca and Re. A gravitationally driven film is unstable to perturbations of
wavelength A\, > 271/0.9 where | = (Ho/ pg)l/ 3 is the length scale given by a gravity
surface-tension balance, with H being the film thickness (Troian, Herbolzheimer, Safran
& Joanny 1989). A film of the height of our drops will be unstable for lengths larger
than 17mm for mercury and 15.4 mm for water. Bertozzi & Brenner (1997) have shown
that fingers will form on advancing films if 64 < tanaln(H/X). This condition gives
a > 8.3° for water and o > 11.3° for mercury, the corresponding velocities will be quite
small compared to the values that we encounter in our experiments with our drops.
Earlier studies (Blake, Bracke & Shikhmurzaev 1999) have attempted experiments with
straight contact line geometries by plunging tape and falling curtain experiments, but
with very viscous liquids, and have found saw tooth configuration and air entrainment
at the advancing contact line at Re of around 47. On the contrary, since the curved
advancing contacting line in our case is with a radius Ry ~ ., where I, = \/0/pg is the
capillary length, the contact line is stable and we are able to reach Re < 20069 for the
first time. In addition to the large Re, another novelty in the present study lies in the
large values of 84 due to which comparison with the non-truncated, cosine forms of the
popular dynamic contact models are conducted.

The paper is organised as follows. The experimental setup and techniques are presented
in § 2. In § 3, we derive simple expressions for the velocity of the drops from global energy
balance, neglecting 6 variations. In § 4, we compare the predictions of dynamic contact
angles by various models with our measurements. The observations of the shape change of
the drop with velocity, presented in § 5, bring out the difference between the low hysteresis
mercury drops and the high hysteresis water drops. Conclusions and further discussions
are presented in § 6. The experiments presented in this paper were conducted by VSK.
The boundary layer model was proposed by BAP, while the general dimensionless form
for the velocity was found out by EJH and BAP. The comparison with various contact
angle models were conducted by BAP and EJH. The comparison with the Shikmurzaev’s
model was done by BAP. The paper and the replies to the Referees were written by BAP
and EJH.

2. Experimental conditions
2.1. Setup

The experimental set-up for studying the motion of water drops is shown in figure 1. A
glass plate, coated with Fluoro Alkyl Silane (FAS), of dimensions 55 x 10 cm was fixed
in an inclined position with one end supported by a thread of adjustable length so as to
allow changes in the inclination angle of the plate. To coat the glass plate with FAS, it
was first wetted with water, rubbed with fine cerium oxide to create a nascent surface
and then cleaned thoroughly. A solution of FAS, alcohol and an acid catalyst was then
applied thoroughly on the glass surface. The coated surface was then dried and then
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FIGURE 1. (a) Schematic of the inclined plate setup for water drops. (b) Schematic of the drop
geometry. The dotted line in the top view shows the equivalent circular base of the drop which
has the same base perimeter L as the actual drop.

polished with soft, glass polishing cloth and allowed to cure at room temperature for 12
hours. The FAS coated glass plate was thoroughly cleaned with acetone, propanol and
distilled water to make it dust free and homogeneous. The mono-layer of Silane molecules
binds to the glass surface, thereby changing the surface energy, and hence the contact
angles to make the glass surface partially non-wetting. 85, and 6, for water drops were
measured to be 109° and 73° respectively. Small non-uniformities in the coverage of
the mono-layer on the glass surface results in chemical inhomogeneities, causing most
of the contact angle hysteresis. Since the coating is at a molecular scale, it does not
contribute to the physical roughness of the underlying glass substrate at a macroscopic
level (Hozumi, Ushiyama, Sugimura & Takai 1999). The glass could have roughness at
the nanometer level, but could be considered as smooth at the macroscopic level. Water
drops were issued continuously from a burette onto the inclined glass plate. The mass of
the drop was m = 52.74+0.5 mg (d = 4.740.015 mm) when the water level in the burette
was maintained above the 15 cc mark. After a few millimetres of initial adjustment, the
water drop slides with a constant velocity as a result of the balance between the viscous,
contact line and gravitational forces.

For safety reasons, the mercury drops were placed inside a horizontal tube made of
float glass and sealed; rotation of the tube about a horizontal axis creates equivalent
conditions as in the case of an inclined plate. The setup consists of a horizontally rotating
glass tube of radius 7.5 cm, fixed co-axially to the shaft of a variable speed electric motor
as shown in figure 2. The mercury drop, of undeformed diameter d = 3.15 £ 0.01 mm,
having a mass of m = 220 + 2 mg, is placed inside the tube, sealed and then the tube
is rotated at various rotation rates less than 3619 RPM. For each rotation speed, the
drop moves along the inner surface of the tube and becomes stationary when a balance
among viscous, gravitational and contact line forces is achieved. Since the drop size is
small compared to the tube radius, the conditions are analogous to the steady motion of
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FIGURE 2. Schematic of the rotating glass tube setup for mercury drops.

a drop on an inclined plate. There are no centrifugal effects since the drop is stationary
in the laboratory frame of reference. The mercury experiments can be considered to be
conducted on a surface that is smooth on a macroscopic scale since float glass has no
physical roughness at scales larger than nano meters (Gupta, Inniss, Kurkjian & Zhong
2000). In addition, we thoroughly clean the glass surface with acetone, propanol and
distilled water before each experiment thereby reducing the chemical inhomogeneities.
The small contact angle hysteresis (65, — 05 = 6°) observed on this surface (see table 1)
shows the smooth nature of the surface.

Two CCD cameras (Imager Pro HS, La Vision, GMBH) were used to visualise the top
and side views of both the drops simultaneously at 25 fps with two LED light sources
of intensity 1500 lumens, as shown in figure 1. The properties and dimensions of the
mercury and water drops used in the experiments are listed in table 1.

2.2. Diagnostics and Data analysis

The three main measurements in the experiments are:

(a) the inclination angles of the solid surfaces from the horizontal,

(b) the velocity of the drops,

(¢) the dynamic contact angles of the drops.

The inclination angles in the experiments with water drops are obtained by measuring
the angles between the line segments fitted tangential to the inclined plate and parallel
to the horizontal axis in the side view images of drops. The range of inclination angles
used in the experiments was 26° < a < 62°. In the case of mercury drops, the drop will
come to rest at a specific position for a particular rotation rate of the glass tube. The
equivalent inclination angle « is measured from the side view of the drop by fixing a
tangent to the rim of the glass tube at the location of the drop. Since at larger velocities,
the mercury drops were not completely stationary, the value of the angle was determined
at each position by taking an average over a few frames. The range of inclination angles
were 5.5° < a < 14.3°. The errors in the inclination angles were less than 1.5°.
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Parameters and fluid properties at 25°C Mercury-Glass Water-FAS coated glass
Surface tension o (Nm™") 485%x1073 72x1073
Viscosity u (Pa.s) 1.53x1073 0.891x1073
Density p (kg m™) 13533.6 997
Capillary length I, (mm) 1.9 2.7
Drop mass m (mg) 220+ 2 52.7+0.5
Drop diameter d (mm) 3.15+0.01 4.7+ 0.015
Base perimeter L (mm) 11 18.8
Base radius R, (mm) 2.5 3
Base width w (mm) 4 3.3
In(R,/\) 13 13
Static advancing angle 65, 150.63 108.8
Static receding angle 63, 144.57 73.4
Critical slope angle ag 2.8 25
Ca 0.23x107% - 2.3x107%  0.3x107° - 7.5x107°
Re 2049 - 20069 137 - 3142
Critical Bond number Boae 0.085 0.81

TABLE 1. Fluid properties, contact angles and the range of parameters in the experiments. The
Bond number Bo, = pV?*/3gsin o/, the Reynolds number Re = Ud/v, where d = 2(3V /4m)/3,
w is the width of the drop base and Rj is the mean drop base radius, defined as Ry = L/2m,
where L is the drop base perimeter. A\ is the slip length. The values of w and R, are the mean
values for 0.0014 < Ca < 0.0043 for water and for 0.0011 < Ca < 0.0025 for mercury. The
properties of the fluids used are taken from Batchelor (1969).

The velocity of the sliding water drop is obtained from the displacement of the drop
in subsequent frames in top view images, after taking an average from several frames.
The range of variation of the velocity at each inclination angle was less than 5%. The
velocity of the mercury drops relative to the glass surface is the same as the velocity of
the glass surface since the mercury drops are, in the mean, stationary with respect to
the camera. The velocity of the glass surface is calculated from the measured rotation
rate of the glass tube. The rotation rate of the glass tube was read out from the motor
controller and independently measured with a digital tachometer with an accuracy of +2
rpm.

The dynamic contact angles for water and mercury drops are measured between the
tangents fitted to the solid-liquid and the liquid-air interfaces in the zoomed side views in
the image processing software Image J™. The contact angles reported are averages from
a minimum of four measurements at each velocity. The range of variation of 84 at each
velocity is about 3°. The side view images are acquired at 25 frames per second with a
resolution of 0.1mm per pixel. It is shown in Appendix A that an increase in resolution
of the images does not change the contact angles appreciably from the measured values.
Due to the curved nature of the contact line, the angle that the contact line makes with
the direction of drop motion changes along the periphery. Owing to this, the velocity
of the contact line perpendicular to itself is different along the periphery; the contact
angles are also hence different along the periphery of the drop (Prabhala, Panchagnula
& Vedantam 2012; Rio, Daerr, Andreotti & Limat 2005). However, at the front and the
back of the drop, the contact line moves perpendicular to itself and the contact line
velocity is equal to the drop velocity, till a corner/cusp forms. We hence measure the
contact angles and the velocities at the front and the back of the drop. The influence
of the variation of contact angles along the periphery on the velocities and the contact
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angles that we measure is negligible since there is negligible flow along the periphery of
the drop; all the flow at the front and the back are in the vertical plane.

3. Drop Velocities
3.1. Theoretical Background

For a given «, there exists a critical drop volume V. at which impending drop motion
is observed. Conversely, for a given drop volume V', there exists a critical slope angle a.
for impending motion. At this critical slope angle, the gravitational force,

F, = pVgsin a, (3.1)
is in balance with the local triple line pinning force,
F,.; = ciow(cos O — cos B5,), (3.2)

where c¢; is a coefficient of order unity, determined from experiments. The critical slope
angle resulting from F, = F{; is then,
crow(cos B, — cos bsq)

sina,. = . 3.3

Taking w = cV'/3, (3.3) can be written in terms of a critical Bond number in the form,

2/3 o

Bo. = M = c102(cos O — cos Osq). (3.4)
The water drops have a volume V = 0.0529 cm® and their base width is w ~ 3.3mm
(see table 1), which gives ¢y & 0.87. Since the measured critical slope angle at impending
motion is a. & 25°, we get ¢; &~ 1.5 from (3.3). Similarly, we obtain ¢ &~ 1.57 and
c1 ~ 0.97 for mercury drops, since their volume is V = 0.01625 cm?, the base width is
w =~ 4mm and the measured critical slope angle is a, ~ 2.8°. At impending motion the
shape of the mercury and the water drops are very different so that co is expected to be
different. Consequently, ¢; will also be different for the mercury and water drops. The
high hysteresis of water causes the elongation of the drop resulting in ¢; # 1, contrary
to the result of Dussan & Chow (1983). We point out here that a. is very sensitive to
any outside perturbations like surface conditions at the microscopic scale, the way the
drop is placed, stick slip behaviour etc.; the angle could not hence be determined with
high accuracy. For small contact angle hysteresis (< 10°) the expression of Bo, given by

Dussan (1985) is,

Bo. <%) 1/3 (cos B,y — cos B4q)(1 4 cos Oy,) /2 .

A\ (24 cos O5q)1/3(1 — cos O54)1/6

This expression gives a, =~ 1.13° for mercury, a value considerably less than the exper-
imental value. Mercury drops do have a small contact angle hysteresis but the contact
angles are large, larger than 90°, and it is not clear whether (3.5) still applies in this
case. In all further calculations we hence use the values of ¢; = 1.5 for water and ¢; = 1
for mercury obtained from experiments as described above.

Drops larger than V., or drops on slopes larger than ., will start moving resulting in
retarding forces due to the action of viscosity. For low Re drops these retarding forces
are the force from the shear stress due to the Stokes wedge flow,

Fy, = 4espc(0.) LU In(Ry /M), (3.6)
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and the force from the shear stress associated with the bulk motion,
Fy = cauU(Vy/h?). (3.7)

In (3.6) and (3.7), Ry is the base radius of the drop, the base perimeter of the drop
L = 27 Ry, h is the drop height and c3 and c4 are constants of order unity. The base
volume V, = mR?h and A is the microscopic cut-off length scale (slip length of a few
molecular lengths) where the continuum approximation fails; it is typically of the order
of 10 nm. In (3.6),
sin® 6,
) = S e,
is obtained by integrating the viscous dissipation per unit volume, calculated from the
velocity field of Huh & Scriven (1971), in the wedge near the contact line (Kim, Lee &
Kang 2002). Equation (3.8) is a function of the mean static contact angle 6. = (05, +
0s)/2. The justification for using the solution of Huh & Scriven (1971) in estimating F,
is given in Appendix B.
Steady motion of the drop then requires that,

(3.8)

Fg_Fcl = Fy + Fp, (39)
implying,
~ pVgsin a — ciow(cos Oy, — cos Oy,) (3.10)
plea(Vy/h2) + desLe(8e) In(Ry/N)] '
(Kim, Lee & Kang 2002). The ratio of wedge to bulk friction forces Fy,/Fy is
FE, 8c(fe) In(Rp/ A
Ey _ caSe(6) n(Ry/) s

Fb - C4Rb/h

When . > d/2, Ry/h in (3.11) is approximately equal to 1 since the drop will be ap-
proximately hemispherical. Since ¢z and ¢4 are of order one and 8¢(f.) In(Rp/\) > 1, as
per (3.11), wedge dissipation dominates over bulk dissipation when . > d/2. As we show
later in figure 4, wedge dissipation dominates over bulk dissipation in our experiments
since I, > d/2. As will be seen below, (3.10) is however not valid for drop motion at large
Re.

3.2. Measured drop velocities

The measured velocities of water and mercury drops are shown in figure 3. The error
bars shown in the figure for water drops show the range of variation of the velocity at any
inclination angle. For the inclination angle range of 26° < o < 50° (U < 0.37 ms™ 1), Re
of water drops are in the range 130 < Re < 1910. Beyond o ~ 50° rivulets form so that
the analysis does not hold due to the large deviation of the drop geometry from the values
used in (3.10). In the figure, the water drop velocities are compared with equation (3.10)
using ¢; = 1.5 obtained from the condition of impending motion (3.3). Even though the
velocities predicted by (3.10) are slightly higher than the measured values there is a good
agreement of (3.10) with the trend of measured velocities when ¢5 = 1.6 and ¢4 = 1. In
the relatively large Re regime of water drops in figure 3, we would expect the viscous
dissipation to be more and more concentrated in a thin boundary layer near the wall so
that (3.10) is no longer valid. As we show below, the above behaviour of water drops is
understandable for the present range of Re because the boundary layer dissipation starts
to dominate only at Re > 10% for water drops.

The velocities of mercury drops, which have a range of 3038 < Re < 9673 in figure 3,
are more than an order of magnitude lower than that given by (3.10) when the pre-factor
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FIGURE 3. Drop velocities as a function of slope angle « in degrees; O, water; [1, mercury; —,
equation (3.10); ——, equation (3.16). The pre-factors used are ¢; = 1.5 for water and
c1 = 1 for mercury. ¢3 = 1.6, ¢4 = 1 and ¢5 = 1.8 for both fluids.

c1 = 1 is used. As described in § 3.1, this value of ¢; is obtained from the impending
motion condition (3.3), ¢ and ¢4 being the same as in the case of water drops. We now
show that the velocities of mercury drops are in good agreement with a boundary layer
model that we propose below.

3.3. Boundary layer model

At large Re, there will be boundary layers inside the drop near the solid surface; the
dissipation inside these boundary layers will dominate over the dissipation in the bulk
of the drop. Let the thickness of the boundary layer near the solid surface be § ~ v/vt.
Taking t ~ Ry, /U as the characteristic time scale, we get,

§ ~ \/URy/U. (3.12)

The dimensionless boundary layer thickness calculated from (3.12) for the present exper-
imental range is 0.06 < 6/d < 0.015 for water drops and 0.01 < §/d < 0.005 for mercury.
0 is hence about two orders of magnitude smaller than the drop size for the range of Re
in the present study. The viscous force is now Fy = Viud?U/d2z2, where the boundary
layer volume Vi, =~ 7R24 and z is the co-ordinate direction normal to the surface. Using
oU?%/022 = U/8%, we get

Fbl = 05,u7TRva Reb, (3.13)

where Re, = URy/v is the Reynolds number based on Rp. In an inertial regime, the
steady force balance is, Fy = Fy + Fy + F,,, which results in,

pVgsin a — ciow(cos O, — cos O54) = csumRyU~/Rep (1 4+ C) (3.14)
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where
~c38¢(0c) In(Ry /)
T aVRe
¢ < 1 when Fy; > F,,, or when Rey, is appreciable. The expression for the velocity of
the drop obtained by neglecting F,, when ¢ < 1 is then,

(3.15)

U

1 (pVg sin a — cyow(cos O — cos Osq) ) 2/3

- (3.16)

cspmvl/2

Using the values of pre-factors in figure 3 and the value of ¢(f.) from (3.8) in (3.15),
we get that ¢ ~ 1 for mercury drops when Re = 24; (3.16) is hence valid when Re > 10
for mercury. It is seen in figure 3 that (3.16) agrees well with the mercury data in our
experiments which have Re > 3038. Since Re of mercury drops is much larger than 24 in
the present experiments, mercury drops move in a predominantly inertial regime where
the velocity is decided by a balance of the sum of boundary layer dissipation and contact
line dissipation with the gravitational potential energy changes.

Similarly, ¢ ~ 1 for water when Re ~ 1280 from (3.15) and (3.8); equation (3.16)
is hence valid for water when Re >> 103. Inertial effects are likely to be dominant in
water when Re > 103. When Re < 103, equation (3.14) leads to (3.10), with which the
measured velocities in water approximately match for Re < 2 x 103, as shown in figure 3.
For water drops 626 < Re < 1910 (0.12 ms™! < U < 0.37 ms™!) when 35° < a < 50°.
In this range both equations (3.10) and (3.16), seems to match the experimental trends
reasonably well, even though both curves predict higher velocities than experiments. It
appears that for 35° < a < 50° the water drops are in a transition regime between an
inertial regime where the boundary layer dissipation dominates and a regime where the
wedge dissipation dominates. In such a transition regime both equations (3.10) and (3.16)
could over predict the velocities since each of these neglects boundary layer dissipation
and wedge dissipation respectively; both these dissipations could be important in the
transition regime. More details about the range of validity of (3.10) and (3.16) based
on dissipation estimates are given in § 3.4. Figure 3 also shows that for water drops
the velocities predicted by (3.16), for o > 50°, tend to be lower than the measured
velocities, the deviation increasing with larger Re. This behaviour would imply that, at
larger velocities, the actual dissipation is not as much as estimated from the boundary
layer model. We now try to understand these behaviours of water and mercury drops by
evaluating the variation of different dissipation rates with Re.

3.4. Variation of the dissipation rates

The various dissipation terms in the energy balance ®, — ®, = ®,, + ®, + ®3; can be
calculated from equations (3.1), (3.2), (3.6) (3.7) and (3.13) noting that &, = UF;. To un-
derstand the contribution of each of these terms we plot the individual dissipation terms,
normalised by ®,4, as a function of Re in figure 4. ®,, is negligible for both the fluids and
is negligible in (3.10). We depict ®; in figure 4 only to show its relative magnitude with
other dissipations. From the normalised dissipation rates of the mercury drops plotted in
figure 4(a), it is clear that ®; is of the order of &, due to the high surface tension, even
though the hysteresis of mercury drops is low. The boundary layer dissipation rate ®y; is
much larger than ®,, and ®; in the whole Re range. The predominant balance obtained
is thus ®, — ®, ~ Py resulting in good agreement of the mercury drop velocities with
the boundary layer model (3.16).

The variation of the different normalised dissipation terms for water drops are shown
in figure 4(b). The contact line dissipation ® is of the order of the rate of potential
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FIGURE 4. Variation of energy dissipation rates, normalised by ®4, with Re for (a), mercury
and (b), water. The pre-factors used are ¢; = 1.5 for water and ¢1 = 1 for mercury. cs = 1.6,
cs =1and c5s = 1.8.

energy loss ®, and hence plays a major role in determining the velocity of the drop.
Even though the surface tension of water drops is an order of magnitude lower than that
in mercury, ®.; is dominant due to the high contact angle hysteresis. The importance
of contact line dissipation and wedge dissipation up to high Re explains the reasonably
good agreement of the water drop velocities with equation (3.10). It is seen that the
boundary layer dissipation ®3; ~ ®,, when Re ~ 1000, in agreement with the conclusions
arrived in § 3.3. At Re ~ 1000 there is a cross over from a wedge dissipation dominated
regime to a boundary layer dominated regime. However it is only when Re < 102 that
the predominant balance becomes ®, — ®,; ~ ®,, and only when Re > 103 that the
predominant balance is ®; — ®, ~ ®p;. For Re ~ 103, as is in the major part of the
water data, ®, — & ~ ®p + D,,. Equations (3.10) and (3.16) neglect boundary layer
dissipation and wedge dissipation respectively, neither of which are negligible in the range
of Re for the water drops in the present experiments. This could also be the reason for
equations (3.10) and (3.16) to go slightly above the experimental data, for Re < 1000 in
figure 3.

3.5. Dimensionless velocities in the inertial regime

When (3.14) is written in dimensionless terms, we get,

Web
vV Reb

a general scaling relation valid for the whole Re range. Here, K1 = V1/3/(C57TR1,), Wep =
pU2Rb/a is the Weber number, Bo,, = Bo, — Bo, is the modified Bond number, Bo, =
pV?/3gsin a/o and Bo, = ciw(cos O, —cos 0s,)/V/3. When boundary layer dissipation
dominates over wedge dissipation, ¢ < 1, (3.17) reduces to the dimensionless form of
(3.16),

(14 ¢) = Ky Bop, (3.17)

Web
vV Reb

= Ca+/Rey, = K1Boy,. (3.18)
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.+, equation (3.17). ¢; = 1.5 and K; = 0.22 for water while ¢; = 1 and K; = 0.18 for
mercury. cs = 1.6 and ¢5 = 1.8 for both the fluids.

Equation (3.18) implies that the characteristic velocity scale in the inertial regime is
(Jz/pr,u)l/g. In the limit when wedge dissipation is dominant, ¢ > 1, (3.17) reduces to

Web
Reb

where K3 = 0.0867K/(c3In(Ry/N)c(0e)) and d/2 = K Rp; (3.19) is the dimensionless form
of (3.10), implying that the characteristic velocity scale at low Re is o/u. As discussed
earlier, (3.18) is valid for Re > 103 for water drops while it holds for Re >> 10 for mercury
drops. Equation (3.19) is valid for water when Re < 102, and for mercury when Re < 10.
The crossover in the drop motion from a regime dominated by wedge dissipation to that
dominated by boundary layer dissipation occurs at ¢ ~ 1. From (3.15), such a condition

can be rewritten as
v Reb
c(fe)

= Ca = K3Bop,, (3.19)

=925, (3.20)

where ¢(f.) is given by (3.8).

Figure 5 shows that the measured velocities for water and mercury, shown in figure 3,
collapse reasonably well when presented in the dimensionless form (3.17). The mercury
data are, however, in better agreement with (3.17) than the water data. The deviation
of the water data at small velocities is most likely because of the large contact angle
hysteresis due to irregularities of the substrate. When the hysteresis is large (35° for the
water drops), the critical Bond number ( (3.4) and (3.5)) may vary by as much as 10%
and this will affect the velocity. In addition, at low velocities, large hysteresis could cause
stick and slip phenomena, resulting in larger errors in the measured steady velocities. It
is seen in figure 5 that, at large Bo,,, the measured velocities of water drops are larger
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than predicted by the force balance model. This would suggest that the contact line
force decreases with increasing drop velocity; however, other hydrodynamic explanations
might also be possible.

Equations (3.10) and (3.16) for the velocity of the drops, as well as the dimensionless
relation (3.17) need to be taken only as scaling laws, valid only in an order of magnitude
sense. These equations neglect possible variations of 6; with velocity, the peripheral
variation of the contact line velocity and the variation of 84 due to this, as well as the
effects of change in drop size on the pre-factors and the drop geometry. These equations
have undetermined pre-factors, whose values may change from the values suggested in
this study when the above effects are considered. Further investigations are necessary to
account for these effects on the drop velocity in the inertial regime.

4. Dynamic contact angle

The measured dynamic contact angles for water and mercury as a function of the
algebraic capillary number (Ca,) is shown in figure 6. Cay has the same value as Ca
but is taken positive for 6, and negative for 6,. The variation of 4 with C'a4 observed
by Le Grand et al. (2005) is shown as the dashed line in figure 6. There is an asymmetry
in the change of 0, and 0,; 6, is a stronger function of Caa than 6,. This asymmetry
is more obvious in the inset plot of figure 6 where the variation of the dynamic contact
angles is shown after the hysteresis is subtracted. The asymmetry is stronger in mercury
than in water. The asymmetry in water is similar to that observed for more wetting
viscous drops by Le Grand et al. (2005). The flattening out of the curve for mercury at
Cas ~ —0.0015 is due to the corner formation at the rear, to be discussed in § 5.1. In
the case of water drops a change in drop geometry occurs at Cays < —0.0047 (see later in
figures 16 and 15(b)). The error bars in the figure show the range of the dynamic contact
angles from repeated measurements. As mentioned earlier, the dynamic contact angles
were measured with a resolution of 7, = 10~*m. The Reynolds numbers based on r,,
and drop velocity are less than 639 for mercury drops and 67.5 for water drops. Even
though the local Re decreases as the contact line is approached, the Reynolds numbers
based on 1, and drop velocity are appreciable; inertial effects could be important in
determining the dynamic contact angles.

4.1. Comparison of dynamic contact angle models

To see the effect of these large Re, we now compare our dynamic contact angle variation
with the various contact angle models that relate the dynamic contact angles with the
dimensionless drop velocity. The dynamic contact angle models considered are,

(a) viscous models that have been considered for viscous drops by Le Grand et al.
(2005),

(b) the model by Shikhmurzaev (1993) that is based on the assumption of material
flux through the contact line and the associated relaxation of interfacial tension and

(¢) the inertial model by Cox (1998).

4.1.1. Justification for comparison with viscous models

The reasons for comparison of our high Re data with viscous contact line models are
the following.

(a) Even if the measurement scale is inertial, since the contact angle slowly evolves
from the molecular scale - which is certainly viscous - to the measurement scale, the
contact angle is determined mostly in a regime that is entirely viscous.

(b) As shown in the inset of figure 6, our dynamic contact angle variation with Ca in
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FIGURE 6. Dynamic contact angles as a function of the algebraic capillary number Caa; O,®,
advancing and receding contact angles of water drops; [, B, advancing and receding
contact angles of mercury drops. The dashed line is a linear fit through the data of
Le Grand et al. (2005) at Re < 1. The inset shows the variation of the dynamic contact
angles in radians after the hysteresis is subtracted.

water at high Re practically coincides with that of Le Grand et al. (2005) at Re < 1,
implying that there is no Re effect noticed on the contact angles between these two studies
at widely different Re. The same can also be noticed from the results of Le Grand et al.
(2005) where the dynamic contact angles for drop motion at 1.1 x 107> < Re < 1.4 fall
on the same curve with respect to Cla in their figure 18.

(¢) At our measurement resolution r,, = 100um, inertia is more than viscous effects
since [, = v/U, the viscous length scale at which Re; = Ul, /v ~ 1, is smaller than r,.
Figure 7(a) shows that [, is of the order of 2um to 200um in water and 0.2 to 2um for
mercury in the corresponding range of Ca. However, the length scale Iy = (o/p)/U?, at
which the Weber number We; = pU?%l;/o ~ 1 is larger than the experimental resolu-
tion; surface tension forces hence dominate over the inertial effects at our measurement
resolution. In addition, the length scale I, = v?/(a/p) corresponding to Oh* ~ 1, where
the Ohnersorge number Oh = v/y/0/pl,, is much smaller than the other length scales.
The flow is hence surface tension dominated from large scales till 10~ 2um in water and
till 10~y m in mercury; viscous bending will be low. There will hence be negligible
change in the contact angles below the length at which viscous bending becomes impor-
tant till /.. Viscous bending becomes prominent below around 35um in water and 10pm
in mercury at the highest C'a in these fluids, as shown in Appendix A. Even though
we are measuring 6; with a resolution lower than necessary to resolve up to the viscous
bending length, it is shown in Appendix A that the change in contact angles due to this
is small. Therefore, since inertia is small compared to surface tension effects at r,, and
since viscous bending is small, the contact angles measured at r,, could approximately
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for water and mercury. b) Variation of contact angles with the Weber number based on
the base radius. ©,®, advancing and receding contact angles in water; [], B, advancing
and receding contact angles in mercury.

be same as that measured at a location [,, where Re; ~ 1. In other words, even though
the Re based on the drop diameter is large in our experiments, the actual Re for contact
angles, based on the velocity of the contact line and a local length scale will be small.

(d) The measured contact angle variations correlate better (more nearly linear) with
Ca rather than Wey, as could be seen by comparing figure 7(b) with figure 6.

4.1.2. Criteria for the comparison of contact angle models

The consistency of the examined models with our contact angle data is assessed after
all the models are rewritten in the form f(0s,64) ~ Ca. We do not assess the models
based on how good the experimental data fits the theory since it is well known that
most models fit the dynamic contact angle data if one chooses the parameters in the
models to achieve such a fit. Earlier attempts based on the quality of fit of the models
with experiments have proved inconclusive (Seveno, Vaillant, Adao, Conti & DeConinck
2009). In addition, such an assessment based on the goodness of fit tells nothing about
whether the model and its parameters are physically consistent. Due to these reasons,
we follow the following procedure to assess the consistency of various models with our
experimental data.

(a) The slopes of the plots of f(6s,64) vs Ca obtained when the various theories are
matched to the present data for water and mercury are examined to see whether these
are of the same order as suggested by the theories.

(b) Tt is examined whether the models preserve the continuity of slopes at Ca = 0 in
a plot of f(04,04) vs Ca. This is necessary since most of these models do not distinguish
between 6, and 6,- and hence the variation of these angles as Ca — 0 should be the same.

(¢) Tt is examined whether the plot of f(0s,04) vs Ca is the same for water and
mercury. If this is not the case, then it is examined whether such a difference is suggested
by the theory.



Motion of drops on inclined surfaces in the inertial regime 17

4.2. The linear model

The simplest, linear and empirical model is the one proposed by Dussan (1979) which is
obtained when f is a first order polynomial in the form,

9d—950<CaA (4.1)

A linear fit matches 6, — 05, vs Caa for 0 < Caa < 0.0022 for water with a slope of
58.53. Similarly, a linear fit matches 0, — 0, for 0 < Ca4 < 0.002 with a slope of 108.23.
The corresponding slopes obtained by Le Grand et al. (2005) for low contact angle, high
viscous silicon o0il drop motion are 45.1 and 104.1, very close to the values obtained for
water in the present study. As seen in the inset of figure 6, the variation of §; with Ca in
silicone oil and water drops are the same even though they are at very different Re. The
mercury drops show a similar behaviour but with a larger slope of 100 for 0 < Ca < 0.002
in the advancing side and 533 for 0 < Ca < 0.0015 in the receding side. The linearity
is observed till corner formation in mercury while the data deviates from a linear curve
much before the shape change in water. Hence a linear model (4.1) would approximate
the experimental results of figure 6 in a narrow Ca range, but with a different pre-factor
for mercury and water and for 6, and 6,..

Even though a linear model approximates the dynamic contact angle variation in
a short range of Ca, the variation over a larger range of Ca is nonlinear, especially
for the water data in figure 6. The non linearity of contact angle variation with Ca is
often obvious only in studies that have a range of contact angles spanning both the
sides of 84 = 90°. The drops of Le Grand et al. (2005) have a contact angle range of
25° < 04 < 65° while the present mercury drops have 95° < 64 < 162°; these data appear
quite linear in Le Grand et al. (2005) and in the present figure 6. The range of water
data in the present study is 47.5° < 64 < 121.4°, the nonlinearity is more pronounced
for water in figure 6 since 6, varies over a range around 90°.

Since cosine of the contact angles appear in the force balance in the direction of motion
at the contact line, this nonlinear behaviour could be expected to be better approximated
by a cosine law. The general cosine model would be of the form,

(cos 05 — cos 04) f(04,05) = KCay, (4.2)

where K is a constant. Various contact angle models, derived from widely different as-
sumptions, express their final relation between 64 and Ca as particular forms of (4.2).
Some of these models are Molecular-Kinetic theory (Blake & Haynes 1969), de Gennes
model(de Gennes 1986) and Shikhmurzaev’s model(Shikhmurzaev 1993); we now look at
these models, along with the Cox-Voinov model, in the following sections.

4.3. Molecular-Kinetic model (Blake & Haynes 1969)

The simplest cosine law of the form (4.2) is
cos Oy —cos 03 = A1Cay. (4.3)

Equation (4.3) is the molecular-kinetic model for kT >> (cos6s — cos64)o /n, where k is
the Boltzmann constant, T is the temperature, n is the number of adsorption sites per
unit area and A; is composed of molecular terms and p. This model, proposed by Blake
& Haynes (1969), assumes that the variations in 6, are due to changes in adsorption
equilibrium at the contact line. The truncated form of this model for small 8,4 results in
its more popular, second order form,

03 — 02 =2A,Caa, (4.4)



18 Puthenveettil, B. A., Senthilkumar, V. K. and Hopfinger, E. J.

0.2 0.7"g 0

0.1

0.1t ..”
-0.2 oo &
L

]

-

£

2.0.3F

cos B —cos 6
Se.

-0.5
§
0.6 .
[

-0.7f ‘
-0.01 —-0.005 0 0.005 0.01

CaA

FIGURE 8. Comparison of dynamic contact angles with the molecular-kinetic theory (4.5). O,®,
advancing and receding angles in water; [J ,l advancing and receding angles in mercury.
The dashed line corresponds to the data of Le Grand et al. (2005). The dotted lines shows
the prediction of molecular-kinetic theory for water with A = 0.76nm, with £ = 8 x107s~!
for advancing angles and x = 3 x 107s™! for receding angles. The dashed-dotted line
corresponds to the prediction of (4.5) for mercury, with A = 0.4nm and x = 3 x 10%s~!
for advancing angles, and with A = 0.1nm and x = 3 x 10%~! for receding angles.

However, since our experiments are not for large k7T, or for small 64, we use the general
form of (4.3),

kT ao
cosfy —cosfy = AD sinh™* <2CI;A/J,> ; (4.5)
valid for all kT and 6,4, given by Blake & Haynes (1969). Here, the two parameters that
have to be chosen for the theory to fit the data are A the average distance between
the centres of adsorption sites and k the frequency of molecular displacement per unit
length of the triple line. Figure 8 shows the comparison of the dynamic contact angle
variation suggested by (4.5) with our experimental data. The results of Le Grand et al.
(2005) are also shown in figure 8. A and x were estimated by trial and error to match
the theory with the experimental data, keeping in mind that A has to be of the order
of the dimensions of the functional groups at the solid surface. Figure 8 shows that,
for advancing angles in water, the theory matches the experiment for A = 0.76nm and
k = 8 x 107s™%; for receding angles in water the theory matches for the same A but
with £ = 3 x 107s~!. The values of these coefficients are comparable with the values of
A = 2.4nm and k = 4.2 x 10! obtained by Bayer & Megaridis (2006) for water on
glass under good wetting conditions (65 = 20°).

Since A is a property of the surface, a common value for the advancing and the receding
side is expected. The value of A is expected to be of the order of the dimensions of the
functional groups on the surface. Glass (SiO2) has a Si-O bond length of the order of
0.16 nm - 0.18nm (Holleman & Wiberg 2001), implying an approximate molecular size of
about 2 times this bond length since the angle between Si and O varies from 140° to 180°.
The presence of the long chained FAS mono-layer on the glass surface, which increases
the distance between the functional groups, could be the reason for A = 0.76nm that is
larger than the molecular size of about 0.4nm. However the need for a different frequency
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of molecular displacement for the advancing and the receding motion of the contact line
could be contrary to the assumptions behind the model. Note that the surfaces at the
advancing and the receding sides of the drops in our experiments are exactly the same
because the drops follow the pre-wetted trail left by the earlier drop on the surface. Hence
we presume that this need for different x for the advancing and the receding sides could
be because the model neglects any hydrodynamic influence that could cause a difference
between the advancing and receding contact lines.

Best fits for mercury on glass were obtained with A = 0.4 nm and x = 3 x 10%s~! for
advancing angles, while A = 0.1 nm and x = 3 x 10% ! for receding angles. Even though
the magnitudes of A are of the same order as the molecular size in glass, the need for
different A for the advancing and receding sides may be unphysical since A is a property
of the solid surface. Here too the need for a different value of x for the advancing and
receding sides could be due to the neglect of the hydrodynamic effects in the model.
However, recently it has been pointed out that the Molecular-Kinetic model could hold
at the scale of surface defects(Rolley & Guthmann 2007). In such a case the values of
k and A could be quite different from those expected by the original model. It might
also be possible that differences in wetting at the advancing and receding surfaces could
change the value of the surface property A; however these issues have to be investigated
further.

The molecular-kinetic theory groups the advancing contact angle data for Si oil, water
and mercury, implying that all these fluids have approximately similar values of A and
k. However the receding parts of the curve in figure 8 show different behaviours for the
different fluids, the values of A and k for these fluids are widely different from each other.
Further, asymmetry and discontinuity of slope at C'a = 0, strong for the case of mercury,
remains for the data, implying that the same fluid will need different values of these
parameters for the advancing and receding arms.

Note that the advancing contact angles of Le Grand et al. (2005) at Re < 1 coincide
with the present results for water drops and mercury at Re ~ 103 — 10%; the variation
is also linear in Ca to first order. This indicates that the contact line dynamics does not
depend on Re. The receding contact lines of all the three fluids have different behaviours
with Ca from each other. However, it is unlikely that this is a Reynolds number effect
because the variation of advancing contact angles coincides with that of low Re drops.
As will be seen in § 4.6, one possible explanation is the difference in the surface velocity
between the receding and the advancing sides between the three fluids, a hydrodynamic
effect not considered by the molecular-kinetic model. Such a difference is possibly not
an inertial effect, but a consequence of the difference in geometry of the drops between
the advancing and the receding sides, the effect being amplified in mercury drops due to
their larger contact angles.

4.4. de Gennes model (de Gennes 1986)
The non-truncated de Gennes model, which uses the Poiseuille flow approximation for
the flow near the contact line and is valid for larger contact angles, is of the form,

Oa(cos 05 — cos O4) = 3In(Rp/N)Caa. (4.6)

Comparison of (4.2) and (4.6) makes it clear that f(64) = 04 and K = £31In(Ry/)) for
this model. Using the small angle approximation cos = 1 — 62 /2 for the cosines in (4.6)
gives,

04 (67— 02) = 61In(Ry/\) Caa, (4.7)
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the more popular form of the third order model, valid for small contact angles. The
model was proposed based on a local force balance at the triple line using a Poiseuille
flow assumption. Figure 9 shows that the water data agree with (4.6) only with the
pre-factor 102, instead of the expected slope of 3In(R,/)\) = 39, shown by the data of
the viscous drops of Le Grand et al. (2005) in the figure. The corresponding slip length
is 1 x 107'7 m, an unphysically small length; the slip lengths in mercury will be even
smaller. The asymmetry and the discontinuity of slope at Ca = 0 of the water data is
now removed, but these persist for mercury. The multiplication by 64 in (4.6) simply
implies that the velocity gradient is approximated by U/r6, , where r is measured from
the contact line (de Gennes, Brochard-Wyart & Quere 2004). In other words, the model
is derived from the assumption that the height of the interface at any distance x from the
contact line h(z) = 642, implying that viscous bending is neglected (Eggers 2004). The
reason for the discrepancy of the model could be that when 6; > 90°, which is the case

for the mercury drops, and partly for the water drops, this approximation is no longer
valid.

4.5. Coz-Voinov Model (Cox 1986, 1998; Voinov 1976)

We now compare the dynamic contact angle data with the viscous, third order model,
03 — 0> = 9In(Ry/\)Ca, (4.8)

called the Cox-Voinov law, proposed by Voinov (1976) and Cox (1986), which is valid
for 4 < 37/4. The above model is based on a model for slip at the contact line, along
with viscous bending of the liquid-gas interface that changes the microscopic contact
angle 60, to the measured apparent contact angle 64; 6,, is often assumed as equal to
5. The comparison of (4.8) with the present dynamic contact angle data is shown in
figure 10(a). The slope of the linear fit for water, valid only for —0.0025 < Cas < 0.005
is 560, implying that the slip length is 2.9 x 1073°m, an unphysical, sub-atomic length.
Note that the maximum 6, for water in the experiments is 121° so that the model is
valid for the whole range of our data, if the local Re is less than one. For mercury, the
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FIGURE 10. Comparison of dynamic contact angle variation with the Cox-Voinov model (a)
Comparison with (4.8), valid for small 64. Dashed lines are the fit suggested by Le Grand et al.
(2005). (b) Comparison with (4.9), valid for arbitrary 64. O,®, advancing and receding angles
in water; (] ,l advancing and receding angles in mercury.

model is valid only for the receding contact angles since the advancing angles, 8, > 3m/4.
For receding angles in mercury, figure 10(a) shows that the slope of a linear fit is around
4000, implying that the slip length is about 1.7 x 107'%m, a length scale smaller than
even the size of the smallest elementary particle. The slip length found out by Le Grand
et al. (2005) for the data for 10cP Silicone oil, shown in the figure as dashed line, was
3 nm. The decrease in slip length with v for Si oils, noticed by Le Grand et al. (2005),
seems to continue to unphysically small values with further lower values of v as in the
case of water and mercury.

At the high Re values of the present drop motion experiments, viscous losses occur
mainly at length scales of the order of the boundary layer thickness §. Hence, §, instead
of Ry, might be the appropriate length scale to be used in (4.8). Estimating the slip
length A that would be required when using In(d/X) instead of In(Rp/\) in (4.8) gives
A =6.3x10732 to 2.5 x 1073 m for water and A = 1.5 x 1071 to 4.95 x 107198 m
for mercury. These are even smaller values of A than required when R} is used as the
macroscopic length scale.

Equation (4.8), valid only for 64 < 37/4, is a simplified form of the general relation,

g(ed) - 9(65) =Ca ln(Rb/)‘)v (49)
proposed by Cox (1986) for arbitrary contact angles, where
0 .
x —sinxcosx
0) = —d 4.10
9(6) /0 2sinx * ( )

Figure 10(b) shows our data for water and mercury plotted in terms of g(04) — g(6s)
vs Cay, the slope of the curves giving the value of In(Rp/)\). The slope of the curve
for water is 50, implying that the slip length A = 5.8 x 10~2°m. Similarly the slope of
the curve of mercury is about 600 implying that A = 4.64 x 107264m; the obtained slip
lengths are unphysically small, as in the case of the truncated model (4.8).

The Cox-Voinov law makes the slope of the advancing and the receding part in figure
10(a) same at Ca = 0 for both water and mercury. However, to fit the theory to our
data with 6,, = 0, one would need slip lengths that are quite unphysical for water and
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advancing and receding angles in water; [J, B, advancing and receding angles in mercury.
The dotted line is of slope 4, while the dashed line is of slope 35.

mercury; these lengths will also need to be quite different for both fluids. If 6,, is also
to be adjusted so as to make the slip lengths approximately same for water and mercury
and of the expected order of magnitude, one would need an additional model, namely
the molecular-kinetic model discussed in § 4.3, to include the variation of 6,,, as has
been done by Petrov & Sedev (1992). However, even this approach has been shown to
need unreasonably small A\ and large A to match the experimental results in various
alcohols (Petrov, Ralston, Schneemilch & Hayes 2003). Now again, if the Molecular-
Kinetic model holds at the level of surface defects, as suggested by Rolley & Guthmann
(2007), it may be possible to justify the unreasonable values of the parameters of the
model. Similar difficulties with the Cox-Voinov theory when applied to water drops have
recently been reported by Winkels et al. (2011).

The above two models by Voinov (1976) and Cox (1986) are for viscous flows near the
contact line when the local Re < 1. We tested these models for our high Re drop motion,
like other previous viscous models, due to the reasons discussed earlier in § 4.1.1. We
now compare our results with the only contact angle model that explicitly includes Re
effects, namely the inertial model of Cox (1998). The model is valid only for advancing
contact angles. The case of interest is 1 < Re < e~ !, where ¢ = s/R,, with s = \. For
these conditions and Caln(1l/eRe) < 1, the Cox model leads to the expression.

1
15316

where, 6* is given by Caln(1/eRep) = g(6*) — g(6s) and g(0) is given by (4.10). The
comparison of (4.11) with experiments is shown in figure 11. The advancing contact
angles of water can be fitted with a pre-factor for Caln Rey, equal to 4, which is an order
of magnitude higher than the expected pre-factor from the theory of 1/1.5316 = 0.653.
Further, the mercury data do not coincide with water and would need a pre-factor of
35 for the advancing part instead of 0.653. The inertial model by Cox (1998) seems to
be predicting a much lower variation of 64 with velocity than observed in the present
experiments.

(0g —sin 04) — (6" — sin 67) Caaln Rey (4.11)
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4.6. Model by Shikhmurzaev (1993)

The model proposed by Shikhmurzaev (1993) is a set of boundary conditions obtained
by considering a material flux across the contact line thereby avoiding the singularity at
the contact line. This material flux makes a fluid element in the liquid-gas interface to
become part of the solid-liquid interface over a surface tension relaxation time 7, resulting
in a change in the interfacial tension from its equilibrium value. Using these boundary
conditions, analytical solutions for Stokes equations have been found by Shikhmurzaev
(2008) when Ca — 0. This solution is valid at such distances from the contact line at
which the Re based on this length is small, while the distance itself is much larger than
the surface tension relaxation length Ur. For negligible surface tension between the solid
and the gas, the solution given by Shikhmurzaev (2008) is,

(cos B — cos 84) f(04)/Sc = Ca, (4.12)
where
B 1+ (1 —pZ)cos b
1(0a) = \/4(cos 0s + B)(cos 04+ B)’ (4.13)
B = 1 rawaba) (4.14)
1—p¢
in 6 — 6 0
U1p(0) = ot~ T CO8 7d (4.15)

sin 04 cos 64 — 04
is the free surface velocity, normalised by the drop velocity, obtained from the corner
flow solution of the Stokes equations and p§, = p/pf is the ratio of equilibrium surface
density to the surface density corresponding to zero surface tension. The coefficient Sc
in (4.12) depends on the physical properties as follows

B o273 _ Jor(1 = pE)
5= \/uz’wé(l +4af) \/ S (4.16)

Here, « is the phenomenological coefficient that describes the effect of surface tension
gradient on the velocity distribution in the interfacial layer near the solid, 8 is the
coefficient of sliding friction (Lamb 1932) so that a8 = 1 and e the interfacial layer
thickness. v = o(1 — p§,;)/pe is the phenomenological coefficient in the surface equation
of state

a(p®) =~(p5 — p°), (4.17)
that reflect the assumption of the model that the compression of the surface phase,
resulting in a change in the surface density p®, results in a decrease of surface tension
near the contact line. The key difference of Shikhmurzaev’s model from the other models
in the small C'a limit is that, as per the model, the contact angles are not just functions
of the contact line speed, but also of the dimensionless velocity at the liquid-gas interface,
seen as u1z in the term B in (4.13). The interface velocity comes in the model because the
model considers contact line motion as essentially a process by which liquid-gas interface
disappears to become a solid liquid interface, the rate at which this occurs is decided by
the velocity of the fluid in the liquid-gas interface.

To compare equation (4.12) with experiments, we need the values of p¢, and Sc. The
effect of changing p¢, is to stretch the data distribution along the ordinate, while a change
in Sc rotates the data around the origin. Multiple combinations of p¢, and Sc would make
a plot of the left hand side of equation (4.12) vs Ca with slope one, and only ranges of
these parameters are known a priori. Due to such a difficulty in knowing the values of the
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FI1GURE 12. Comparison of the dynamic contact angle variation with the model of Shikhmurzaev
(1993)(4.12) using p&; = 0.98 and Sc = 1,1.7 and 10 for Si oil, water and mercury respectively.
O, @, advancing and receding angles in water; [J, B, advancing and receding angles in
mercury. The dashed line is the data of Le Grand et al. (2005). The solid line is of slope
one corresponding to (4.12).

parameters of the model a priori to a fit with the experimental data, Shikhmurzaev (2008)
suggests to take Sc as an adjustable parameter once a value of pg, is fixed. Following a
similar route, we first estimate the value of pg = 0.98 in Appendix C and then chose the
values of Sc that make the experimental data of each fluid, plotted in terms of left hand
side of (4.12) vs Ca, an approximately linear curve of slope one. It is then verified that
the values of 7 given by these values of Sc are of the order suggested by the theory.
Figure 12 shows the comparison of equation (4.12) with our experimental data, as
well as with the data of Le Grand et al. (2005), using pZ, = 0.98 and Sc = 1,1.7 and
10 respectively for Si oil, water and mercury. Before the onset of corner or rivulets,
the data group reasonable well around the solid line of slope one. 7 can now be es-
timated from these values of Sc and pf, using (4.16). We find that 7 = 27ns, 0.24us
and 0.45us for water, mercury and Si oil. The relative magnitude of these values match
the estimate of 7 o u, suggested by Shikhmurzaev (2008), showing the diffusive na-
ture of surface tension relaxation. These values are also within the continuum limit and
similar to the estimates of Shikhmurzaev (2008) for similar viscosities. As per (4.16),
Sc x /o, therefore Scpy/Scsioi should approximately be equal to /0 mg/0sioi. How-
ever, \/OHg/0sioii &~ b while, with the values of Sc obtained, Scpy/Scsioir = 10. This
discrepancy occurs because we have used the same value of pZ, = 0.98 for all the fluids for
convenience, eventhough the upper estimates of pg, for the three fluids are different, as
shown in Appendix C. Since Sc is a function of p¢, by (4.16), these inexact values of pg,
will result in inexact values of Sc too. The theoretical upper estimate of p¢ for mercury
is 0.99. If we use pZ = 0.99 and adjust Sc to fit the theory to the contact angle data of
mercury, we obtain a similar fit as in figure 12 with S¢ = 5. Now, Scpq/Scw = \/0mg/0w

and SCHg/SCsioil 4/ UHg/Usioil-

Hence, we conclude that the values of the adjustable parameters pf, and Sc that
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achieve grouping of the data in figure 12 are consistent with the estimates suggested by
the theory, even though only order of magnitude estimates of 7 and ¢, and not their
exact values, could be obtained. Considering the widely different fluid properties, the
grouping of the data shown in Figure 12, while preserving the continuity of slope of one
at C'a = 0, achieved by the model by using reasonable values of its parameters p¢, and Sc
is remarkable. However, it needs to be mentioned here that the theory itself is apparently
controversial as could be gauged from the criticisms raised by (Eggers & Evans 2004;
Pismen 2011; Henderson 2011; Thiele 2011) and the responses by Shikhmurzaev & Blake
(2004) and Shikhmurzaev (2011a,b,c).

Since the main difference of this model from the other models is the dependence of the
contact angles on the interfacial velocity, we now examine whether the variation of the
interfacial velocity with Ca in these three experiments could account for the ability of the
model to group the data. Figure 13 shows the variation of the dimensionless interfacial
velocity at the liquid-air interface with Ca, evaluated from (4.15) for the three fluids.
As mentioned earlier, the dynamic contact angles corrected for the hysteresis (64 — 65)
of Le Grand et al. (2005) coincided with those observed for water in our experiments at
the same Ca, even though the Re are widely different. However for mercury, 8; — 65 was
different at the same Ca at widely different Re from water; a cosine representation as in
(4.5) or (4.6) collapsed the advancing angles, but not the receding angles. Comparison
of figure 13 with figure 6 shows that the dimensionless free surface velocity of silicon
oil, water and mercury show a similar behaviour as that of the dynamic contact angles
in these fluids. Not just the relative magnitudes of the free surface velocities at any
Ca, but also their variation with Ca is similar to the corresponding dynamic contact
angle variation. Consideration of this feature and its effect on the dynamic contact angle
variation seems to be the reason why the model by Shikhmurzaev (1993) is able to group
the dynamic contact angle variation of viscous silicon oil drops, water and mercury onto
a same curve as shown in figure 12.
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5. Shape of the drops and wetting transition
5.1. Shape of the mercury drops

The side and top views of mercury drops for different C'a are shown in figure 14. Based
on the shape changes of the receding contact lines seen in the top views, the following
three distinct regimes can be identified,

(a) oval or rounded contact line shape (figure 14a),

(b) corner regime (figure 14b) and

(¢) cusp regime (figure 14c).

At larger velocities, the cusp gives rise to a rivulet.

The Ca of oval to corner transition can be determined from the curvatures of the
contact line as seen in the top views. These curvatures at the advancing (k) and the
receding (k) sides of the drops are defined as the inverse of the radius of the contact line
in the top views. Figure 15(a) shows the variation of k,/k, and k,/k, with Ca, where
Ko is the curvature at Ca = 0. k, = 200 m~! for water drops and k, = 450m~* for
mercury drops. At C'a = 0.0015, a sharp change in «, occurs for mercury drops which
coincides with the corner formation in the top view images of figure 14(b). The corner
in the present case does not look in the side views like a cone extending all the way to
distances of order R, with its apex at the receding contact line, as in the case of high
viscosity, low surface tension fluids of Le Grand et al. (2005). The receding contact angle
observed in the side views after corner formation is finite and greater than 90°, as seen
in figures 14(b) and 14(c). The free surface profile of the receding part in the side view
does not have a constant slope and resembles a cone with a rounded tip as shown in the
figure 14(b). Cusp formation starts at a capillary number of 0.0021 and a rivulet emerges
at 0.0022.

5.2. Shape of the water drops

The evolution of the shapes of the water drops on FAS coated glass at different Ca
is shown in figure 16. The corresponding curvature changes of the advancing and the
receding contact lines in the top view are shown in figure 15(a). As Ca increases, the
curvature at the rear in the top view of the drop increases slowly until a rivulet appears
at the back when Ca > 0.0043. Unlike in the case of Hg-glass in the present study, as well
as in the case of silicon oil drops on glass investigated by Le Grand et al. (2005), no sharp
shape change of the contact line at the rear to a corner is observed. As can be seen in
figure 16, the rear contact line is practically rounded until a rivulet forms in figure 16(f).
With increasing Ca, the length of the rivulet at the back of the contact line increases.
The surface tension of water is 7 times smaller than that of mercury; we would expect
an easier formation of sharp changes in curvature in water than in mercury. However, as
we show later in § 5.3, the corner formation seems to be decided more by the inability
of the rear contact line to move beyond a maximum speed. The heterogeneity of the
solid surface in the case of water drops tends to pin the receding contact line, thereby
dragging the receding contact line beyond this maximum speed and preventing a corner
from being formed.

5.3. Wetting Transition & Mazimum de-wetting speed

We consider the corner formation at the rear as the wetting transition, similar to that
in Le Grand et al. (2005). As discussed in § 5.1 and § 5.2, corner formation occurs only
in the case of mercury on glass in our experiments. The corner forms at finite receding
contact angle 6,.. = 95° (see figure 14(b)); the ratio 0,./60s. = 0.657. Corner formation
is often interpreted to be due to a maximum limiting speed at which the contact line
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FIGURE 14. Side and top views of the mercury drops at different capillary numbers; (a), oval or
rounded at Ca = 1.1 x 107, Re = 9842; (b), corner formation at Ca = 1.6 x 1073, Re = 14553;

(c), cusping at Ca = 1.9 x 1073, Re = 16752 and (d), rivulet formation at Ca = 2.3 x 1073,
Re = 20069 respectively.
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FIGURE 15. (a), Variation of the dimensionless curvatures measured from the top views at the
front and rear side as a function of the capillary number; O, ® advancing and receding sides
of water drops; OJ, B, advancing and receding sides of mercury drops. (b), Variation of
the dimensionless velocity of the angular contact lines at the rear with the dimensionless
velocity of the drop. Inset (i) shows the definition of the corner half angle ¢ while inset (ii)
shows the comparison of evolution of ¢ with Ca in mercury with the relation proposed
by Snoeijer et al. (2007).
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FIGURE 16. Side and top views of the water drops; (a), Ca = 0.0015, Re = 626; (b), Ca = 0.0019,
Re = 809; (c), Ca = 0.0036, Re = 1531; (d), Ca = 0.0043, Re = 1819; (e), Ca = 0.0045,
Re = 1910; (f), Ca = 0.0047, Re = 1995 and (g), Ca = 0.0065, Re = 2719.

can recede. If ¢ is the half angle at the rear of the drop in the top view (see the inset of
figure 15(b)) the velocity of the receding contact line is U sin ¢. Figure 15(b) shows the
dimensionless receding contact line velocity C'asin ¢ as a function of the dimensionless
drop velocity Ca. For mercury drops, till a corner forms at the rear at Ca = 0.0015, the
receding contact line moves at the same speed as the drop; Casin ¢ = Ca in figure 15(b).
For Ca > 0.0015, Casin ¢ = 0.0015, the receding contact line moves with a constant
speed normal to itself even when the drop velocity is increased. Once the corner is formed,
the rear half angle ¢ decreases as 1/Ca so that the speed of the rear contact line normal
to itself remains a constant, as was first observed by Blake & Ruschak (1979).

If the contact angle is only a function of the contact line speed, as is often assumed in
various dynamic contact angle models, then the contact angle that the angular contact
lines at the rear makes should remain constant after corner formation. Since the corner
forms at 6, = 95°, 6, — 0, = 0.8652 rads after the corner has formed for mercury drops.
Hence the observation that the dimensionless velocity of the contact line Casing is a
constant equal to 0.0015 from figure 15(b) gives us an expression for the variation of the
corner half angle ¢ after the corner has formed as

esr - 97”
576.8 Ca’

Equation (5.1) uses the assumption that the contact angles are linear functions of the Ca,
as in the empirical linear model by Dussan (1979); similar relations could be obtained
by using other contact angle models as in Le Grand et al. (2005). A comparison of the
evolution of ¢ with Ca in our mercury drops with that proposed by (Snoeijer et al.
2007) is shown in the inset of figure 15(b). The evolution is qualitatively similar, but
quantitatively different by two orders of magnitude. This discrepancy is not surprising
since the model by Snoeijer et al. (2007) uses Cox-Voinov law, which does not match with
the contact angle data in our mercury drops. Further, ¢ at transition to rivulet occurs

sin ¢ ~ (5.1)
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close to 45° in mercury drops while the theory by Snoeijer predicts a rivulet transition
at ¢ =~ 15°. This discrepancy too is not surprising since the theory is valid only for small
¢, whereas ¢ for mercury is close to 90°.

In the case of water drops on FAS coated glass, there appears to be no corner formation
at the rear, as was shown in § 5.2. This behaviour is also reflected in the velocity of the
angular contact line at the rear of water drops shown in figure 15(b). The velocity of the
angular contact line is the same as the velocity of the drop, till it suddenly decreases and
remains constant at the formation of a rivulet. It appears that the surface imperfections
that cause the hysteresis also drag the contact line, to move it at the drop velocity till
rivulet formation. Once a rivulet is formed, further increase in drop velocity increases the
length of the rivulet, the rear contact line moving at a constant dimensionless velocity
Casin ¢ = 0.003.

6. Conclusions and Further Discussions

The two primary and important conclusions that emerge from the present experimental
study of high Reynolds number (Re), partially non-wetting drops on inclined boundaries
at small Capillary numbers (Ca) are:

(a) At high Re the velocity of the drops is governed by the driving gravitational force,
the contact line resistance and the predominant boundary layer friction force.

(b) Inertia is negligible in the contact angle variation, which scales with Ca as it does

in low Re drop motion; Re effects would be of second order.
These results were obtained with water drops on Fluoro-Alkyl Silane (FAS) coated glass
and mercury drops on glass. The range of C'a for water drops is, 0.0003 < C'a < 0.0075,
with inclination angles, 26° < a < 65°, and the dynamic contact angles 54° < 65 < 121°,
resulting in a Reynolds number range of 137 < Re < 3142. For mercury drops on glass,
0.0002 < Ca < 0.0023, the inclination angles, 5.5° < a < 14.3° and the contact angles
92° < 04 < 160°, so that 3037 < Re < 20069.

When Re > 102 for water and Re > 10 for mercury, or alternatively, when ¢ =
92.5¢(6.)/v/Re, < 1 for both drops, the flow inside the drop is a boundary layer flow
as shown in § 3.3. The drop velocity then scales as Cay/Re, ~ Bo,, (3.18), where Rey,
is the Reynolds number based on the base radius and Bo,, (1.2) is the modified Bond
number. The general velocity relation Cay/Rep(1 + ) ~ Boy, (3.17) includes the above
asymptote at high Re, as well as the well known low Re asymptote Ca ~ Bo,.

The dependency of dynamic contact angles, corrected for hysteresis, (64 — 65), on Ca
of water drops at the present high Re coincides with that observed in silicone oil drops
by Le Grand et al. (2005) at Re < 1 in the same Ca range. However, for mercury
drops, such a similarity with water in the variation of 8; — s with Ca is observed
only for the advancing contact angles; the receding contact angles behaved differently,
but its variation is sill linear in Ca. Molecular kinetic theory(Blake & Haynes 1969)
is able to capture this variation of contact angles, however with different frequencies of
molecular displacement in the advancing and the receding sides for the same fluid-surface
combination. For the case of mercury drops, in addition, the average distance between
the adsorption sites, a property of the surface, would also have to be different in the
advancing and the receding sides. We expect this behaviour of the theory to be due to its
neglect of the hydrodynamic factors that could cause a difference between the receding
and the advancing sides. We find that the de Gennes’ model (de Gennes 1986), the Cox-
Voinov model (Voinov 1976; Cox 1986) and the inertial Cox model (Cox 1998) are not
able to explain the behaviour of contact angles in water and mercury with pre-factors of
the order expected from these theories. The interface formation theory of Shikhmurzaev
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(1993) is able to account for the similarity of behaviour between water and silicone oil,
as well as the difference in behaviour between water and mercury, by bringing in the free
surface velocity and two adjustable parameters p;, and Sc as parameters that influence
the variation of §;. The magnitudes and variation of the dimensionless interfacial velocity
u12 with Ca in the three fluids are similar to the variation of 84, which accounts for the
different behaviour of 8; with Ca of these drops.

The mercury drops exhibit a sharp transition from oval shape to a corner at the rear,
which happens at a finite receding contact angle of 6, = 95°. This wetting transition is
due to the maximum limiting speed for the moving contact line. The corner to cusp tran-
sition happens at a corner angle of 45°. It is of interest to point out that by replacing the
viscous dissipation in de Gennes model by an estimate of the corner flow solution of Huh
& Scriven (1971), a value 0,../05,. = 0.635 is obtained that is close to the experimentally
observed ratio of 0.657. However, as one of the Referees pointed out, the finite contact
angle at transition predicted by de Gennes model is a result of mathematical simplifi-
cation (Eggers 2004) and is, therefore, artificial. Thus, the agreement with experiments,
when replacing the viscous dissipation by a corner flow, might just be coincidental. Such
sharp shape transitions are not clearly apparent in the case of water drops on FAS coated
glass. Due to high pinning of the receding contact line, the receding part tends to di-
rectly transform into a rivulet with increasing C'a. Corner formation cannot be excluded
entirely in water drops, but if it exists, it occurs over a very narrow range of Ca.

The behaviour of high Reynolds number drop motion observed in our experiments is,
in general, consistent with the models developed. Nevertheless, some questions can be
raised concerning the contact line resistance in the theoretical expressions (3.16) and
(3.17). It is often assumed that the contact line resistance is independent of velocity and
is given by the contact angle hysteresis. This assumption is well supported by experi-
ments, usually at low drop velocities. If the contact line resistance were to depend on
dynamic contact angles and thereby become a function of velocity, in our experiments,
this dynamic contact line resistance alone would nearly compensate the gravitational
force and the drop would never move. As figure 5 indicates, the observed drop velocities
at large Bo,, are larger than those predicted by the model, which would suggest that the
contact line resistance actually decreases with velocity. A possible decrease of interfacial
tension at the contact line, as suggested by Shikhmurzaev (1993), would be compatible
with a decreasing contact line resistance with velocity. However, hydrodynamic explana-
tions, like the beginning of a global rolling motion as suggested by Mahadevan & Pomeau
(1999) is also likely. Further studies with drops of different sizes would be of interest to
clarify these questions. In such a case the pre-factors proposed in the present study may
become functions of the drop size due to the change in drop geometry with its size.
Similarly, if the contact angles are strongly influenced by the free surface velocity, one
would expect this influence to be reflected in the variation of contact angles in drops of
different sizes.
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at the Dept. of Applied Mechanics. VSK acknowledges the financial support of Tata
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Appendix A. Effect of measurement resolution on contact angles

The resolution of our measurements of contact angles (100 pwm) is not high. However,
we show below that since our experiments are at low Ca(< 0.0075), the viscous bending
of the contact line will be small and hence the low resolution in our measurements is not
going to affect the contact angle measurements substantially.
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FIGURE 17. Variation of apparent contact angles with the resolution of measurement

Figure 17 shows the expected variation of the apparent contact angle with resolution,
as calculated using the viscous bending relation given by Dussan et al. (1991).

9(64) = g(6m) + Caln(r/lc) + g(fo) (A1)
where, g(0) is given by (4.10),

=g s g (% ssin(r/2-0,) )] - 3 (i):in(w S0 (A2)

S =sin(n/2 — 0,)/2, C = cos(n/2 — 0,,)/2 (A3)
0, is the microscopic contact angle, [, is the capillary length and r the distance from
the contact line at which the apparent contact angle is measured.

The variation shown in figure 17 is only approximate since we have used the expression
for the interface in the outer region given by Dussan et al. (1991) for the case of immersing
a tube into a layer of fluid. However the interface shape in the outer region should be
similar to that in a sessile drop and hence the figure is indicative of the possible variation
of the contact angle with the resolution. The curves shown in figure 17 are for water and
mercury at the largest C'a encountered in our experiments. In obtaining these curves 6,,
was adjusted so that 6; at 100pum matched with the measured value at the corresponding
Ca. Our measurements are at a resolution of 100um. The figure shows that as we increase
the resolution of measurement, viscous bending becomes predominant at about 10um for
mercury and at 35um for water. Figure 17 shows that even if we were to measure the
apparent contact angles at the boundary of outer region and the intermediate region, as
is often suggested to be the best position, the maximum changes in the dynamic contact
angles from the present values will be about 1.9° for mercury and 0.9° for water. These
are the maximum possible changes at the highest C'a in our experiments that would
be encountered if measurements are made with a resolution of 10pum in mercury and
35um in water; the changes will be lower for most of our data that are at lower Ca.
Considering that the variation in our repeated measurements itself is about 3°, such high
resolution measurements are not going to change any of the results on dynamic contact
angles that we have presented. The variation of 6; due to improved resolution will be
well within the error bar shown in figure 6. In addition, as part of an ongoing study, we
have now conducted measurements at a higher resolution of 15 pm, but for different drop
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FIGURE 18. The ratio of radius of curvature of the interface to the distance from the triple
point (B 1), as estimated from Huh & Scriven (1971) for the range of Ca and 6,4 involved in the
experiments. Filled symbols are for receding contact line and the open symbols for advancing
contact line. O, water; [J, mercury.

diameters than that reported in the present paper. These measurements are consistent
with the measurements presented in the paper.

Appendix B. Justification for using Huh & Scriven (1971) solution

The Huh & Scriven (1971) solution of creeping flow in a corner does not satisfy the nor-
mal stress boundary condition, as pointed out first by Huh & Scriven (1971) themselves.
The solution is for a flat interface geometry, but the normal stress balance obtained from
the solution will result in an equation for the curvature of the interface between a liquid
and a gas of negligible viscosity as,

1 _Ca (2 sin? 6, + sin 29d)

sin 29(1 — Gd (B 1)
This curvature has a singularity at r = 0, which is the crux of the contact line problem
and is due to the conflicting boundary condition at the triple line, when approached from
the solid-liquid interface and from the liquid-gas interface. In § 5.3, when the lubrication
solution used in the de Gennes (1986) model is replaced by the Huh & Scriven (1971)
solution, we truncate the solution at a slip length A from the contact line, to avoid this
singularity. This approach is similar to the approach followed in most slip models of
dynamic contact angles.

The curvature of the interface (1/r;) when r # 0, is neglected in the Huh & Scriven
(1971) solution. However, as is obvious from (B 1), this curvature tends to zero as Ca — 0,
when 7 # 0; the r = 0 case is anyway excluded by terminating the solution at the slip
length. So Huh & Scriven (1971) solution will have a perfectly flat interface only when
Ca = 0. However, for small Ca as in our experiments, the interface can be considered flat
to first order, except at r = 0. The variation of the radius of curvature of the interface,
normalised by the length scale r at which this curvature occurs is shown in figure 18 for
the range of C'a in our experiments.

It is clear from the figure that even at the point of corner formation in mercury, the

T T
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radius of curvature of the interface at any r # 0 is four orders of magnitude larger than
the value of r itself; the interface is for all practical purposes flat near the contact line.
Of course this solution is valid only up to an r so that Re based on 7 is less than 1. So in
effect the interface could be considered flat for A < r < v/U. The variation of the length
scale v/U at which the local Re ~ 1 is shown in figure 7(a).

Appendix C. Estimate of p,

Equation (4.12) is obtained after linearising the differential equations of interface for-
mation under the assumption that the deviation of p? from pf is small, or in other words
when p¢, — 1 so that the small parameter

(1-p2) 0. (1)

The value of p¢, hence has to be close to one as per the theory, usually between 0.9 and
0.99, but can never be equal to one. Equation (4.17) could be written as

(1= =1, (C2)
where A\ = yp§ /0. One can find the value of pf, if the values of v and p§ are known.

o = pe, (C3)

where we take ¢ = 3nm for both water and mercury. The phenomenological coefficient
in (4.17), reflects the ability of the interfacial layer to be rarefied or compressed due to
the non-symmetric action of intermolecular forces from the bulk phases (Shikhmurzaev
2008). v is inversely proportional to the compressibility of the fluid and its order is
expected to be slightly less than the square of the speed of sound ¢ for incompressible
fluids (Shikhmurzaev 2008). The square of the speed of sound in water and in mercury
are ¢ = 2.2 x 10° m?/s? and ¢? = 2.1 x 10 m?/s? respectively at 25°C (Everest 2001).
Hence taking v < ¢? and using (C3), we get pf, < 0.9891 for water and p§, < 0.9943 for
mercury from (C2). We hence chose pZ = 0.98 for Si oil, water and mercury that will
give values of ~ slightly less than ¢? in all these fluids, at the same time ensuring that
the condition (C1) is met.
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