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The theory describing the nonlinear stationary waves of finite amplitude and long wavelength on a

thin viscous Newtonian film at high Reynolds numbers and moderate Weber numbers has been

developed using the energy integral method ~EIM!. The linear instability of the uniform flow by

EIM has been analyzed and the linear instability threshold has been obtained as cot u/Re56/5,

which agrees with the classical results of the Orr–Sommerfeld analysis by Benjamin @J. Fluid Mech.

2, 554 ~1957!# and Yih @Phys. Fluids 6, 321 ~1963!# and verified experimentally by Liu and Gollub

@Phys. Rev. Lett. 70, 2289 ~1993!#. Further, in the frame of reference moving with the steady wave

speed, the second order approximate equations reduce to a third order dynamical system. While

wave transitions in real life involve complex spatio-temporal dynamics and many of these

transitions lead to chaotic waves that are not stationary traveling waves, bifurcation of stationary

traveling waves has been examined as a preliminary study of the more complex transitions. Stability

of the fixed points of the dynamical system, parametric regimes of heteroclinic orbits and Hopf

bifurcations are delineated. Numerical integration has been carried out in order to study the different

bifurcation scenarios as the phase speed deviates from the Hopf-bifurcation thresholds. Four

different bifurcation scenarios have been observed and the dependence of bifurcation scenarios on

the inclination angle, Reynolds numbers and Weber numbers have been discussed. Although the

results obtained by the momentum integral method and EIM exhibit similar bifurcation scenarios,

there are quantitative differences which shows that the modeling differences exist in the

literature. © 2004 American Institute of Physics. @DOI: 10.1063/1.1755704#

I. INTRODUCTION

The hydrodynamic behavior of a thin wavy liquid film

down an inclined plane or a vertical wall has attracted the

attention of several investigators due to the necessity for ac-

curate modeling of a variety of dynamical phenomena exhib-

ited by the wavy liquid film and its many applications in

industry. Since the pioneering work by Kapitza,1 who char-

acterized the types of wave structures seen on an initially flat

film, several investigations have been carried out and these

provide a theoretical description of the wave evolution pro-

cess on a liquid film flowing down an inclined surface or a

vertical wall. Benney’s2 long-wave model has considered the

evolution of finite-amplitude disturbances to the flat film.

The single nonlinear partial differential equation for the evo-

lution of the free surface to which the governing equations

are reduced, show that solitary and shock-like film profiles

are its possible solutions, when the partial differential equa-

tion is valid up to a particular order in e ~the ratio of the

thickness of the flat film to the wave length of the distur-

bance in the flow direction!. His analysis has not predicted

the existence of finite-amplitude traveling waves near the

onset of the instability and this failure has been attributed to

his scaling @Weber number, We;O(1) and Reynolds num-

ber, Re;O(1)] which has surface tension left out from the

governing equations. Following this analysis, there have

been several reports towards the investigation of the long-

wave surface evolution equation developed to various orders

of either We;O(1) or e2 We;O(1).3–11

Several models based on a boundary layer type of analy-

sis have been developed12–19 and the solutions of the result-

ing surface evolution equations have predicted the nonlinear

dynamics of the film at finite values of Reynolds number.

This integral boundary layer method uses a self-similar ve-

locity profile assumption to derive a two-equation model to

describe the dynamics of moderate to large amplitude distur-

bances. The advantages of the integral method are that the

model equations ~i! are valid up to a larger range of Rey-

nolds numbers, ~ii! are simple and it is possible to obtain

analytical solutions, ~iii! provide a means for a comparison

of different models and boundary conditions, and ~iv! have

solutions which help in the determination of flow parameters.

It is important to note that the integral approach has been

quite effective and popular in the study of flow and stability

characteristics of wavy films in spite of the increasing advan-

tage provided by the powerful computers and efficient nu-

merical methods.20

Most of the above investigations using the integral

boundary layer method employ the momentum integral ap-

proach which is based on the fact that the introduction of

fluid inertia in a thin film does not appreciably alter the ve-

locity profile within the film. The fundamental approxima-
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tion is that the velocity field with fluid inertia remains ex-

actly the same as in uniform parallel primary flow. In the

momentum approximation, the velocity profiles for the uni-

form flow are introduced into the boundary layer approxima-

tions of the governing equations and the equations are inte-

grated across the film to provide a two equation model

describing the dynamics of the waves. It is worth mentioning

here that, apart from the above investigations on the flow and

stability characteristics of Newtonian wavy films in which

the integral method has been used, the integral formulation

has been very effectively used in the study of hydrodynamics

of gravity driven film flows of non-Newtonian thin

films.21–25 The predictions by this approach agree well with

the experimental data for the developing flow in the hydro-

dynamic entrance region.26–28

Although the momentum integral approach has been ex-

tensively employed, the energy integral approximation has

not been applied in the analysis of flow system and stability

characteristics of thin film flow down an inclined or a verti-

cal wall. In the energy approximation, the governing momen-

tum equation is premultiplied by the flow velocity ~making

each term represent power per unit volume!. The velocity

profiles for the uniform parallel primary flow are then intro-

duced and each term is integrated across the film to provide

a two equation model describing the evolution of the free

surface.

In their study on squeeze-film damper flows, Crandall

and El-Shafei29 have shown that the energy integral method’s

~EIM! predictions agree with the exact solutions to first order

in the Reynolds number and that the error in the first order

terms of the momentum approximation is 20% at low Rey-

nolds numbers. They have pointed out that the energy inte-

gral formulation is superior to momentum integral method in

the determination of the effects of inertia on squeeze-film

damper performance. Elkouh30 has pointed out that the EIM

has led to a more accurate determination of the pressure dis-

tribution for the steady flow in a hydrostatic thrust bearing.

Also, Elkouh31 has shown that the expression for the pres-

sure distribution obtained for Newtonian circular squeeze

film using EIM is identical to that obtained by an iteration

technique by Kuzma32 which has been observed to be in

good agreement with the available experimental results. Fur-

ther, the investigations by Kapur and Verma33 on magneto-

hydrodynamic thrust bearings, by Turns34 on flow in a New-

tonian curved squeeze film using EIM, by Han and Rogers35

on modeling squeeze film force for large amplitude motion

in a two dimensional squeeze film using an elliptical velocity

profile and by Usha and Vimala36 on squeeze film force mod-

eling in a circular squeeze film using EIM have been shown

to be in good agreement either with experimental results or

with the numerical solutions37–40 and have thus justified the

validity of applying EIM in lubrication problems, in particu-

lar, in squeeze flow problems. It is worth mentioning here

that EIM applied to squeeze flow problems not only predicts

the squeeze film force at small to moderate Reynolds num-

bers accurately, but also predicts it for large amplitude mo-

tion. The success of the EIM in effectively and accurately

predicting the squeeze film force in squeeze flow problems

and in predicting the inertial effects on the performance of

squeeze film dampers has given the confidence to use this

simple, yet more accurate method in the investigation of the

evolution of waves on a viscous Newtonian film flowing

down an inclined plane or vertical wall.

In view of this, a model describing the evolution of

waves on a Newtonian fluid film down an inclined plane

using EIM with self-similar velocity profile assumption has

been presented for high Reynolds numbers and moderate

Weber numbers. It is worth mentioning here that the inves-

tigation presents another way of simplifying the Navier–

Stokes equations for the falling film problem; instead of the

classical approach of averaging the tangential momentum

across the film to obtain an integral equation of motion @mo-

mentum integral method ~MIM!#, the present formulation

uses a velocity weighted average, namely the depth averaged

kinetic energy balance ~energy integral method!.

The objective of this averaging is to remove the depen-

dence in the normal direction and hence reduce the spatial

dimension by one. The main key of this approach is to retain

the dynamic inertial term in the momentum equation. The

present approach is a reasonable alternative to the more clas-

sical approach using MIM. The averaging methods which are

ad hoc approximations intended for high Reynolds numbers

are similar to using different bases functions or different

weighting functions in a truncated Galerkin expansion in nu-

merical spectral methods. Therefore, these methods can be

considered as a particular truncation of the exact Petrov–

Galerkin method. The simplest of such averaging methods

yields the Shkadov model,12 which assumes a lubrication

like parabolic velocity. Nguyen and Balakotiah,41 Ooshida42

and Ruyer-Quil and Manneville43 have used different bases.

Ruyer-Quil and Manneville43 have developed a model equa-

tion describing the evolution of a thin film down an incline

using Gradient expansion method. Nguyen and Balakotiah41

and Yu et al.49 have used different velocity profiles in the

modeling of evolution equation. Ooshida42 has produced an

estimate of the error and has accelerated the convergence

with a Padé approximation.

Chang and Demekhin,44 in an attempt to implement the

idea that in the long wave expansion the flow variables are

strictly enslaved by the local thickness of the film, have pre-

sented the governing evolution equation for the local thick-

ness using the Petrov–Galerkin method. Following the ap-

proach suggested by Ruyer-Quil and Manneville43 and

Nguyen and Balakotiah41 and choosing a specific extension

of the one-mode approximation in the Petrov–Galerkin

method, Chang and Demekhin44 have obtained a hierarchy of

model equations. Thus, in the study of dynamics and stability

characteristics of waves on thin inclined/vertical Newtonian

films, a series of simplified equations have been developed

over the last three decades for modeling film flows, starting

from the full Navier–Stokes equations and using various ap-

proximations and different methods for various order of

magnitude assumptions of the pertinent dimensionless Rey-

nolds number and Weber number. The accuracy of these

models has been tested either by comparing the amplitude

and shape of a fully developed wave41,43 with that observed

in the experiment or the wave speed and amplitude of the
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primary solitary wave44 with that predicted by the numerical

solution of Navier–Stokes equations.

In the present study, the film flow down an inclined

plane is modeled by two nonlinear partial differential equa-

tions which describe the temporal and spatial evolution of

local volumetric discharge rate and local flow layer depth

and they are obtained by including consistently all the terms

up to O(e2) in the Navier–Stokes equations, for Re

.O(e21) and We.O(1). As the results of the linear stability

theory can detect any inadequacies in the simplified models

near wave inception, it is used as a primary criterion for

model discrimination and the neutral stability curves gener-

ated from the two models based on MIM45 and EIM ~present

study! are compared with the experimental results for verti-

cally falling films. It is observed that the linearized theory of

the present study is supported by experimental evidence in

the parametric regime of interest. The results show that the

present model can describe the dynamics of wave evolution

on a falling liquid film for Re up to 100.

It is of interest to see how well the present model cap-

tures the physical phenomena exhibited by the earlier models

and the experiments, and in view of this, attention is focused

on the stationary waves of finite-amplitude and long wave-

length on a thin viscous film down an inclined plane at high

Reynolds numbers and moderate Weber numbers.

The study is similar to the theoretical investigation on

the finite-amplitude waves of stationary form on a thin film

of viscous fluid flowing down an inclined plane at high Rey-

nolds numbers and moderate Weber numbers using the MIM

by Lee and Mei.45 In the frame of reference moving with the

steady wave speed, the approximate equations accurate to the

second order in the depth to wavelength ratio are reduced to

a third order dynamical system. The experiments by Liu and

Gollub52 demonstrate that, farther downstream, the film

flows produced by either regular high frequency forcing or

by natural noise are eventually dominated by a small number

of irregularly spaced solitary humps, which emerge through

phenomena of period-doubling and wave merging. Moti-

vated by the experimental results by Chu and Duckler46,47

and Takahama and Kato,48 which indicate the predominance

of irregular chaotic waves sufficiently downstream, the

present study considers the possible bifurcations of film

waves that may happen far downstream. Using modern bi-

furcation techniques of dynamical systems theory, it is

shown that in the regime where sinusoidal waves are linearly

unstable, uniform flows corresponding to the fixed points of

the reduced system undergo Hopf bifurcation. Complex bi-

furcation scenarios after the onset of limit cycles are pre-

sented using the numerical integration of the dynamical sys-

tem. The highest period-1 waves taken at the threshold where

the first fixed point H I bifurcates to a period-2 limit cycle has

been adopted as the theoretical periodic wave for each fixed

Re. The theoretical predictions of Hopf thresholds and the

limiting speeds are presented.

Thus, our objectives in this investigation are as follows.

~i! To present a new model ~EIM! by using a different

averaging procedure in the derivation of the evolution

equation.

~ii! To see how well the present model ~EIM! exhibits the

different dynamical phenomena demonstrated by the

earlier model ~MIM! and the experiments.46–48,52

~iii! To look for similarities and differences between the

two models ~EIM and MIM!.

The development of different models either by adopting dif-

ferent methods or by using different profiles to approximate

the unknown functions are needed and it is for this reason

that the present investigation has been considered with the

above objectives.

II. MATHEMATICAL FORMULATION

The two dimensional flow of a thin layer of an incom-

pressible Newtonian fluid down an inclined plane is consid-

ered. The flow depth is denoted by h̄( x̄ , t̄ ) and the angle of

inclination of the plane bottom with respect to the horizontal

is denoted by u, where 0,u<p/2. A rectangular coordinate

system is chosen with an x̄-axis coinciding with the plane

bottom and the ȳ-axis pointing vertically upwards from the

inclined plane ~Fig. 1!. The governing equations are

] ū

] x̄
1

] v̄

] ȳ
50, ~1!

rS ] ū

] t̄
1 ū

] ū

] x̄
1 v̄

] ū

] ȳ
D

52

] p̄

] x̄
1rg sin u1mS ]2ū

] x̄2
1

]2ū

] ȳ2 D , ~2!

rS ] v̄

] t̄
1 ū

] v̄

] x̄
1 v̄

] v̄

] ȳ
D

52

] p̄

] ȳ
2rg cos u1mS ]2

v̄

] x̄2
1

]2
v̄

] ȳ2 D , ~3!

FIG. 1. Schematic representation of a thin film flow down an inclined plane.
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where ū , v̄ denote the velocity components in the x̄ and ȳ

increasing directions, p̄ the pressure, r the density, g the

gravitational acceleration and m the coefficient of viscosity

of the fluid. The boundary conditions are

ū50, v̄50, on ȳ50 ~no-slip condition!; ~4!

p̄2 p̄a22H mF ] ū

] x̄
S ] h̄

] x̄
D 2

2S ] ū

] ȳ
1

] v̄

] x̄
D ] h̄

] x̄
1

] v̄

] ȳ
G J

3F11S ] h̄

] x̄
D 2G21

1s
]2h̄

] x̄2 F11S ] h̄

] x̄
D 2G23/2

50,

on ȳ5 h̄ ~continuity of the normal stress at the

free surface!; ~5!

H 24
] ū

] x̄

] h̄

] x̄
1S ] ū

] ȳ
1

] v̄

] x̄
D S 12S ] h̄

] x̄
D 2D J 50,

on ȳ5 h̄ ~continuity of the shear stress at the

free surface!; ~6!

] h̄

] t̄
1 ū

] h̄

] x̄
2 v̄50,

on ȳ5 h̄ ~kinematic boundary condition!; ~7!

where s is the interfacial surface tension coefficient.

The dimensionless form of the above governing equa-

tions is obtained by choosing scales based on the primary

flow given by

ū5

g sin u h̄0
2

2n F 2 ȳ

h̄0

2

ȳ2

h̄0
2G , v̄50, ~8!

where h̄0 is the unperturbed uniform flow depth. The primary

flow corresponds to the solution for uniform flow and the

depth averaged velocity is

ū05

1

h̄0

E
0

h̄0
ū d ȳ5

g sin u h̄0
2

3n
, ~9!

and the corresponding volume-discharge rate is

q̄05 ū0h̄0 . ~10!

The dimensionless quantities are defined as

x5

x̄

L
, y5

ȳ

h̄0

, H5

h̄

h̄0

, u5

ū

ū0

, v5

L v̄

h̄0ū0

,

~11!

t5
ū0 t̄

L
, p5

p̄2 p̄a

r ū0
2 , e5

h̄0

L
,

where the longitudinal length scale L is associated with the

characteristic wavelength on the free surface and is of the

same order as that of the wavelength. It is assumed that the

layer is shallow so that the depth to wavelength ratio is

small. Using ~11! in ~1!–~7!, the nondimensional equations

and boundary conditions are obtained as

]u

]x
1

]v

]y
50, ~12!

S ]u

]t
1u

]u

]x
1v

]u

]y
D

52

]p

]x
1

3

e Re
1

e

Re

]2u

]x2 1

1

e Re

]2u

]y2 , ~13!

e2S ]v

]t
1u

]v

]x
1v

]v

]y
D

52

]p

]y
2

3 cot u

Re
1

e3

Re

]2
v

]x2 1

e

Re

]2
v

]y2 , ~14!

u50, v50, on y50; ~15!

p1

2e

Re
S ]u

]y

]H

]x
1e2

]v

]x

]H

]x
2e2

]u

]x
S ]H

]x
D 2

2

]v

]y
D

3F11e2S ]H

]x
D 2G21

1e2 We
]2H

]x2 F11e2S ]H

]x
D 2G23/2

50, on y5H; ~16!

S ]u

]y
1e2

]v

]x
D F12e2S ]H

]x
D 2G12e2S ]v

]y
2

]u

]x
D ]H

]x
50,

on y5H; ~17!

v5

]H

]t
1u

]H

]x
, at y5H; ~18!

where Re5 ū0h̄0 /n 5 g sin uh̄0
3/3n2 is the Reynolds number;

We5 s/r ū0
2h̄0 is the Weber number.

In what follows, a model based on self-similar parabolic

velocity profile assumption ~two equation model! has been

obtained by using energy integral method and the linear in-

stability of the uniform flow has been discussed.

III. TWO EQUATION MODEL

The two equation model describing the temporal and

spatial evolution of the local flow rate Q(x ,t) and the local

flow depth H(x ,t) is obtained from Eqs. ~12!–~18! using

EIM with a self-similar velocity profile assumption by in-

cluding terms up to O(e2), when Re.O(e21) and We

.O(1).

The exact solution for the uniform primary flow de-

scribed by the parabolic velocity profile,

u5

3Q

2H
S 2y

H
2

y2

H2D , ~19!

is assumed, where

Q5E
0

H

u dy .

The velocity component in the y-direction is obtained from

Eqs. ~12! and ~15! as
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v52y2S 3Qx

2H2 2

3QHx

H3 D1y3S Qx

2H3 2

3QHx

2H4 D . ~20!

Equations ~16! and ~17! are simplified to

p5

2e

Re

]v

]y
2e2 We

]2H

]x2 , on y5H; ~21!

]u

]y
5e2S 4

]u

]x

]H

]x
2

]v

]x
D , on y5H . ~22!

Using Eqs. ~19! and ~20!, the pressure distribution is ob-

tained from Eq. ~14! as

p5

e

Re
F S 2

3Qx

2H
1

3QHx

2H2 D1S 2

3Qx

H2 1

6QHx

H3 D y1S 3Qx

2H3 2

9QHx

2H4 D y2G1e2F2We Hxx1S 2

3HQxt

8
1

5H tQx

8
1

5HxQ t

8

1

5HxtQ

8
2

3HxH tQ

2H
2

QQxx

2
2

33Hx
2Q2

40H2 1

33HxxQ2

40H
1

Qx
2

2
1

3HxQQx

20H
D 1S Qxt

2H2 2

H tQx

H3 2

HxQ t

H3 2

HxtQ

H3

1

3HxH tQ

H4 D y3
1S 2

Qxt

8H3 1

3H tQx

8H4 1

3HxQ t

8H4 1

3HxtQ

8H4 2

3HxH tQ

2H5 1

9QQxx

8H4 2

9HxxQ2

4H5 1

9Hx
2Q2

4H6 2

9Qx
2

8H4D y4

1S 2

3QQxx

4H5 2

3HxQQx

20H6 1

9HxxQ2

5H6 2

9Hx
2Q2

5H7 1

3Qx
2

4H5D y5
1S QQxx

8H6 2

3HxxQ2

8H7 1

3Hx
2Q2

8H8 2

Qx
2

8H6D y6G1

3 cot u

Re
~H2y !.

~23!

If the bottom is nearly horizontal, say cot u.O(e21), then the last term in Eq. ~23! is of order one and the leading order

pressure distribution is of order unity and nearly hydrostatic. If the flow is down a vertical plate, cot u50, the pressure

distribution is of O(e2). For any finite bottom slope of the inclined plane with tan u.O(1), the pressure is of O(e). Integration

of the continuity equation ~12! with respect to y from y50 to y5H along with the boundary condition ~18! yields

H t1Qx50. ~24!

Multiplying the x-momentum equation ~13! with u and integrating the resulting equation with respect to y from y50 to y

5H , gives

E
0

H H uS ]u

]t
1u

]u

]x
1v

]u

]y
D1u

]p

]x
2

3

e Re
u2

e

Re
u

]2u

]x2 2

1

e Re
u

]2u

]y2J dy5(
i51

5

t i50, ~25!

where

t15E
0

H

uS ]u

]t
1u

]u

]x
1v

]u

]y
D dy5E

0

H H ]

]t
S u2

2
D1

]

]x
S u3

2
D1

]

]y
S u2

v

2
D J dy5

6QQ t

5H
2

3H tQ
2

5H2 1

81Q2Qx

35H2 2

54HxQ3

35H3 , ~26!

t25E
0

H

u
]p

]x
dy5

3 cot u

Re
QHx2e2 We QHxxx2

e

Re
F27QQxx

10H
2

129QQxHx

20H2 2

129Q2Hxx

40H2 1

123Q2Hx
2

20H3 G
1e2QF2

33HxQxt

140
2

33HQxxt

140
1

107H tQxx

280
1

107HxtQx

140
1

107HxxQ t

280
1

107HxxtQ

280
2

9HxH tQx

35H

2

123H tHxxQ

140H
1

87Hx
2Q t

140H
2

9HxHxtQ

35H
2

39H tHx
2Q

70H2 1

QxQxx

3
2

QQxxx

3
1

533HxxQQx

448H
1

241HxxxQ2

448H

2

333HxHxxQ2

448H2 2

113Hx
2QQx

112H2 1

23Hx
3Q2

112H3 1

73HxQx
2

112H
2

95HxQQxx

224H
G , ~27!

t352

3

e Re
E

0

H

u dy52

3Q

e Re
, ~28!

t452

e

Re
E

0

H

u
]2u

]x2 52

e

Re
F6QQxx

5H
2

69QQxHx

20H2 2

69Q2Hxx

40H2 1

63Q2Hx
2

20H3 G , ~29!

t552

1

e Re
E

0

H

u
]2u

]y2 52

e

Re
F3QQxx

2H
1

9QQxHx

2H2 2

9Q2Hxx

4H2 2

9Q2Hx
2

2H3 G1

1

e Re

3Q2

H3 . ~30!
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In the derivation of ~26!–~30!, Eqs. ~15!, ~19!, ~20!, and ~22! have been used. Substituting for t i ,i51,2,.. . ,5 in ~25!, the

governing equation is obtained as

H 6Q t

5H
2

3H tQ

5H2 1

81QQx

35H2 2

54HxQ2

35H3 2

3

e Re
1

1

e Re

3Q

H3 1

3 cot u

Re
Hx1e2F2We Hxxx2

33HxQxt

140
2

33HQxxt

140
1

107H tQxx

280

1

107HxtQx

140
1

107HxxQ t

280
1

107HxxtQ

280
2

9HxH tQx

35H
2

123H tHxxQ
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112H2 1

23Hx
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112H3 1
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2
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G

2

e
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F27Qxx
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2
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36HxxQ
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24Hx
2Q

5H3 G J 50. ~31!

Equations ~24! and ~31! describe the spatial and temporal evolution of Q(x ,t) and H(x ,t).

A. Linear instability of the uniform flow

If h and q denote the infinitesimal disturbances from the

uniform flow, H511h , Q511q , then the linearization of

Eqs. ~24! and ~31! and the elimination of q gives

6

5
h tt1

102

35
hxt1

54

35
hxx1

3

e Re
~h t13hx!2

3 cot u

Re
hxx

2

e

Re
F27

5
hxxt1

36

5
hxxxG2e2F2We hxxxx1

33

140
hxxtt

1

601

840
hxxxt1

241

448
hxxxxG50. ~32!

By considering a wave like disturbance,

h5e i(x2ct), ~33!

and substituting ~33! in ~32!, a characteristic equation for the

complex phase velocity c5cr1ic i is obtained as

S 11

11

56
e2D c2

1S iF 5

2e Re
1

9e

2 Re
G2

17

7
2

601

1008
e2D c

1S 2iF 15

2e Re
1

6e

Re
G1

9

7
2

5

2

cot u

Re
2

5

6
e2 We

1

1205

2688
e2D50. ~34!

It is to be noted that the normalizing length (L) is chosen to

be the reciprocal of the wave number ~1/a! in physical di-

mensions so that e in ~32! is a h̄0 . The stability of the pri-

mary flow is determined by the sign of c i . If c i.0, the

primary flow is unstable, whereas if c i,0, the primary flow

is stable. The solution of ~34! which corresponds to a stable

mode is given by

cr5

S S 17

7
1

601

1008
e2D 2AAA2

1B2
1A

2
D

2S 11

11

56
e2D

,

c i5

S 2S 5

2e Re
1

9e

2 Re
D 2AAA2

1B2
2A

2
D

2S 11

11

56
e2D

, ~35!

where

A5S 17

7
1

601

1008
e2D 2

2S 5

2e Re
1

9e

2 Re
D 2

24S 11

11

56
e2D

3S 9

7
2

5

2

cot u

Re
2

5

6
e2 We1

1205

2688
e2D ,

B54S 11

11

56
e2D S 15

2e Re
D1

6e

Re
22S 17

7
1

601

1008
e2D

3S 5

2e Re
1

9e

2 Re
D . ~36!

The phase velocity and growth rate of the potentially un-

stable mode is given by
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cr5

S S 17

7
1

601

1008
e2D 1AAA2

1B2
1A

2
D

2S 11

11

56
e2D

,

c i5

S 2S 5

2e Re
1

9e

2 Re
D 1AAA2

1B2
2A

2
D

2S 11

11

56
e2D

. ~37!

The threshold for linear stability or neutral stability is ob-

tained from ~37! by setting c i50. It is observed that on the

plane of Re/cot u versus e, there are three branches of neutral

curves, for a given Weber number We. They are the

Re/cot u-axis, the e-axis and the curve given by

Re

cot u
5

S 5

6
13e2D

12

5

18
We e2

1

16093

94080
e2

5

5

6
1e2F32

5

6
S 5

18
We2

16093

94080
D G1O~e4!. ~38!

The neutral curves for various Weber numbers using MIM45

and EIM are plotted in Fig. 2. The primary flow is unstable

in the region bounded by the Re/cot u axis and the neutral

curve plotted in Fig. 2. There is a reduction in the region of

instability as the Weber number increases, showing that the

effect of surface tension is to stabilize the primary flow. The

disturbances of the infinitely long waves are obtained from

~38! by taking e50 and this yields the critical condition for

instability as

cot u

Re
5

6

5
. ~39!

Therefore, the region of linear instability is 0<cot u/Re

,6/5 while cot u/Re.6/5 is the region of linear stability.

It is worth mentioning here that the linear instability

threshold predicted by the present model ~EIM! agrees with

the classical result of the Orr–Sommerfeld analysis for a

small Reynolds number flow50,51 and verified experimentally

by Liu and Gollub.52 On the other hand, the momentum in-

tegral method ~MIM! predicts the range of linear instability

as 0<cot u/Re,1. Figure 3 shows the linear predictions of

the phase velocity of the fastest growing wave by the present

model, the model by Lee and Mei45 ~which uses MIM16!, the

experimental53–55 results observed near the inception region

for vertically falling film flows of water for Re<100, ap-

proximate solutions from the momentum integral form of the

Orr–Sommerfeld equation by Krantz and Goren56 and the

direct numerical solutions of the Orr–Sommerfeld equation

by Pierson and Whitaker.57 The results show that both the

energy integral and momentum integral models agree well

with the experimental predictions thus supporting the valid-

ity of the linearised theory in the parametric regime Re

.O(e21).

IV. THE GOVERNING EQUATIONS FOR STATIONARY
WAVES

A second order theory for permanent waves which

propagate at a constant speed without any change in form is

FIG. 2. Neutral curves in the e versus Re/cot u plane for various Weber

numbers.

FIG. 3. Dimensionless wave speed for vertically falling water films. h:

expt. by Jones and Whitaker ~Ref. 53!; L: expt. by Stainthrop and Allen

~Ref. 54!; n: expt. by Strobel and Whitaker ~Ref. 55!.

FIG. 4. Parameter regimes delimited for H I5Hs and H II5Hs . Heteroclinic

orbits exist only in the shaded regions.
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pursued in this section. While wave transitions in real-life involve complex spatio-temporal dynamics and many of these

transitions lead to chaotic waves that are not stationary traveling waves, in what follows, the bifurcation of stationary traveling

waves has been examined as a preliminary study of the more complex transitions. The governing equations are obtained from

~24! and ~31! by transforming to a moving coordinate system defined by j5 (1/e) (x2ct), where c is the propagation speed.

Using the relations

]

]x
5

]

]j
,

]

]t
52c

]

]j
~40!

and

Q5c~H21 !11, ~41!

obtained from ~24!, the third order ordinary differential equation for the flow depth is obtained as
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5
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3F 23
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c2H2

1

27

560
cH~12c !1
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112
~12c !2G2

3

Re
~H21 !~H2

1H112c !J 50. ~42!

By this coordinate renormalization, the new horizontal length scale is the primary flow depth h̄0 and the highest derivative

appears at the leading order in e. It is assumed that the primary flow given by H*51, Q*51 is approached either far upstream

j52` or far downstream j51` . The flow is governed by four physical parameters Re, We, u and c . Equation ~42! is

expressed as a three dimensional dynamical system by the differential equations

Hj5H̄ ,

H̄j5H% , ~43!

H% j5

F~H ,H̄ ,H% ;cot u/Re,Re,c !

D~H;We,c !
,

where H represents the flow depth, H̄5Hj represents the slope, H% 5Hjj represents the curvature of the free surface and

D5We H2

391

6720
c2H2

1

1211

3360
cH~c21 !2

241

448
~12c !2, ~44!

F5H H̄F 6
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35
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3 cot u
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1
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5
H~12c !G1H̄H% F2
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1680
c2H3

2

21

2240
cH2~12c !2

333

448
H~12c !2G1

H̄2

Re
F3

5
cH2

24

5
~12c !G1H̄3F 23

560
c2H2

1

27

560
cH~12c !1

23

112
~12c !2G

2

3

Re
~H21 !~H2

1H112c !J . ~45!

The fixed points are obtained by equating the right hand side

of Eq. ~43! to zero and are given by H I5(H ,H̄ ,H% )

5(1,0,0) and H II5„(211A4c23)/2,0,0…. The fixed point

H I corresponds to the uniform primary flow. The fixed point

H II , is a function of c and is real and positive only for c

.1. Therefore, this corresponds to an asymptotic part of a

nonuniform profile propagating at a speed c.1. The fixed

points are independent of u, Re and We and at c53, H I and

H II cross each other, implying that a transcritical bifurcation

exists at c53 at which the two fixed points exchange their

stability properties. The parameter c is taken as the the bi-

furcation parameter for chosen values of other physical pa-

rameters.

A. Search for heteroclinic orbits

It is of interest to look for heteroclinic orbits connecting

the two fixed points in the three dimensional phase space

(H ,H̄ ,H% ). Such an orbit exists if there is no singularity sepa-

rating the fixed points in the phase space and the upstream

fixed point is unstable and the downstream fixed point is
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stable. However, singularities exist when the coefficient

D(H ,We,c) of Hjjj in ~42! vanishes. In the phase space,

these singularities are infinite planes normal to the H-axis.

The phase trajectories, near the singular planes are led to

infinities and cannot therefore flow across these singularities.

One of these singular planes is Hs
(0)

50, which corresponds

physically to a dry bed. The other singularity planes are

given by

HS
(1)

HS
(2)J 5

We1

1211

3360
c~c21 !6H S We1

1211

3360
c~c21 ! D 2

2S 391

1680
c2D S 241

448
(12c)2D J 1/2

S 391

3360
c2D . ~46!

In the We versus c plane, the parameter regions where none

of the singular planes lie between H I and H II in the phase

space are found from the trajectories

D1~c ,We!5We2

99

210
c2

1

601

840
c2

241

448
50, ~47!

which gives the points of intersection between H I and Hs
(1)

~or Hs
(2)) ~the solid curve in Fig. 4! and from the trajectories

D2~c ,We!5

2We

2
2

391

6720
c3

2

3087

4480
c2

1

8441

6720
c2

241

448

1S We

2
1

2813

13440
c2

2

1211

6720
c DA4c2350,

~48!

which gives the points of intersection between H II and Hs
(1)

~or Hs
(2)) ~the dashed curve in Fig. 4!.

Figure 4 shows these singularity boundaries and in the

shaded regions, heteroclinic orbits are possible, where the

singular planes do not lie between the two fixed points.

B. Search for oscillatory orbits emerging from a limit
cycle around the fixed point

It is also of interest to anticipate another type of continu-

ous orbit in certain parts of cot u/Re versus c plane. This

motivates the search for the Hopf bifurcation threshold

which marks the first appearance of limit cycles or periodic

solutions. Such a threshold occurs when the fixed point pos-

sesses a pair of purely imaginary eigenvalues and a negative

real eigenvalue. This requires the knowledge of the eigen-

value properties of the two fixed points H I and H II in each of

the following four regimes: ~i! We.We(1)(50.60742); ~ii!

We(2)(50.513),We,We(1); ~iii! We(3)(50.03182),We

,We(2); and ~iv! 0,We,We(3), determined by their rela-

tive positions of the singularity branches ~Fig. 5!.

In order to determine the possible bifurcations of the

fixed points as they become unstable, small perturbations

around the fixed points are considered so that H5H*1h,

where H* denotes one of the two fixed points H I or H II and

h is the perturbation. The linearized system obtained from

~43! is given by

dh

dj
5Jh, J5S 0 1 0

0 0 1

2b3 /Re 2b2 2b1 /Re
D , ~49!
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The characteristic equation for the eigenvalue l of the Jaco-

bian matrix J is given by

l3
1

b1

Re
l2

1b2l1

b3

Re
50. ~51!

The eigenvalues in terms of the small parameter 1/Re are

given by

l152

1

Re

b3

b2

1o~Re22!,

l2,35

1

Re

b32b1b2

2b2

6iAb21o~Re22!. ~52!

If at a fixed point b2.0, then l2 and l3 are complex and the

fixed point is a saddle-spiral and if b2,0, then l2 and l3 are

real and the fixed point is a saddle node. The zeros of b2

represent the boundaries of eigenvalue behavior between

saddle-spirals and saddle-nodes.

In the parameter space (We,Re,cot u,c), the Hopf-

bifurcation thresholds separate eigenvalues l1,0, Real part

of (l2 ,l3).0 from those of l1,0, Real part of (l2 ,l3)

,0. The conditions for the Hopf-bifurcation threshold are

obtained from ~52! as

b1b25b3 , b1.0, b2.0, ~53!

which ensure that the real eigenvalue l1 is negative and that

FIG. 5. Eigenvalue behavior of the

two fixed points in the c versus

cot u/Re plane for We51 and ~i! Re

51/0.075'13.33; ~ii! Re5100. ~a!

H I ; ~b! H II .
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a pair of complex eigenvalues exist. Table I shows that for a

Hopf bifurcation to occur at any fixed cot u/Re, it is neces-

sary that the Weber number exceeds a certain minimum

value. The boundary separating saddle spirals from saddle

nodes corresponds to the double root of the characteristic

equation ~51!, which occurs at

S 2b1
2

Re2 26b2D S 2b2
2
2

6b1b2

Re2 D2S b1b2

Re
2

9b3

Re
D 2

50.

~54!

The eigenvalue properties of the two fixed points are

displayed in Figs. 5~i!a and 5~i!b for the case We51, Re

51/0.075.13.33, in the regime of instability 0<cot u/Re

,1.2. The Hopf-bifurcation thresholds are shown by QN and

VN. PN is the transcritical bifurcation boundary (c53), ML

and OR are the boundaries dividing the saddle nodes for the

fixed point H I . For the fixed point H II , TS is such a bound-

ary. The qualitative properties of the eigenvalues are indi-

cated by their locations in the complex plane. WZ is the

singularity boundary (D150 for H I). Table II presents the

eigenvalue properties of the fixed points and possible orbits

in the phase space for Re513.33, We51 in the cot u/Re

versus c plane.

The eigenvalue behavior of the two fixed points for Re

5100, We51 are presented in Figs. 5~ii!a, 5~ii!b. It is noted

that at this large Reynolds number the regions of saddle node

or stable node in the neighborhood of neutral stability shrink

in size. The conclusions for Re513.33 are applicable also for

Re5100 and the qualitative trend continues for still higher

Reynolds numbers. Moving near or away from the singulari-

ties, the region of heteroclinic orbits and the span of Hopf-

bifurcation thresholds in the linearly unstable region, shrink

or expand when the Weber number is decreased or increased.

In the next section, results based on the numerical integration

of the third order dynamical system ~43! are presented.

V. BIFURCATION SCENARIOS: NUMERICAL
SOLUTION

By continuously varying the transcritical bifurcation pa-

rameter c about c53, either heteroclinic orbits or other non-

TABLE I. Hopf-bifurcation thresholds for the fixed points.

Range of Weber number

Regime

H I

Regime

H II Typical value chosen

1. We.We(1) 0<
cot u

Re
,1.2 0<

cot u

Re
,1.2

We55

2. We(2)
,We,We(1)

0<
cot u

Re
,1.2 0<

cot u

Re
<0.72029

1.14072<
cot u

Re
,1.2

We50.55

3. We(3)
,We,We(2) 0<

cot u

Re
<0.7549 0<

cot u

Re
<0.372733

We50.3

TABLE II. Eigenvalue properties and possible orbits in phase space for We51, Re513.33 ~Fig. 5!.

H I H II

Possible orbit

in phase space

Region PNQ

(c,3)

l1,0, Real(l2 ,l3),0

stable saddle-spiral ~PJKNQ!
~or! stable node ~JKN!

(l1 ,l2 ,l3,0)

Saddle spiral with stable

plane focus l1.0, Real(l2 ,l3),0

~or! saddle node with

stable plane focus

(l1.0,l2 ,l3,0)

Heteroclinic orbit from

H II to H I

Region bounded

by QN and OR

(c,3)

Is unstable Is unstable Bifurcate supercritically

to a limit cycle

Region WXNP

(c.3)

Unstable saddle spiral with

stable plane focus ~or! a

saddle-node with stable plane

focus

A stable saddle-

spiral ~or! a stable

saddle-node

Heteroclinic orbit from

H I to H II

Region VXW

(c.3)

Is unstable Is stable No heteroclinic orbit,

since H I and H II are

separated by a singular

plane WZ

XNZ in the

region VNST

(c.3)

Attractors if any,

bifurcate from H II

and are connected

to H I
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linear attractors are obtained for each fixed value of We,

cot u/Re (We<10 and Re513.33 and 100!. No nonlinear at-

tractor has been found in the regime of linear stability,

cot u/Re>1.2 for any Weber number and Reynolds number.

In the linear regime of instability, the three dimensional dy-

namical system is solved numerically using ODE15s which

is available in MATLAB5.3 with bounds for relative error as

10210. ODE15s in MATLAB is a variable order solver based

on the numerical differentiation formulas. Optionally, it uses

the backward differentiation formulas, also known as Gear’s

method. It is a multistep solver.

A. Heteroclinic orbits

For a typical value of wave speed c52.5, which lies

above the Hopf threshold for H I but below c53.0, there is a

heteroclinic orbit from H II to H I and its phase portrait, wave

profile are given in Figs. 6~a! and 6~b!. For any c above 3.0,

which lies below the singularity boundary, there is a hetero-

clinic orbit from H I to H II and the phase portrait, wave pro-

file are presented in Figs. 6~c! and 6~d!. Figure 6 also shows

the corresponding results obtained by MIM.

When c is slightly decreased from the Hopf bifurcation

threshold, supercritical Hopf bifurcation occurs for the first

fixed point. In this case, integration is carried out by taking

the initial phase point in the neighborhood of this attractor

and its subsequent bifurcation is then pursued. The compu-

tation is terminated at the point where no attractor could be

detected. Integration is carried out for sufficiently long time

until the trajectories finally settle down on the attractor. Fol-

lowing Lee and Mei,45 the bifurcation diagram for the per-

manent wave is obtained by choosing all the local maxima

Hm of the time series for the flow depth H as the represen-

tative points and they are plotted against the bifurcation pa-

rameter c . In this bifurcation diagram, a single representative

point denotes a limit cycle, two points at different heights

denote a period-2 limit cycle and so on.

B. Summary of bifurcation scenarios for ReÉ13.33

and ReÄ100

The results of the numerical experiment show four dif-

ferent types of bifurcation scenarios. Typical bifurcation se-

quences for We51 for a set of values of cot u/Re have been

presented in the following figures.

~1! Simple homoclinic bifurcation from the primary flow H I

@cot u/Re50.9; Figs. 7~a!, 8~i!a, 8~i!b#.

~2! A period-doubling followed by a simple homoclinic bi-

furcation from the primary flow H I @cot u/Re50.55;

Figs. 7~b!, 8~ii!a, 8~ii!b#.

~3! Multiple hump homoclinic bifurcation from the primary

flow H I @cot u/Re50.48; Figs. 7~c!, 8~iii!a, 8~iii!b#.

~4! Dominant scenario of period-doubling bifurcation lead-

ing to chaos from the primary flow H I @cot u/Re50;

Figs. 7~d!, 8~iv!a, 8~iv!b#.

The bifurcation scenarios have been numerically deter-

mined for a wide range of Weber numbers, We<10, in order

to facilitate a comparison with the results obtained by Lee

and Mei45 using MIM. The boundaries separating regimes of

different bifurcation scenarios in terms of cot u/Re in the

regime of linear instability in the We versus cot u/Re plane

FIG. 6. A heteroclinic orbit, H II to H I ~a!, ~b!, H I to H II ~c!, ~d!, for We51, Re5100, cot u/Re50.4 ~a!, ~c! The phase trajectory; ~b!, ~d! the profile.
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are presented in Figs. 9 and 10 for limit cycles from H I for

the cases Re513.33 and Re5100 using MIM @Figs. 9~a!,
10~a!# and EIM @Figs. 9~b!, 10~b!#.

It is observed from Fig. 9~b! ~results obtained by EIM!
that for Re513.33, the Hopf-bifurcation threshold extends

throughout the entire regime of linear instability for We

.We(2)(50.513). In this region, the limit cycle either un-

dergoes homoclinic bifurcations or period-doubling bifurca-

tions. The region in which homoclinic bifurcations are ob-

served dominates for smaller values of Weber numbers and

this region has spread to the entire regime of linear instabil-

ity around We5We(2)
50.513. The period-doubling bifurca-

tions exist for large Weber numbers. As the threshold for

linear instability predicted by EIM is 0<cot u/Re,1.2 ~as

compared to that predicted by MIM as 0<cot u/Re,1), the

region in which the Hopf-bifurcation threshold prevails is

larger than that in Fig. 9~a!.
For We,We(2), a Hopf-bifurcation threshold exists and

the limit cycle undergoes period-doubling bifurcations for

small values of cot u/Re. As We is further reduced, the limit

cycles are the only attractors.

When Re5100 @Fig. 10~b!#, the homoclinic regime lies

close to the linear instability threshold in We.We(2), the

limit cycle regime has diminished and lies close to the

boundary of no attractor region in We,We(2).

Bifurcation scenarios presented in Figs. 9 (Re513.33)

and 10 (Re5100) for bifurcations from the primary flow H I

clearly show the differences in quantitative predictions by

the two models, although qualitatively similar scenarios are

observed in the respective regions. In view of qualitatively

similar predictions of the bifurcation scenarios by both the

methods, the bifurcation scenarios obtained for bifurcations

from the primary flow H II for Re513.33 and Re5100 are

not presented here. However, as in the earlier case, quantita-

tive predictions by EIM are different from that by MIM.

VI. COMPARISON WITH EXPERIMENTS

Experimental data are very scarce in the literature for

free falling films and the experimental results available to

date are mostly for high surface tension fluids, in which the

wave amplitude is relatively small compared to the mean

film thickness.1,15,53,57,58 Experimental results by Liu and

Gollub52,59 using glycerin solutions are mostly confined to

small amplitude waves near the neutral curve. Further, nearly

all available experimental data on amplitude, speed and

wavelength of nearly periodic finite-amplitude waves are

only for falling water films along vertical circular cylinders

FIG. 7. The bifurcation diagrams of limit cycles from H I : We51, Re51/0.075'13.33. ~a! Simple homoclinic bifurcation; ~b! period-doublings1simple

homoclinic bifurcation, ~c! three hump homoclinic bifurcation, ~d! period-doubling route to chaos.
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of limited length. Therefore, precise comparisons of the

present theory which corresponds to the asymptotic range of

large time for films on a plane with the observations on a

cylindrical geometry are difficult. In addition, the present

theory is strictly valid for We.O(1), whereas in the experi-

ments mentioned above, the effect of surface tension is

strong so that We.20.

Most of the reported works on a direct numerical solu-

tion of Navier–Stokes equations are restricted to flow with

relatively small Reynolds numbers. For instance, Bach and

Villadsen60 have solved the transient Navier–Stokes equa-

tions in the Lagrangian coordinates by the finite-element

method for vertically falling flows with 2.5,Re,25.

Kheshgi and Scriven61 have obtained periodic and solitary

wave solutions for Navier–Stokes equations on a vertical

plate with Re,10.

Salamon et al.62 have constructed periodic and solitary

waves down a vertical plate, by transforming the Navier–

Stokes equations to a constant moving coordinate and

searching for permanent waves by finite elements. Their so-

lutions have compared favorably well with the experimental

results of Kapitza and Kapitza1 on a circular cylinder and the

numerical simulations reported by Ho and Patera.63 Their

solution branches on the wave number–wave speed param-

eter plane are similar to those reported by Chang et al.19 at

an infinitely long wave limit. They have presented ~Figs. 8

and 11; Salamon et al.62! the wave speed c as a function of

Reynolds number Re for traveling wave solutions computed

with the finite element method and have compared with the

long-wave evolution equation solutions for Reynolds number

ranging from 0 to 10 and Weber number We51000 and 76.4,

respectively.

Further, it is worth mentioning here that Chang and

Demekhin44 ~Fig. 3.5, p. 60, Chap. 3! have presented a com-

parison of various models obtained using a combination of

Galerkin–Petrov method with weighted residuals with other

available models in the literature and have presented the

speed of the primary solitary wave ~at the end of the primary

periodic wave family–pulse solution! as a function of the

Reynolds number for a fixed Kapitza number of 252. They

have chosen the wave speed of this solitary wave as a mea-

sure of comparison among various models, as this solitary

wave is the most dominant wave ~stable! that can be ob-

served on any falling film and therefore its speed can be

measured very precisely. Based on the pulse solutions of

these models for vertically falling films, the speed and am-

plitude of one-hump solitary waves have been presented for

Reynolds number ranging from 0 to 8 ~small Reynolds num-

FIG. 8. Selected phase portraits ~a!
and corresponding wave profiles ~b! of

attractors during ~i! simple homoclinic

bifurcation; cot u/Re50.9; ~ii!

period-doublings1simple homoclinic

bifurcation; cot u/Re50.55; ~iii! three

hump homoclinic bifurcation;

cot u/Re50.48, ~iv! period-doubling

route to chaos; cot u/Re50 for We

51, Re51/0.075'13.33 from H I .
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ber! and Kapitza number 252 ~Weber number ranging from

363.44689 to 11.3577!.
As the present investigation is for large Reynolds num-

bers Re.O(e21) and small to moderate surface tension We

.O(1), the present results should complement the above

existing theories on large Reynolds number flows Re

.O(e21) with strong surface tension We.O(e22) as well as

theories for small Reynolds number flows Re.O(1) with

either strong surface tension We.O(e22) or weak surface

tension We.O(1).

With the constraints mentioned above, the numerical

predictions of the present nonlinear theory and the experi-

ments of Yu et al.49 for chaotic large amplitude waves on

flows of aqueous solutions with Kapitza number Ka53550

are presented in Fig. 11. The numerical results correspond to

the highest period-1 waves taken at the threshold where the

first fixed point H I bifurcates to a period-2 limit cycle for

each Reynolds number. Though conducted on a circular tube

of finite radius, Yu’s data are relevant in the present context

(50,Re,300, 0.3,We,7).

Although experimental data on vertically falling films

presented by Chu and Duckler46,47 in terms of statistical

properties may be used for chaotic waves of large amplitude

sufficiently downstream, they are not relevant for a compari-

son with the present theory. The Weber numbers in their

analysis are too small (!0.1) and are outside the range of

validity of the present theory. Figure 11 shows the wave

propagation speed as a function of Reynolds numbers. The-

oretical predictions of Hopf thresholds and the limiting speed

for chaotic waves from the present numerical results and the

results from momentum integral method along with those of

Yu et al.49 are presented. The wave speeds obtained from the

experiments lie in general above the Hopf threshold of Yu

et al.49 On the other hand, they fall in between the Hopf

thresholds and limiting speeds predicted by the present

theory ~EIM! as well as MIM. It is observed that the theo-

retical predictions follow the same trend that is observed in

experiments.

VII. CONCLUSION

The finite amplitude waves of stationary form on a thin

viscous film down an inclined plane at high Reynolds num-

bers and moderate Weber numbers have been considered us-

ing the energy integral method ~EIM!. The two equation

model obtained using EIM reduces to a third order dynami-

cal system in the frame of reference moving with the steady

wave speed. Through numerical integration of the dynamical

system, complex bifurcation scenarios have been captured

and the results clearly show the quantitative differences in

the predictions by EIM and MIM, although the qualitative

predictions are similar. The analysis in Sec. III shows that the

regime of linear instability predicted by EIM is 0<cot u/Re

,6/5 whereas it is predicted as 0<cot u/Re,1 by MIM. The

FIG. 9. Bifurcation scenarios delimited in the regime of linear SW instability in the We versus cot u/Re plane for limit cycles from H I for Re51/0.075

'13.33.
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linear instability threshold predicted by EIM is identical to

that predicted by the classical result of an Orr–Sommerfeld

analysis for small Reynolds number flows by Benjamin50 and

Yih51 and the experimental verification by Liu and Gollub.52

The results of the linear instability of uniform flow show that

the new model can describe the dynamics of wave evolution

on falling films for Re up to 100.

The analysis in Sec. V demonstrates that the present

FIG. 10. Bifurcation scenarios delimited in the regime of linear SW instability in the We versus cot u/Re plane for limit cycles from H I for Re5100.

FIG. 11. A comparison of the Hopf-bifurcation threshold and limiting speed of chaotic waves. 1. Theory of Yu et al. ~Ref. 49!; 2. Theory of Lee and Mei ~Ref.

45!; 3. Present theory; *—experiment of Yu et al. ~Ref. 49!; ~a! Hopf-bifurcation threshold; ~b! limiting speed of chaotic waves.
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model also captures the different dynamical phenomena ex-

hibited by MIM. Although both the methods exhibit similar

bifurcation scenarios, there are quantitative differences ~as is

evident from numerical integration results!. Although defini-

tive comparisons with the available experiments cannot be

made due to reasons stated in Sec. VI, the results of the most

relevant experimental predictions show that the present

model results follow the same trend that is observed in ex-

periments. Therefore, the present approach ~EIM! ~i! shows

another way of simplifying Navier–Stokes equations for the

film flow system down an inclined plane and ~ii! can be

regarded as a reasonable alternative to the more classical

approach using MIM.
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