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A large body of work has gone into understanding the effect of

mutations on protein structure and function. Conventional

treatments have involved quantifying the change in stability,

activity and relaxation rates of the mutants with respect to the

wild-type protein. However, it is now becoming increasingly

apparent that mutational perturbations consistently modulate

the packing and dynamics of a significant fraction of protein

residues, even those that are located >10–15 Å from the

mutated site. Such long-range modulation of protein features

can distinctly tune protein stability and the native

conformational ensemble contributing to allosteric modulation

of function. In this review, I summarize a series of experimental

and computational observations that highlight the incredibly

pliable nature of proteins and their response to mutational

perturbations manifested via the intra-protein interaction

network. I highlight how an intimate understanding of

mutational effects could pave the way for integrating stability,

folding, cooperativity and even allostery within a single physical

framework.
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Introduction
Mutations in proteins occur via multiple well-understood

molecular mechanisms primarily at the level of DNA

contributing to variability in the population. Such vari-

ability is the cornerstone of evolution as functionally

advantageous mutations get fixed in the presence of a

selection pressure. Decades of work on mutations have

revealed rich information on protein conformational

behavior, binding site identities and thermody
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namics, folding mechanisms and allostery. In parallel,

understanding and modeling mutational effects has tre-

mendous implications in not just designing proteins with

enhanced solubility, stability, and catalytic efficiency, but

also to understand evolutionary trajectories of proteins,

enzyme evolvability and the contribution of mutant phe-

notypes to organismal fitness [1–5]. Numerous avenues

are currently available to engineer proteins ranging from

charge-charge interactions on the protein surface [6] to

directed evolution [7] and saturation mutagenesis-based

approaches [8,9].

A ‘neutral’ mutation is conventionally defined as a per-

turbation that has little effect on the organismal fitness

(say, functioning of a protein or survival of the organism).

However, the same mutation in conjunction with muta-

tions at other sites can have a positive or a negative effect

on the fitness landscape. How is this epistatic character-

istic enabled? It is important to realize that the interior

(surface) of a protein is a highly unique environment

determined by the unique protein sequence with specific

packing (electrostatic/polar) interactions. Therefore, any

perturbation from a mutation is expected to be complex,

as it would involve an abrupt reorganization of the evo-

lutionarily tuned interaction network. In fact, it is well

recognized in the field of protein NMR that mutations

manifest as non-trivial effects on chemical shifts and

order parameters of a majority of residues in the protein.

However, there is an apparent disconnect between an

NMR view of mutational effects (complex changes in

multiple terms) and studies that merely quantify the

change in stability or folding rate of the mutant compared

to the wild-type. In this review, I highlight and summa-

rize some of the recent developments towards resolving

this apparent conflict and how a mere consideration of the

intra-protein interaction network provides a convincing

rationale with several testable predictions.

Mutational effects propagate beyond the
firstshell of interactions
A reductionist approach in viewing proteins is to treat

protein residues as nodes and the intra-protein interac-

tions as edges [10]. When the edges are perturbed, either

by deletion or by modulation of their strengths, the

network properties are modulated not just in the imme-

diate neighborhood but also at longer distances [11�]
(Figure 1a). Such propagation and dissipation (used
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2 Folding and binding

Figure 1
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Mutational effects are consistently felt over long distances with evidence available from varied approaches. (a) Average changes in network

connectivity, quantified by betweenness centrality (CB), plotted as a function of mean Ca-Ca distance from the mutated site from a ‘toy’ model of

Ubiquitin that treats protein residues as nodes and their interactions as edges [11�]. (b) Experimental chemical shift perturbations on mutations

mapped on to the structure of SNase (L125A; [17�]) and Ubiquitin (L43A; [14]), respectively. (c) Residues whose NMR order parameters are

affected (green) on core mutations of residues shown in yellow in CI2 [13]. Reprinted with permission from Ref. [13], Copyright (2008), American

Chemical Society. (d) Experimental chemical shift perturbations as a function of distance from the mutated site for specific ubiquitin mutations

[11�,25�]. (e) Mean absolute changes in van der Waals packing interactions (ordinate in kJ mol�1) for seven core substitutions in ubiquitin plotted

as a function of distance from the mutated site from all-atom MD simulations (circles) together with an exponential fit (red) [11�]. (f) A cartoon

representation of how perturbation of a residue (red) affects not only its first-shell neighbors (blue and interactions as black arrows) but also the

neighbors of neighbors (green and interactions as white arrows).
strictly in an equilibrium sense with no kinetic connota-

tion) of perturbations with increasing distances from the

source of perturbation is a robust feature of networks [12].

True to this expectation, point mutations in CI2 [13],

Ubiquitin [14], T4 lysozyme [15], SSo7d [16], Staphylo-

coccal nuclease [17�] and Protein L [18] all contribute to

persistent modulation of chemical shifts, hydrogen-

exchange protection factors or dynamics almost through-

out the entire structure (for example, see Figure 1b, c).

Such long-distance coupling of residues can affect catal-

ysis in enzymes as shown through single-point and dou-

ble-point mutations (>15 Å from the active site) in dihy-

drofolate reductase that modulate the rate of hydride

transfer by up to three orders of magnitude [19,20]. By

measuring chemical shift perturbations (CSPs) of b1-

adrenergic receptor upon mutations and ligand binding,

Grzesiek and coworkers identified that both the structural

perturbations propagate to long distances determining

the functionally relevant motions of the transmembrane

helices [21�]. A study on Cyclophilin A, a peptidyl prolyl

cis–trans isomerase, reported a 30% reduction in the rate
Current Opinion in Structural Biology 2019, 54:1–9 
of isomerization upon a conservative V29L mutation

located nearly 15 Å away from the active site [22�]. While

the activity modulation is minor in Cyclophilin, a 1000-

fold increase in phosphotriesterase activity could be

engineered in a bacterial lactonase by ‘tinkering’ with

mutations in the second-shell of the active-site residues

[23�]. Such extreme behaviors and context-dependence

could be a manifestation of the robustness of the intra-

protein interaction network to perturbations wherein the

network readjusts to accommodate a residue by altering

the dynamics and packing of distant residues. It also

suggests that multiple mutations might be required in

a protein-specific manner to irreversibly alter the interac-

tion network or the correlated motions and hence the

functional output.

The fact that distal mutations can alter activity (to vari-

able extents) raises questions on whether this is an

intrinsic response of proteins to structural perturbations

due to the fluid-like nature of the protein interior [24].

True to this expectation, a global analysis of 25 mutations
www.sciencedirect.com



Protein stability, folding and allostery via mutational lens Naganathan 3
from 12 different protein structures from the viewpoint of

chemical shift perturbations revealed that the effect of

mutations could be consistently felt even up till 10–20 Å

from the mutation site, and is independent of the nature

of the mutation, protein type or secondary structure

content (for example, see Figure 1d) [25�]. Experimental

double-mutant cycles that measure the degree of ener-

getic coupling of one reside to another reveal a similar

long-range coupling of residues [26,27]. In all of the cases

above, an exponential-like dissipation of network param-

eters, coupling energy or chemical shift perturbations

have been identified highlighting the possibility of a

universal function form to describe mutational effects

[25�]. The pervasive long-range coupling patterns explain

the large conservation of even distal residues (as far as 20–

27 Å) around the active site of enzymes [28�]. It is

important to emphasize here that such conservation

can have varied origins including functional requirements

(either at the active site or binding of an effector at an

allosteric site), stability (thermodynamic and kinetic),

preventing aggregation and so on. As an aside, I would

like to point out that long-range structural modulation is

not only observed on mutational perturbations, but also

on ligand-binding and phosphorylation [25�], similar to

the domino-like propagative-cum-dissipative phenome-

non observed in repeat proteins [29].

Truncation mutations primarily weaken native
interactions
What are the molecular origins of destabilization induced

by truncation mutations? An analysis of microsecond-long

molecular dynamics trajectories of Ubiquitin WT and

seven aliphatic truncation mutations revealed a distinct

weakening of packing interactions across nearly the entire

protein. The relative residue-level van der Waals inter-

action energy approaches zero (i.e. no perturbation) only

at longer distances from the mutated site (Figure 1e)

[11�]. Taking a cue from MD simulations, the effect of

truncation mutations was recently modeled by consider-

ing two shells of interactions around the perturbed resi-

due [11�]; the first shell accounts for the neighbors within

a 6 Å distance from the mutated site, while the second

shell accounts for the neighbors of neighbors and thus

residues nearly 12 Å from the mutated site. By introduc-

ing different destabilization magnitudes in the first- and

second-shells, accounting for the nature of mutation and

parameterizing them into a statistical mechanical model

[30,31], it was possible to reproduce the changes in

stabilities of 375 truncation mutations in 19 different

proteins with a correlation and slope comparable to that

from the multi-parameter FOLDX energy function [11�].
In other words, on accounting for the nature of the

mutation (merely from the ratio of atoms in the mutant

compared to the WT), the first- and second-shell van der

Waals interactions are weakened by 50% and 20%,

respectively (Figure 1f). However, since there are many

more interactions that define the second-shell, the
www.sciencedirect.com 
energetic contributions are near equivalent but distrib-

uted throughout the structure. It is important to empha-

size the implication of the above statement; for instance,

L43, which is located in the hydrophobic core of ubiquitin

is therefore connected to �80% of the 76 residues in

ubiquitin, underscoring the extent to which the intra-

protein interaction network can be perturbed.

While the discussion above is primarily on truncation

mutations, mutations that enhance the molecular volume

also decrease protein stability though the mechanism is

still unclear. Since the interior of a protein displays the

packing density of a solid (despite displaying large

dynamics [24,32]), any change in the protein interior

environment (that is unique as the sequences themselves

are unique) would disrupt interactions, as the protein

molecule would struggle to fit in an amino acid with a

larger volume. Not surprisingly, mutations that enhance

molecular volume also contribute to an exponential-like

dependence of the chemical shift perturbations as a

function of distance from the mutated site [25�]. The

same applies to mutations to glycine that dramatically

enhance the basal backbone fluctuations (�4 kJ mol�1

destabilization at 310 K from merely single-site backbone

entropy considerations [33]) and could manifest as non-

trivial effects on the folding-functional landscape.

Population redistribution, partial unfolding
and shifts in the native ensemble
Protein native states are accurately defined as ensembles

of multiple conformations or substates that are critical for

function. Thermodynamic fluctuations are a feature

intrinsic to polymeric protein chains arising from the

finite size of protein molecules and the weak nature of

the non-covalent interactions [34]. From a statistical-

mechanical perspective, it can therefore be immediately

recognized that upon mutation the statistical weights and

hence the probabilities of all the conformations in which

the residue is structured would be modulated. This in

turn would manifest as shifts in the distribution of con-

formations in the native ensemble and enhanced popula-

tion of intermediate or excited states apart from higher

unfolded state populations (Figure 2a). This immediately

explains why mutational approaches to enhancing excited

state populations or intermediates have been immensely

successful as in the studies involving T4 lysozyme and

Fyn-SH3 domains [15,35]. Similar mutation-induced

population redistributions have also been reported in

GPCRs [36,37], CAP [38], Ubiquitin [39�], U1A [40],

Cyclophilin [22�] and Adenylate kinase [41], with distinct

effects on function in each case.

Redistribution of populations in the native ensemble

tune functions and downstream signaling responses

revealing avenues by which molecular responses to envi-

ronmental variables could be acquired, the molecular

mechanisms of drug-resistance and onset of disease
Current Opinion in Structural Biology 2019, 54:1–9
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Figure 2
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Stability changes and modulation of the folding-function landscape. (a) Projection of conformations onto a two-dimensional landscape generated

from the WSME model for WT ubiquitin and its mutant L43A. nN-term and nC-term represent the number of residues structured in the N- and C-

terminii, respectively. The arrow points to intermediate-like states in the landscape that are stabilized on mutations (N stands for native and U for

unfolded macrostates). (b) (Left Panel) Changes in the secondary-structure upon mutating a proline to alanine (P33A) in a disordered protein CytR.

Note that the proline is present in the loop region connecting two helices and not nucleating a helix. (Right Panel) One-dimensional free energy

profiles as a function of the number of structured residues as the reaction coordinate (RC). The landscape is non-trivially modified with the

population of a folded-like excited state decreasing on proline substitution [46].
conditions. Work on p97 ATPase and NAD(P)H: quinone

oxidoreductase 1 (NQO1) highlight that disease causing

mutations shift the conformational substates in a graded

manner thus compromising innate activity [42�,43]. Simi-

larly, distal mutations on tryptophan synthase shift the

conformational ensemble to the extent of modulating the

rate-limiting catalytic step [44]. Recently, destabilizing

distal and surface glycine mutations on Adenylate Kinase

(AK) have been shown to influence both enzyme activity

and substrate affinity [45�]; these mutations destabilize

the native ensemble through partial unfolding of AK

domains shedding light on how enzymes from psychro-

philic organisms could tune their basal activity to com-

pensate for lower thermal energy.

Note that such population redistributions upon mutations

need not be restricted to folded proteins but even intrin-

sically disordered proteins. The outcome of such muta-

tions in disordered proteins is expected to be non-trivial

due to the heterogeneous nature of IDP ensembles
Current Opinion in Structural Biology 2019, 54:1–9 
manifesting as large signal changes in equilibrium

[46,47] (Figure 2b), binding affinity [46–49], association

and dissociation rate constants [48–51], altered binding

transition-state ensembles [50] and even induce liquid-

to-solid phase transition [52].

Allosteric mechanisms and paths from
mutational perturbations?
It iswellestablishedthatprotein residuesarecoupledtoeach

other through both the hydrogen-bond network and packing

interactions  leading to correlated motions or fluctuations in

equilibrium that are critical for function. Such intra-molecu-

lar interaction-networks serve as channels for signal trans-

mission playing a prominent role in dynamic allostery [53–

55] (modulation of activity without changes in the overall

structureupondistalperturbations).Sincemutationaleffects

arenot localized it isnatural toexpect that theyalsomodulate

the communication network and hence influence function.

In fact, a wide range of mutational tolerance and non-trivial

functional outcomes has been observed in ubiquitin [56] and
www.sciencedirect.com
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Figure 3
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A structural perturbation approach (SPA), an in silico version of alanine-scanning mutagenesis, towards understanding allosteric coupling [62�]. (a)

Changes in packing density (DQ) as a function of distance upon L56A substitution in ubiquitin extracted through the SPA. The red curve is a

single-exponential fit highlighting a coupling distance (dC) of 4.8 Å. (b) The coupling distance is approximately linearly related (red line) to the

overall perturbation magnitude (abscissa). This indicates that larger residues that are located in the protein interior are extensively coupled, the

perturbation of which can contribute to significant changes in packing density and hence dynamics-folding-function behaviors. The gray circles

are from a perturbation analysis of all residues in six different proteins while the green circles are block averages. (c) Perturbation of the residues

in red in PDZ3 reveals strong coupling to several residues (blue) that can potentially modulate the binding of the peptide (yellow). Note that Y92, a

PTM site, is located in vicinity of the perturbed residues indicating how information on PTM could be transmitted to the binding site. (d) An SPA of

the three residues shown in red again results in an exponential dependence of DQ (blue circles). The coupled residues identified using the

statistical coupling analysis (SCA) is shown as filled circles are in good agreement with that predicted from the SPA. (e) A schematic of how long-

range coupling can be extracted from the SPA. The perturbed residue is shown in red, unperturbed residues in gray, the contact map as the

upper left triangular matrix and the DQ-map as the lower right triangular matrix. On perturbing a residue in red, apart from the first-shell neighbors

(dark blue), the second shell is also affected (dark green) that constitutes a significant fraction in a small single-domain protein. The effective

number of interactions that are lost are shown in the DQ-map (a uniform coloring code is employed for the sake of clarity).
light-oxygen-voltage domain 2 [57]. Mutational studies on

PDZ report that nearly the entire protein interaction net-

work has evolved towards optimizing activity and potentially

to minimize cross-reactivity while uncovering allosteric sin-

gling paths [58,59]. Similarly, extensive alanine-scanning

mutagenesis has revealed that a significant fraction of resi-

dues (�30%) in the human liver pyruvate kinase can influ-

ence the binding to its substrate, PEP, in the presence of the

activator Fru-1, 6-BP [60�].

Since the precise mechanistic details of allostery are yet to

be completely established with the possibility of large

context dependence, a whole-protein mutagenesis (ala-

nine-scanning, for example) might be a way forward to test

mechanistic models without preconceived notions orbiases

in the analysis, as also argued for in a recent work [61]. An in
silico version of this is the structural perturbation approach

(SPA; [62�]) wherein every residue is mutated to alanine or

glycine (perturbation) and the immediate environment is

probed for the presence of strong packing (also see [63,64]

for similar methods). Following this, two parameters are

extracted for every residue — the coupling distance (dC)
www.sciencedirect.com 
and the total perturbation (SDQ) — that provide informa-

tion on the extent to which theperturbed residue is coupled

to its neighbors (Figure 3a, b). Interestingly, the SPA

reproduces the results of statistical coupling analysis

(SCA [65]) with just a single structure as input and from

mere distance considerations (Figure 3c, d) while revealing

additional allosteric sites that could be experimentally

tested [62�].

Deducing allosteric communication paths is almost

entirely the purview of computational methods [66–

71]. Since signal transmission should occur through the

network of non-covalent interactions in the protein inte-

rior (any surface propagation would be quickly damped by

solvent collisions) it is necessary that such methods also

reproduce mutational destabilization thermodynamics.

This would provide an independent test for the relative

strengths of non-covalent interactions at different regions

of the protein structure required to model signal propa-

gation as put forth by Ernesto Freire [72]: “ . . . the

propagation of binding signals should obey precise ther-

modynamic rules, and the location of allosteric sites
Current Opinion in Structural Biology 2019, 54:1–9
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should be dictated by thermodynamic stability criteria

within the protein.” The overall features of the signaling

paths should not only be consistent with the available

chemical shift perturbations upon mutations (at least at

the level of relative trends) but also the mutation-induced

destabilization providing a sound equilibrium-thermody-

namic framework for modeling allosteric communication

networks.

On folding mechanisms and cooperativity
Putative transition state structures and hence protein fold-

ing mechanisms are generally inferred from F-value anal-

ysis that involves measuring the changes in stability and

(un)folding rates upon point mutations [73]. One of the

primary assumptions of this approach is that the recom-

mended truncation mutations in the protein interior [73]

influence only the nearest neighbors (or the first-shell)

providing an intimate view of the degree of structure in

the transition state. Given that mutational effects consis-

tently propagate beyond the first shell of interactions and

modulate both packing and dynamics of distant residues, it

is likely that F-values represent an effective average of

multiple energetic and entropic terms and not just the

extent of local structure. The frequently observed folding

F-value of �0.3 (independent of protein type, structure or

mutation [74]) could therefore represent the fraction of

stabilization free energy gained during folding [75,76]. It

remains to be seen if it is possible to disentangle the

energetic and structural contributions to F-values from

computational studies. Moreover, a two-state-like treat-

ment does not account for altered dynamics or population

redistributions within the native well, necessitating a shift

towards the use of more detailed thermodynamic models

that could potentially provide exciting insights.

Cooperativity is feature intrinsic to systems held together

by weak non-covalent interactions, and in proteins it is

quantified in terms of the slope of the unfolding curve,

folding barrier heights or other extent of similarity of

atomic-level unfolding curves [77–79]. Cooperativity fea-

tures are thus intrinsically related to the contact environ-

ment of residues in the protein. Therefore, it should be

possible to perform a series of alanine-scanning experi-

ments and iteratively identify the extent to which the

interaction shell radius (or the coupling distance

[11�,25�,62�]; Figure 3a) needs to be modified to account

for the destabilization thermodynamics. In fact, the struc-

tural perturbation approach (SPA) can be extended to

generate a DQ-map (similar to the contact map, or Q-map;

Figure 3e) that highlights the degree of coupling of every

residue with its neighbors [62�]; such maps emphasize

that second-shell interactions around a residue should be

formed to consider the residue to be ‘folded’ (Figure 3e).

It remains to be seen if such perturbation-based

approaches alone are sufficient to generate cooperativity

indices or regions of structure that are more coupled (or
Current Opinion in Structural Biology 2019, 54:1–9 
more locally stable and hence more cooperative) than

others.

Concluding remarks
Recent experiments and computational works highlight

that mutations in the protein interior manifest as altered

chemical-shifts, order parameters (dynamics), HX pro-

tection factors, and modulation of packing interactions

involving a significant fraction of protein residues.

Accordingly, mutational perturbations are better under-

stood in terms of their impact on the underlying inter-

action network or correlated motions and likely serve as

the evolutionary first-step towards altered protein activ-

ity, diseased states, functional promiscuity and fold-

switching. Given the robustness of the interaction net-

work to mutations, successful engineering of enzymatic

activity might require multiple perturbations [80–82]

while in some cases single or double-mutations alone

have been successful highlighting a certain degree of

context-dependence. Deciphering this context depen-

dence could be the way forward to engineer protein

function at will.

Surface mutations also contribute to complex alteration of

folded and unfolded ensembles apart from folding mech-

anisms [83–86]. It is therefore possible that even appar-

ently neutral mutations modulate specific features of the

native conformational ensemble which is however invisi-

ble or challenging to identify in the absence of a func-

tional output. These observations underline the need to

expand the outlook on mutational outcomes to include

perturbation of native conformational ensembles, popu-

lated intermediate- and excited-states and redistribution

of dynamics. Since mutations alter the evolutionarily

constrained intra-molecular network of interactions, they

are also expected to reshape the folding funnel and hence

tune folding mechanisms, aspects that could be explored

with advanced computational protocols and experiments.

However, there is still a distance to travel in understand-

ing the impact of mutations at a distal site in more

functional terms — will a specific mutation at a distant

site enhance or diminish binding affinity to the substrate?

Detailed and intimate characterization of mutational

effects supplemented with quantitative modeling could

thus open up new vistas with implications in protein

design, function and allostery.
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