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Sensor networks aim at monitoring their surroundings for event detection and object tracking. But, due to failure or death of
sensors, false signal can be transmitted. In this paper, we consider the problems of distributed fault detection in wireless sensor
network (WSN). In particular, we consider how to take decision regarding fault detection in a noisy environment as a result of false
detection or false response of event by some sensors, where the sensors are placed at the center of regular hexagons and the event
can occur at only one hexagon.We propose fault detection schemes that explicitly introduce the error probabilities into the optimal
event detection process. We introduce two types of detection probabilities, one for the center node, where the event occurs, and the
other one for the adjacent nodes.This second type of detection probability is new in sensor network literature.We develop schemes
under the model selection procedure and multiple model selection procedure and use the concept of Bayesian model averaging to
identify a set of likely fault sensors and obtain an average predictive error.

1. Introduction

Traditional and existing sensor-actuator networks use wired
communication, whereas wireless sensor networks (WSN)
provide radically new communication and networking
paradigms andmyriad new applications.Thewireless sensors
have small size, low battery capacity, nonrenewable power
supply, small processing power, limited buffer capacity, and
low-power radio. They may measure distance, direction,
speed, humidity, wind speed, soil makeup, temperature,
chemicals, light, and various other parameters.

Recent advancements in wireless communications and
electronics have enabled the development of low-cost WSN.
A WSN usually consists of a large number of small sensor
nodes, which are equipped with one or more sensors, some
processing circuit, and a wireless transceiver. One of the
unique features of a WSN is random deployment in inac-
cessible terrains and cooperative effort that offers unprece-
dented opportunities for a broad spectrum of civilian and
military applications, such as industrial automation, military

surveillance, national security, and emergency health care [1–
3]. Sensor networks are also useful in detecting topological
events such as forest fires [4].

Sensor networks aim at monitoring their surroundings
for event detection and object tracking [1, 5]. Because of
this surveillance goal, coverage is the functional basis of any
sensor network. In order to fulfill its designated tasks, a sensor
networkmust fully cover theRegion of Interest (ROI)without
leaving any internal sensing hole [6–9]. So far, a number of
movement-assisted sensor placement algorithms have been
proposed. An exclusive survey on these topics is presented
by Li et al. [10]. On the other hand sensor could die or fail
at runtime for various reasons such as power depletion and
hardware defects. So, even after the ROI is fully covered by the
sensors, wrong information can be communicated by some
sensors or sensors may fail to detect the event due to noise
or obstructions. Chen et al. [11] have proposed a distributed
localized fault detection algorithm for WSN, where each
sensor identifies its own status to be either good or faulty
and the claim is then supported or reverted by its neighbors.
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The proposed algorithm is analyzed using a probabilistic
approach. Sharma et al. [12] have characterized the different
types of fault and proposed a different algorithm for fault
detection considering different types of fault. Some of the
methods are statistical, like using histogram and so forth.
Both works can only detect the faulty sensors, but not the
event.

One of the important sensor network applications is
monitoring inaccessible environments. Sensor networks are
used to determine event regions and boundaries in the
environment with a distinguishable characteristic [13–15].
The basic idea of distributed detection [16] is to have each
of the independent sensors make a local decision (typically,
a binary one; i.e., an event occurs or not) and then combine
these decisions at a fusion sensor (the sensor which collects
the local information and takes the decision) or at a base
station to generate a global decision.

A closely related area is neural network. Several works
are there in the literature on this area. Li and Qin [17]
find a feasible solution to a class of nonlinear inequalities
defined on a graph proposing a recurrent neural network.The
convergence of the neural network and the solution feasibility
to the defined problem are both theoretically proven. They
proposed neural network features as a parallel computing
mechanism and a distributed topology isomorphic to the
corresponding graph which is suitable for distributed real-
time computation. The proposed neural network is applied
to range-free localization of WSNs. Li et al. [18] show that
feasible solution set to the same problem is often infinity
and Laplacian eigenmap is used as heuristic information to
gain better performance in the solution. A continuous-time
projected neural network and the corresponding discrete-
time projected neural network are both given to tackle
this problem iteratively. The effectiveness of the proposed
neural networks is tested and compared with others via its
applications in the range-free localization of WSNs. Location
information is useful for mobile phones. There exists a
dilemma between the relatively high price of GPS devices
and the dependence of location information acquisition on
GPS for most phones in current stage. Li et al. [19] formulate
the problem as an optimization problem defined on the
Bluetooth network.The solution to this optimization problem
is not unique. Heuristic information is employed to improve
the performance of the result in the feasible set. They used
recurrent neural networks to solve the problem distributively
in real time. The convergence of the neural network and
the solution feasibility to the defined problem are both
theoretically proven. The hardware implementation of the
proposed neural network is also explored in this paper.

Distributed algorithms are also used for a network
dynamic system. Li et al. [20, 21] studied the decentral-
ized control and kinematic control of multiple redundant
manipulators for the cooperative task execution problem.
The problem is formulated as a constrained quadratic pro-
gramming problem, and then a recurrent neural network
with independent modules is proposed to solve the problem
in a distributed manner. They proposed a novel strategy
capable of solving the problem, even though there exist some
manipulators unable to access the command signal directly.

Another related area is the winner-take-all (WTA) com-
petition, which is widely observed in both inanimate and
biological media and society. Many mathematical models
are proposed to describe the phenomena discovered in
different fields. These models are capable of demonstrating
the WTA competition. Li et al. [22, 23] make steps in that
direction and present a simple model, which produces the
WTA competition by taking advantage of selective positive-
negative feedback through the interaction of neurons via 𝑝-
norm. They also present a class of recurrent neural networks
to solve quadratic programming problems. Different from
most existing recurrent neural networks for solving quadratic
programming problems, the proposed neural networkmodel
converges in finite time and the activation function is not
required to be a hard-limiting function for finite convergence
time. The stability, finite-time convergence property, and
the optimality of the proposed neural network for solving
the original quadratic programming problem are proven in
theory. Extensive simulations are performed to evaluate the
performance of the neural networkwith different parameters.
In addition, the proposed neural network is applied to solving
the k-winner-take-all (k-WTA) problem.

1.1. Our Motivation. In this paper, we are interested in one
particular query: determining event in the environment (i.e.,
ROI) with a distinguishable characteristic. We assume the
ROI to be partitioned into suitable number of congruent
regular hexagonal cells (i.e., we can think of ROI as a regular
hexagonal grid). This physical structure of ROI is not a
requirement for the theoretical analysis, and we can do the
similar analysis with another structure also. Suppose that
sensors are placed a priori at the center (which are known
as nodes) of every hexagon of the grid. We assume that the
sensors are connected to its adjacent sensor nodes in the sense
that a hexagon will be strongly covered by its center node and
weakly covered by the adjacent nodes. If event occurs in the
hexagon where a particular sensor lies, then that particular
sensor can detect the event with a greater probability, whereas
if event occurs in any adjacent hexagon, then the particular
sensor can detect the event with a lesser probability. Hence,
only one node (center node of the event hexagon) can
detect the event hexagon with greater probability, say 𝑝1, and
adjacent nodes (six for interior nodes and less for boundary
nodes) can detect the event hexagon with lesser probability,
say 𝑝2, with 𝑝1 > 𝑝2. We assume that no other sensor can
detect the event hexagon. In this paper, unlike the previous
works, we assume that if the event occurs, then it occurs
at only one hexagon of the grid which will be known as
event hexagon, and there is no fusion sensor. All sensors
can communicate with the base station and the base station
takes the decision about the query. As an example, consider
a network of devices that are capable of sensing mines or
bombs, if we assume that a fewmines or bombsmay be placed
on a particular area of ROI. Information from these devices
can be sent to a nearby police station or a central facility.
Then, an important query in this situation could be whether
a particular hexagon is the event hexagon or not (i.e., mines
or bombs are placed or not).
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One fundamental challenge in the event detection prob-
lem for a sensor network is the detection accuracy which is
disturbed by the noise associated with the detection and the
reliability of sensor nodes. A sensor may fail to detect the
event due to natural obstruction or any other causes. After
detecting the event, a sensor can send false message to the
base station due to some technical reasons. The sensors are
usually low-end inexpensive devices and sometimes exhibit
unreliable behavior. For example, a faulty sensor node may
issue an alarm, even though it has not received any signal for
event or it cannot detect any event and vice versa. Moreover,
a sensor may be dead, in which case the sensor cannot send
any alarm.

1.2. Previous Work and Our Contribution. Lou et al. [24]
consider two important problems for distributed fault detec-
tion in WSN: (1) how to address both the noise-related
measurement error and sensor fault simultaneously in fault
detection and (2) how to choose a proper neighborhood size𝑛 for a sensor node in fault correction such that the energy
could be conserved. They propose a fault detection scheme
that explicitly introduces the sensor fault probability into the
optimal event detection process. They show that the optimal
detection error decreases exponentially with the increase of
the neighborhood size.

Krishnamachari and Iyengar [13] propose a distributed
solution for canonical task in WSN (i.e., the binary detection
of interesting environmental events).They explicitly take into
account the possibility of sensor measurement faults and
develop a distributed Bayesian algorithm for detecting and
correcting such faults.

Nandi et al. [25] consider the problem of distributed
fault detection in wireless sensor network (WSN), where
the sensors are placed at the center of a particular square
(or hexagon) of the grid covering the ROI. They proposed
fault detection schemes that explicitly introduce the error
probabilities into the optimal event detection process. They
developed the schemes under the consideration of Neyman-
Pearson hypothesis test and Bayes test. They also calculate
type I and type II errors for different values of the parameters.

In almost all the previous works, except [25], authors
assume that event occurs over a region and there are fusion
sensors that collect the information locally and take a
decision. Since they do not introduce the concept of base
station, there is no concept of response probability. Also, they
assume that information is spatially correlated. Unlike the
previous work, in this paper, we assume that if event occurs,
then it occurs at only one cell of the ROI and there is no
fusion sensor. All the sensors send information to the base
station. We introduce the probability model in two different
stages: firstly, when a sensor detects the event and, secondly,
when a sensor sends the message to the base station. In the
previous works, only one type of detection probability has
been introduced to simulate the different error probabilities
for some specific values of the parameters. In this paper,
we introduce two different detection probabilities and obtain
analytically the exact test and estimate the error probabilities
by simulation. In almost all the previous works, authors

assume the ROI to be a square grid. The hexagonal grid is
better in the sense that a minimum number of sensors are
required to cover the entire ROI [26].

In our theoretical analysis, the sensor fault probabilities
are introduced into the optimal event detection process. We
apply model selection approach, multiple model selection
approach, and Bayesian model averaging methods [27, 28]
to find a solution of the problem. We develop the schemes
using the model selection technique. We calculate different
error probabilities and find some theoretical results.

In all previous works, the authors assume only one detec-
tion probability. We introduce two detection probabilities, 𝑝1
and 𝑝2, one for the center node and other for the adjacent
nodes. Even if the center node may fail to detect the event,
the adjacent nodes may detect the event, and vice versa.
We consider these probabilities and show that, in various
situations, the adjacent nodes play key role to detect the event.
One can introduce more detection probabilities and analyze
the situation in similar manner.

The parameters 𝑝1 and 𝑝2, the detection probabilities of
a sensor, and error probabilities (see Section 3) cannot be
estimated from the real life situations but need to be estimated
beforehand by some experimentation.The prior probabilities
of various events also cannot be estimated but may be known
in some cases. Finally, we calculate the error probabilities
numerically for some values of the parameters of our model
and make some concluding remarks analyzing the results.

2. Statement of the Problem and Assumptions

In this section, we describe the problem in more specific
terms and state the assumptions that we make.

Sensors are deployed or manually placed over ROI to
perform event detection (i.e., to detect whether an event of
interest has happened or not) in ROI. If sensors are deployed
from air then, using actuator-assisted sensor placement or by
movement-assisted sensor placement, sensors are so placed
that sensor network covers the entire ROI. This ROI is
partitioned into suitable number of regular hexagons (i.e., we
can think of the ROI as a regular hexagonal grid), as shown in
Figure 1. Sensors are placed a priori at every center (which are
known as nodes) of the regular hexagons. Sensors have two
detection probabilities. The sensor network covers the entire
ROI and there is only one event hexagon, as discussed before.

Each sensor node determines its location through beacon
positioning mechanisms [29] or by exploiting the Global
Positioning System (GPS). Through a broadcast or acknowl-
edge protocol, each sensor node is also able to locate the
neighbors within its communication radius. Sensors are also
able to communicate with the base station. Base station will
take the decision. In this paper, we assume that event occurs
at one particular hexagon of the grid which will be known as
event hexagon or event does not occur (in that case we say
that ROI is normal). All sensors can communicate with the
base station and base station takes the decision by combining
the information received from all the sensors.

There are two phases in the whole process. The first one
is detection phase, when the sensor at the center of a regular
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Figure 1: Nodes placed in centers whenROI partitioned into regular
hexagons.

hexagon tries to detect the event. The sensor at the center of
the event hexagon can detect the event hexagon with greater
probability 𝑝1 and the sensors at the adjacent nodes (see
Figure 1) can detect the event hexagon with lesser probability𝑝2. We also assume that there is a prior probability that a
particular hexagon is an event hexagon. The next phase is
response phase, in which sensors send message to the base
station. Even if the event hexagon is detected by a sensor,
it may not respond (i.e., send message to the base station
that no event occurred in that cell and the neighboring cells
due to some technical fault) with some probability; then we
say that the sensor is a faulty sensor. Conversely, if event
hexagon is not detected or there is no event hexagon at all
(i.e., ROI is normal), then also a faulty sensor can send the
wrong information to the base station with some probability.
A sensor is said to be a dead sensor if the sensor does not
work. A dead sensor sends no response in either cases.

Each sensor sends information to the base station. As the
sensors may send wrong information, the base station takes
the important role in identifying the event hexagon. Base
station will collect all information and take a decision about
the event hexagon according to a rule which we have to find
out. Our job is to find a rule for the base station such that base
station works most efficiently.

2.1. Notations and Assumption. Our problem is to develop
a strategy for the base station to take decision about event
hexagon (i.e., which hexagon of the ROI is the event hexagon,
if at all). Let 𝑅 be the set of all nodes. For 𝑁 ∈ 𝑅, define𝐵(𝑁) as the set of adjacent node(s) of𝑁, and let 𝑘(𝑁) be the
number of adjacent node(s) of𝑁. Hence, 0 ≤ 𝑘(𝑁) ≤ 6. Call
a node𝑁 interior if 𝑘(𝑁) = 6. Let 𝑆𝑁 be the sensor which is
placed at the node 𝑁, and let 𝐻𝑁 be the hexagon where the
node 𝑁 is placed (i.e., 𝑁 is the center of 𝐻𝑁). For 𝑁 ∈ 𝑅,
let 𝑋𝑁 denote the true status of the node𝑁. That is, 𝑋𝑁 = 1
if event occurs at 𝐻𝑁, and 0 otherwise. Also define 𝑌𝑁 = 0

if 𝑆𝑁 detects no event, and 1 if 𝑆𝑁 detects the event in 𝐻𝑁
or𝐻𝑁󸀠 , for𝑁󸀠 ∈ 𝐵(𝑁). Finally define 𝑍𝑁 = 0 if 𝑆𝑁 does not
respond; that is, the sensor informs the base station that event
does not occur at 𝐻𝑁 or 𝐻𝑁󸀠 for 𝑁󸀠 ∈ 𝐵(𝑁), and 𝑍𝑁 = 1 if𝑆𝑁 responds; that is, the sensor 𝑆𝑁 informs the base station
that the event has occurred in𝐻𝑁 or𝐻𝑁󸀠 , for𝑁󸀠 ∈ 𝐵(𝑁).

Nowwemake one natural assumption that once detection
phase is completed, response of a sensor depends only on
what it detects but not on whether the event has actually
occurred or not; that is, 𝑃(𝑍𝑁 = 𝑘 | 𝑌𝑁, 𝑋𝑁) = 𝑃(𝑍𝑁 =𝑘 | 𝑌𝑁), for 𝑘 = 0, 1. We also assume that the sensors work
independently and identically.

Since we assume that there is at most one event hexagon,∑𝑁∈𝑅𝑋𝑁 = 1 or 0.
The possible true scenarios are, therefore, represented by

the following |𝑅| + 1 different models:

M0: (𝑋𝑁 = 0 for all𝑁 ∈ 𝑅),
and, for each𝑁 ∈ 𝑅,
M𝑁: (𝑋𝑁 = 1 and𝑋𝑁󸀠 = 0 for all𝑁󸀠 ∈ 𝑅 \ 𝑁).

Let Pr(M0) = 𝑃(ROI is normal) = 𝑝norm and, for all𝑁 ∈𝑅, Pr(M𝑁) = Pr(event occurs at the hexagon 𝐻𝑁) = 𝑝𝑁.
In particular, we may assume 𝑝𝑁’s to be the same for all𝑁. We denote any probability under the modelM0 as 𝑃M0(⋅)

and under the modelM𝑁 as 𝑃M𝑁(⋅).
We also make the followings assumptions.

(i) For all𝑁 ∈ 𝑅, 𝑃M0(𝑌𝑁 = 1) = 0 and 𝑃M𝑁(𝑌𝑁 = 1) =𝑝1.
(ii) For all 𝑁󸀠 ∈ 𝐵(𝑁), 𝑃M𝑁(𝑌𝑁󸀠 = 1) = 𝑝2,

and for all𝑁󸀠 ∈ 𝑅 \ [𝐵(𝑁) ∪ {𝑁}], 𝑃M𝑁(𝑌𝑁󸀠 = 1) = 0.
(iii) For all𝑁 ∈ 𝑅, 𝑃(𝑍𝑁 = 1 | 𝑌𝑁 = 1) = 𝑝𝑐 and 𝑃(𝑍𝑁 =1 | 𝑌𝑁 = 0) = 𝑝𝑤.
(iv) 𝑍𝑁 and 𝑌𝑁󸀠 are independent for𝑁 ̸=𝑁󸀠.
(v) The responses from different nodes are independent

under a particular model; that is, 𝑍𝑁’s are indepen-
dent underM𝑁󸀠 for a fixed𝑁󸀠 ∈ 𝑅.

3. Theoretical Analysis of Fault Detection

In this section we discuss some theoretical results. In real
situations, |𝑅| may be very large. Given the network of the
sensor nodes and some prior knowledge about the nature of
event, one may have fairly good idea about the set of feasible
regions for the event. Formally, instead of all possible models,
one may be able to restrict to a set containing all the feasible
models. For example, if the event is known to take place in a
particular region, we can restrict our models accordingly.

3.1. Model Selection Approach. Consider

∀𝑁 ∈ 𝑅, 𝑃M0 (𝑍𝑁 = 1)
= 𝑃M0 (𝑍𝑁 = 1 | 𝑌𝑁 = 0) 𝑃M0 (𝑌𝑁 = 0)
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+ 𝑃M0 (𝑍𝑁 = 1 | 𝑌𝑁 = 1) 𝑃M0 (𝑌𝑁 = 1)
= 𝑃 (𝑍𝑁 = 1 | 𝑌𝑁 = 0) 𝑃M0 (𝑌𝑁 = 0)
+ 𝑃 (𝑍𝑁 = 1 | 𝑌𝑁 = 1) 𝑃M0 (𝑌𝑁 = 1) = 𝑝𝑤.

(1)

Hence, under the modelM0, 𝑍𝑁 follows Ber(𝑝𝑤), for all𝑁 ∈𝑅, and the likelihood of the data {𝑍𝑁 = 𝑧𝑁, for all 𝑁 ∈ 𝑅},
under the modelM0, is

𝐿0 = 𝑃M0 (𝑍𝑁 = 𝑧𝑁, ∀𝑁 ∈ 𝑅)
= ∏
𝑁∈𝑅

𝑝𝑧𝑁𝑤 (1 − 𝑝𝑤)(1−𝑧𝑁)

= (𝑝𝑤)∑𝑁∈𝑅 𝑧𝑁 × (1 − 𝑝𝑤)∑𝑁∈𝑅(1−𝑧𝑁).
(2)

So ln 𝐿0 = ∑𝑁∈𝑅 𝑧𝑁 ln𝑝𝑤 + ∑𝑁∈𝑅(1 − 𝑧𝑁) ln(1 − 𝑝𝑤).
For any𝑁 ∈ 𝑅, we have𝑃M𝑁 (𝑍𝑁 = 1)

= 𝑃M𝑁 (𝑍𝑁 = 1 | 𝑌𝑁 = 0) 𝑃M𝑁 (𝑌𝑁 = 0)
+ 𝑃M𝑁 (𝑍𝑁 = 1 | 𝑌𝑁 = 1) 𝑃M𝑁 (𝑌𝑁 = 1)

= 𝑃 (𝑍𝑁 = 1 | 𝑌𝑁 = 0) 𝑃M𝑁 (𝑌𝑁 = 0)
+ 𝑃 (𝑍𝑁 = 1 | 𝑌𝑁 = 1) 𝑃M𝑁 (𝑌𝑁 = 1)

= 𝑝𝑤 (1 − 𝑝1) + 𝑝𝑐𝑝1 = 𝑝1 (𝑝𝑐 − 𝑝𝑤) + 𝑝𝑤
= 𝑃1, say.

(3)

Hence, for all 𝑁 ∈ 𝑅, under M𝑁, 𝑍𝑁 follows Ber(𝑃1).
Similarly, for all𝑁󸀠 ∈ 𝐵(𝑁), underM𝑁, 𝑍𝑁󸀠 follows Ber(𝑃2),
where 𝑃2 = 𝑝2(𝑝𝑐 − 𝑝𝑤) + 𝑝𝑤 and, under M𝑁, 𝑍𝑁󸀠 follows
Ber(𝑝𝑤) for all 𝑁󸀠 ∈ 𝑅 \ [𝐵(𝑁) ∪ {𝑁}]. Note that 𝑃1 > 𝑃2
since 𝑝1 > 𝑝2. Hence the likelihood for the modelM𝑁, given𝑍𝑁󸀠 = 𝑧𝑁󸀠 , 𝑁󸀠 ∈ 𝑅, is
𝐿𝑁 = 𝑃M𝑁 (𝑍𝑁󸀠 = 𝑧𝑁󸀠 , ∀𝑁󸀠 ∈ 𝑅)

= 𝑃𝑧𝑁1 (1 − 𝑃1)(1−𝑧𝑁)Π𝑁󸀠∈𝐵(𝑁)𝑃𝑧𝑁󸀠2 (1 − 𝑃2)(1−𝑧𝑁󸀠 )
× Π𝑁󸀠∈𝑅\[𝐵(𝑁)∪{𝑁}] 𝑝𝑧𝑁󸀠𝑤 (1 − 𝑝𝑤)(1−𝑧𝑁󸀠 )

= 𝑃𝑧𝑁1 (1 − 𝑃1)(1−𝑧𝑁)𝑃∑𝑁󸀠∈𝐵(𝑁)𝑧𝑁󸀠2 (1 − 𝑃2)∑𝑁󸀠∈𝐵(𝑁)(1−𝑧𝑁󸀠 )

× 𝑝∑𝑁󸀠∈𝑅\[𝐵(𝑁)∪{𝑁}]𝑧𝑁󸀠𝑤 (1 − 𝑝𝑤)∑𝑁󸀠∈𝑅\[𝐵(𝑁)∪{𝑁}](1−𝑧𝑁󸀠 ).

(4)

Let 𝑇𝑁 = ∑𝑁󸀠∈𝐵(𝑁) 𝑍𝑁󸀠 , so that∑𝑁󸀠∈𝐵(𝑁) (1 − 𝑍𝑁󸀠) = 𝑘(𝑁) −𝑇𝑁 with the corresponding observed values denoted by

𝑡𝑁 = ∑
𝑁󸀠∈𝐵(𝑁)

𝑧𝑁󸀠 , ∑
𝑁󸀠∈𝐵(𝑁)

(1 − 𝑧𝑁󸀠) = 𝑘 (𝑁) − 𝑡𝑁. (5)

Therefore,

ln 𝐿𝑁 = 𝑧𝑁 ln𝑃1 + (1 − 𝑧𝑁) ln (1 − 𝑃1)
+ 𝑡𝑁 ln𝑃2 + (𝑘 (𝑁) − 𝑡𝑁) ln (1 − 𝑃2)
+ ∑
𝑁󸀠∈𝑅\[𝐵(𝑁)∪{𝑁}]

𝑧𝑁 ln𝑝𝑤
+ ∑
𝑁󸀠∈𝑅\[𝐵(𝑁)∪{𝑁}]

(1 − 𝑧𝑁) ln (𝑝𝑤 (1 − 𝑝𝑤))

= ln 𝐿0 + 𝑧𝑁 ln 𝑃1𝑝𝑤 + (1 − 𝑧𝑁) ln 1 − 𝑃11 − 𝑝𝑤
+ 𝑡𝑁 ln 𝑃2𝑝𝑤 + (𝑘 (𝑁) − 𝑡𝑁) ln 1 − 𝑃21 − 𝑝𝑤

= ln 𝐿0 + 𝑧𝑁 ln 𝑃1 (1 − 𝑝𝑤)𝑝𝑤 (1 − 𝑃1) + 𝑡𝑁 ln 𝑃2 (1 − 𝑝𝑤)𝑝𝑤 (1 − 𝑃2)
+ ln

1 − 𝑃11 − 𝑝𝑤 + 𝑘 (𝑁) ln 1 − 𝑃21 − 𝑝𝑤
= 𝑎 + 𝑏 (𝑐𝑧𝑁 + 𝑡𝑁 − 𝑑𝑘 (𝑁)) , say,

(6)

where

𝑎 = ln 𝐿0 + ln
1 − 𝑃11 − 𝑝𝑤 , 𝑏 = ln

𝑃2 (1 − 𝑝𝑤)𝑝𝑤 (1 − 𝑃2) > 0,

𝑐 = ln (𝑃1 (1 − 𝑝𝑤) /𝑝𝑤 (1 − 𝑃1))
ln (𝑃2 (1 − 𝑝𝑤) /𝑝𝑤 (1 − 𝑃2)) ,

𝑑 = ln ((1 − 𝑝𝑤) / (1 − 𝑃2))
ln (𝑃2 (1 − 𝑝𝑤) /𝑝𝑤 (1 − 𝑃2))

(7)

are independent of N.
In model selection approach, the model resulting in the

maximum value of the likelihood is selected. Note that, since
there is no parameter being estimated, this is equivalent to
the well-known Akaike Information Criterion (AIC) [30].
Therefore, the base station will accept the modelM0 if

= ln
1 − 𝑃11 − 𝑝𝑤 + 𝑏 (𝑐𝑧𝑁 + 𝑡𝑁 − 𝑑𝑘 (𝑁)) < 0,

∀𝑁 ∈ 𝑅.
(8)

Otherwise, as 𝑏 is positive, accept the model M𝑁 for which(𝑐𝑧𝑁 + 𝑡𝑁 − 𝑑𝑘(𝑁)) is maximum among all 𝑁 ∈ 𝑅. If values
of (𝑐𝑧𝑁 + 𝑡𝑁 − 𝑑𝑘(𝑁)) are equal for more than one 𝑁, then
we can select one of the corresponding models with equal
probability. If we want to maximize the likelihood for the
modelsM𝑁 corresponding to the interior nodes only, so that𝑘(𝑁) is fixed, then we need to maximize (𝑐𝑧𝑁+𝑡𝑁) among all𝑁 ∈ 𝑅.
3.2. Multiple Model Selection. Instead of selecting one partic-
ularmodel, onemaywant to selectmore than onemodel with



6 International Journal of Distributed Sensor Networks

approximately similar log likelihood values to the maximum
one. We can consider the set of models

{M𝐾 : 𝐿𝐾
max𝑁∈𝑅𝐿𝑁 > 𝐶} , (9)

where 0 < 𝐶 < 1 is a suitable constant close to 1. This 𝐶
is usually chosen according to the resource available. This
is similar to the idea of Occam’s window in the context of
Bayesian model selection [27].This may be interpreted as the
interval estimation for the true model.

Note that𝐿𝑁 is an increasing function of 𝑐𝑧𝑁+𝑡𝑁−𝑑𝑘(𝑁),
as 𝑏 is positive. We consider only the following set of models

{M𝐾 : 𝑄𝐾 > 𝐶∗ ⋅max
𝑁∈𝑅

𝑄𝑁} , (10)

where𝑄𝑁 = 𝑐𝑧𝑁+𝑡𝑁−𝑑𝑘(𝑁), for all𝑁 ∈ 𝑅, with 0 < 𝐶∗ < 1.
In particular, if we consider the interior nodes only, then we
consider the set of models given by

{M𝐾 : 𝑐𝑧𝐾 + 𝑡𝐾 > 𝐶∗ ⋅max
𝑁∈𝑅

{𝑐𝑧𝑁 + 𝑡𝑁}} . (11)

We can select multiple models using some other criteria. One
such may be to select all the models (one or more) for which
the maximum value of the likelihood is attained. LetNmax be
the set of nodes corresponding to all these models, including
“𝑁 = 0” corresponding toM0 if it has the maximum value of
the likelihood. Then this method selects all the models M𝑁
with 𝑁 ∈ Nmax. By another criterion, one may select the
models M𝑁󸀠 , for 𝑁󸀠 ∈ Nmax ∪ [∪𝑁∈Nmax

𝐵(𝑁)]; that is, 𝑁󸀠
is a node inNmax or any of the neighboring nodes of a node
inNmax. Note that 𝐵(𝑁) for𝑁 = 0 is the empty set. One can
combine these two types of criteria and come up with many
others.

3.3. Bayesian Model Averaging. Bayesian model averaging
is an effective method to solve a decision problem when
there are many alternative hypotheses or models, which
are complicated [27]. Suppose that M1,M2, . . . ,M𝑘 are
the models considered and 𝐷 denotes the given data. The
posterior probability for modelM𝑘 is given by

Pr (M𝑘 | 𝐷) = Pr (𝐷 | M𝑘)Pr (M𝑘)∑Pr (𝐷 | M𝑙)Pr (M𝑙) , (12)

where Pr(𝐷 | M𝑘) denotes the probability of observing data𝐷 under themodelM𝑘 (which is essentially the likelihood 𝐿𝑘
underM𝑘) and Pr(M𝑘) is the prior probability thatM𝑘 is the
true model (assuming that one of the models is true).

In this work, the data 𝐷 is {𝑍𝑁 = 𝑧𝑁 : 𝑁 ∈ 𝑅} and the
models areM0,M𝑁, 𝑁 ∈ 𝑅 as defined in Section 3.2. Hence,
the posterior probability for modelM𝑁 is

Pr (M𝑁 | 𝑍𝑁 = 𝑧𝑁, 𝑁 ∈ 𝑅) = 𝑝𝑁𝐿𝑁∑𝑙∈𝑅 𝑝𝑙𝐿 𝑙 + 𝑝norm𝐿0 ,

and that forM0 is
𝑝norm𝐿0∑𝑙∈𝑅 𝑝𝑙𝐿 𝑙 + 𝑝norm𝐿0 .

(13)

We select the modelM0 if 𝑝norm𝐿0 is greater than 𝑝𝑁𝐿𝑁,
for all 𝑁 ∈ 𝑅; otherwise, select M𝑁 for which 𝑝𝑁𝐿𝑁 is
maximum among all𝑁 ∈ 𝑅. Hence, if 𝑝𝑁’s are all equal, then
Bayesian approach is the same as the likelihood approach.

4. Some Important Considerations and
Error Probabilities

In this section, we consider some important issues related to
the problemof fault detection and the proposedmethodology
including calculation of errors (e.g., false detection, etc.) and
detection probabilities.

The following probabilities give some idea about the
role of neighboring nodes, along with the center node, in
detection or false detection, of event. For example, 𝑃M0(𝑇𝑁 =0, 𝑍𝑁 = 1) gives the probability of a false detection by the𝑁th node and not by the neighboring nodes, while𝑃M𝑁(𝑇𝑁 =6, 𝑍𝑁 = 0) gives the probability of a false negative by the𝑁th node, with all the neighboring nodes detecting the event.
Since, given a particular model, 𝑇𝑁 and 𝑍𝑁 are independent,
calculation of such probabilities is simple as given in the
following. For any𝑁 ∈ 𝑅 and 𝑖 = 0, 1, . . . , 𝑘(𝑁),

(1) 𝑃M0(𝑇𝑁 = 𝑖, 𝑍𝑁 = 0) = ( 𝑘(𝑁)𝑖 ) 𝑝𝑖𝑤(1 − 𝑝𝑤)𝑘(𝑁)−𝑖+1,
(2) 𝑃M0(𝑇𝑁 = 𝑖, 𝑍𝑁 = 1) = ( 𝑘(𝑁)𝑖 ) 𝑝𝑖+1𝑤 (1 − 𝑝𝑤)𝑘(𝑁)−𝑖,
(3) 𝑃M𝑁(𝑇𝑁 = 𝑖, 𝑍𝑁 = 0) = ( 𝑘(𝑁)𝑖 ) 𝑃𝑖2(1 − 𝑃2)𝑘(𝑁)−𝑖(1 −𝑃1),
(4) 𝑃M𝑁(𝑇𝑁 = 𝑖, 𝑍𝑁 = 1) = ( 𝑘(𝑁)𝑖 ) 𝑃𝑖2(1 − 𝑃2)𝑘(𝑁)−𝑖𝑃1.

Note that, for𝑁 ∈ 𝑅,
𝑃M0 (𝐿𝑁 > 𝐿0)

= 𝑃M0 (ln 𝐿𝑁 > ln 𝐿0)
= 𝑃M0 (𝑍𝑁 ln 𝑃1 (1 − 𝑝𝑤)𝑝𝑤 (1 − 𝑃1) + 𝑇𝑁 ln 𝑃2 (1 − 𝑝𝑤)𝑝𝑤 (1 − 𝑃2)

+ ln
1 − 𝑃11 − 𝑝𝑤 + 𝑘 (𝑁) ln 1 − 𝑃21 − 𝑝𝑤 > 0)

= 𝑃M0 (𝑍𝑁 ln 𝑃1 (1 − 𝑝𝑤)𝑝𝑤 (1 − 𝑃1) + 𝑇𝑁 ln 𝑃2 (1 − 𝑝𝑤)𝑝𝑤 (1 − 𝑃2)
> 𝑘 (𝑁) ln 1 − 𝑝𝑤1 − 𝑃2 + ln

1 − 𝑝𝑤1 − 𝑃1 ) ,

(14)

which can be numerically obtained using the joint distribu-
tion of 𝑇𝑁 and 𝑍𝑁 under the model M0. The maximum of
these probabilities over all 𝑁 gives a lower bound for the
probability that a node is considered to be an event node
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when the ROI is normal. On the other hand, the sum over all𝑁 gives an upper bound for the same. Similarly, for𝑁 ∈ 𝑅,
𝑃M𝑁 (𝐿𝑁 < 𝐿0)

= 𝑃M𝑁 (𝑍𝑁 ln 𝑃1 (1 − 𝑝𝑤)𝑝𝑤 (1 − 𝑃1) + 𝑇𝑁 ln 𝑃2 (1 − 𝑝𝑤)𝑝𝑤 (1 − 𝑃2)
< 𝑘 (𝑁) ln 1 − 𝑝𝑤1 − 𝑃2 + ln

1 − 𝑝𝑤1 − 𝑃1 )
(15)

which can be again numerically obtained using the joint
distribution of 𝑇𝑁 and 𝑍𝑁 under the model M𝑁. This
probability gives some idea about the error that when 𝑁th
node is the event node and it is not detected.

As noted in Section 3.1, we select the model M𝑁 for
which 𝑄𝑁 is the maximum, for𝑁 ∈ 𝑅. The random variable𝑄𝑁 is, therefore, of some interest, the distribution of which
under different models is useful in calculating many error
probabilities. We first find the distribution of 𝑄𝑁 under the
model M𝑁. Note that 𝑄𝑁 takes values 𝑐𝑖 + 𝑗 − 𝑑𝑘(𝑁),
corresponding to 𝑍𝑁 = 𝑖 and 𝑇𝑁 = 𝑗, for 𝑖 = 0, 1, and 𝑗 =0, 1, 2, . . . , 𝑘(𝑁). Assume that, for convenience, the values of𝑄𝑁 for different 𝑖 and 𝑗 are all distinct. Therefore, for 𝑖 = 0, 1
and 𝑗 = 0, 1, . . . , 𝑘(𝑁),
𝑃M𝑁 (𝑄𝑁 = 𝑐𝑖 + 𝑗 − 𝑑𝑘 (𝑁))

= (𝑘 (𝑁)𝑗 ) (𝑃1)𝑖(1 − 𝑃1)(1−𝑖)(𝑃2)𝑗(1 − 𝑃2)(𝑘(𝑁)−𝑗),
𝑃M0 (𝑄𝑁 = 𝑐𝑖 + 𝑗 − 𝑑𝑘 (𝑁))

= (𝑘 (𝑁)𝑗 ) (𝑝𝑤)𝑖+𝑗(1 − 𝑝𝑤)(1−𝑖+𝑘(𝑁)−𝑗).

(16)

For 𝑁󸀠 ∈ 𝐵(𝑁) or 𝑁󸀠 ∈ 𝑅 \ [𝐵(𝑁) ∪ {𝑁}], one can find𝑃M𝑁󸀠 (𝑄𝑁 = 𝑐𝑖 + 𝑗 − 𝑑𝑘(𝑁)) in similar manner, although the

calculation is very tedious as there aremany subcases. Ideally,
one is interested in probability of errors occurring at the level
of base station. For example, the two important errors are(1) not selecting M0 when M0 is true (false positive) and(2) selecting M0 when M𝑁 is true for some 𝑁 ∈ 𝑅 (false
negative). Theoretical calculation of these error probabilities
is complicated. We, therefore, use simulation technique to
estimate these and similar error probabilities.

5. Simulation Study

We consider a 32 × 32 hexagonal grid and we run the
programme 10000 times. The simulation is performed using
the 𝐶-code, and required random numbers are generated
using the standard 𝐶-library.

In our simulation study, we consider different criteria,
as discussed in Sections 3.1 and 3.2, for estimating the error
probabilities or, equivalently, the success rate. First consider
the probability of selectingM0, when it is true. Let 𝑆1 denote
the proportion of correct detection of normal situation,
when model M0 is true, using the model selection method
of Section 3.1. That is, 𝑆1 gives an estimate of 𝑃M0(0 ∈

Nmax and 0 is selected by randomization).Then 1−𝑆1 gives
an estimate of the false positive rate.

When M𝑁 is true for some 𝑁 ∈ 𝑅, let 𝑆2 denote the
proportion of correct decision for the event node using the
model selection method of Section 3.1, so that it estimates𝑃M𝑁(𝑁 ∈ Nmax and is selected by randomization). Note
that, for each simulation run, the event hexagon is chosen
randomly, so that 𝑆2 gives an average value over all 𝑁. In
this context, this probability is the same for all the interior
nodes. Then, 1 − 𝑆2 gives an estimate of the corresponding
error probability of not selectingM𝑁, when it is true.

Note that, in this problem of fault detection with a single
event node, the likelihood value, for a given observed data
configuration, may be equal for more than one models.
Therefore, quite often, the maximum value of the likelihood
may be attained bymore than onemodel.Themodel selection
method of Section 3.1, which selects one of these models
randomly in such cases, may often not select the correct
model. Therefore, the method of Section 3.2, which selects
more than one model having similar likelihood value, may
be preferred and will have better chance of selecting the
correct model. We now consider some of those methods in
the following.

Let us first consider the method in which all the models
corresponding to the maximum value of the likelihood are
selected. Let 𝑆3 denote the proportion of correct selection
of the model M𝑁, when it is true, by this method. Then𝑆3 estimates the probability 𝑃M𝑁(𝑁 ∈ Nmax), which is
always more than or equal to the quantity estimated by𝑆2, as remarked before. We also consider the method in
which all the models having maximum likelihood along with
their neighborhood models are selected. A model M𝑁󸀠 is a
neighborhoodmodel of themodelM𝑁 if𝑁󸀠 is a neighboring
node of 𝑁. If 𝑆4 denotes the proportion of correct selection
of the model M𝑁, when it is true, by this method, then𝑆4 estimates 𝑃M𝑁(𝑁 ∈ Nmax ∪ {∪𝑁󸀠∈Nmax

𝐵(𝑁󸀠)}). Clearly,𝑆4 ≥ 𝑆3 ≥ 𝑆2. Similarly, if 𝑆5 denotes the proportion
of correct selection of the model M𝑁, when it is true, by
selecting all those models with likelihood value being more
than 90% of the maximum likelihood (i.e., the method of
Section 3.2 with 𝐶 = 0.9), then 𝑆5 estimates the probability𝑃M𝑁(𝐿𝑁 > 0.9𝐿max) with 𝐿max denoting the maximum value
of the likelihood.

Suppose that 𝑁𝑖 denotes the average number of selected
nodes to be searched corresponding to 𝑆𝑖, 𝑖 = 1, 2, . . . , 5.
Clearly, 𝑁1 = 1 − 𝑆1 because we need no search when M0
is selected. When event occurs and we consider only one 𝑁
from Nmax, we need at most one search (since no search
is needed if M0 is selected) and we have 𝑁2 ≤ 1. In our
simulation, we find 𝑁2 = 1 in all the cases; which means
that, in simulation, M0 has not been selected when event
occurred. Note that 𝑁3 ≥ 1 since we consider all 𝑁’s in
Nmax for searching. Again, as before, 𝑁4 > 𝑁3 ≥ 1 ≥ 𝑁2.
Also, by definition,𝑁5 ≥ 1. Table 1 presents the different 𝑆𝑖’s
and𝑁𝑖’s based on simulation for different values of 𝑝1, 𝑝2, 𝑝𝑐,
and 𝑝𝑤 with 𝑝1 and 𝑝𝑐 taking values 0.9 and 0.99, 𝑝𝑤 taking
values 0.01 and 0.001, and 𝑝2 taking values 0.0, 0.3, 0.4, 0.5,
and 0.6. The choice of 𝑝1 and 𝑝𝑐 reflects the corresponding
high probability, whereas that of 𝑝𝑤 reflects small probability,
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which is desirable in a good sensor. Since the primary interest
is to study the effect of detection by neighboring nodes, we
consider 𝑝2 as 0 (which means that there is no effect of
neighboring nodes) and some positive values less than 𝑝1.

Note that the probability of correct detection under M0
depends only on 𝑝𝑤.This is also evident in Table 1. Intuitively,
if 𝑝𝑤 is high, then the proportion 𝑆1 of correct detection in
normal situation is low. In Table 1, we see that 𝑆1 is 0 for𝑝𝑤 = 0.01, varies from 0.35 to 0.37 for 𝑝𝑤 = 0.001, and
varies from 0.90 to 0.91 for 𝑝𝑤 = 0.0001 (not shown in
Table 1). If we consider smaller value of 𝑝𝑤, then the success
probability 𝑆1 will be higher. Hence 𝑝𝑤 must be low as the
number of hexagons is high to get better results in normal
situation.

We see that the estimated false negative rate, that is, an
estimate of 𝑃M𝑁(M0 is selected), is often 0 in our simulation
(not shown in Table 1). This is because, if the event occurs at𝑁, then detection of the event by at least one of the nodes
belonging to {𝑁} ∪ 𝐵(𝑁) is highly probable. Furthermore,
since the grid size is large, one of the nodes belonging to𝑅\({𝑁}∪𝐵(𝑁))may respondwrongly, though it cannot detect
the event. So, underM𝑁, there is a small probability to select
ROI as normal. If we take 𝑝𝑤 and the detection probabilities𝑝1 and 𝑝2 to be very small, then we may get some positive
false negative rate, but this is not a desired condition for a
good sensor.

From simulation, we see that, as 𝑝2 increases (for positive𝑝2), 𝑆𝑖 values increase, whereas𝑁𝑖 decrease. As𝑝2 increases, it
helps to differentiate between the likelihood values resulting
in lower cardinality of the set Nmax and lower values of𝑁𝑖’s. However, since the neighboring nodes help to detect the
event, the success probability increases. From simulation, we
find that, as 𝑝1 increases, success probabilities also increase,
but the effect of 𝑝2 is more prominent than that of 𝑝1. On
the other hand, success probabilities also change with 𝑝𝑤
and 𝑝𝑐. Since 𝑝2 = 0 means 𝑃2 = 𝑝𝑤, so there is little
variability in the likelihood values leading to larger size of
Nmax.

When 𝑝𝑤 = 0.01, effect of 𝑝2 on 𝑆3, 𝑆4, and 𝑆5 and𝑁3, 𝑁4,
and 𝑁5 seems to be significant, whereas the same cannot be
said for 𝑝𝑤 = 0.001. There is sudden change in 𝑆𝑖’s and 𝑁𝑖’s,
when we shift from 𝑝2 = 0 to 𝑝2 = 0.3, for 𝑝𝑤 = 0.01,
but not 𝑝𝑤 = 0.001. So, when 𝑝𝑤 is small, the effect of the
neighborhood seems to be less.

The values of 𝑆3 and 𝑆4 are very similar for different
values of the parameters, but larger increment in𝑁4 than𝑁3
suggests that the idea of neighboring search is not effective.
But 𝑆3 is much higher than 𝑆2, so the method of searching
all the nodes inNmax is a better idea than that of searching a
random node fromNmax.

We estimate the success probability 𝑃M𝑁(𝐿𝑁 > 𝐶 ⋅ 𝐿max)
by simulation for different values of the threshold 𝐶 ranging
from 0.5 to 0.9 (see Table 2). Note that 𝑆5 corresponds to
the threshold value 𝐶 = 0.9. We consider 𝑝1 = 0.99, 𝑝𝑤 =0.001, 𝑝𝑐 = 0.9, and four values of 𝑝2 = 0.3, 0.4, 0.5, 0.6.
From Table 2, we see that the success probability increases
as the threshold value 𝐶 decreases and 𝑝2 increases.
Similarly, the number of search decreases with both 𝐶
and 𝑝2.

6. Discussion

One prime object of this paper is to show the effect of the
neighboring nodes in detection of an event. In this section,
we discuss the role of the neighboring nodes and some other
related issues and make remarks.

6.1. Role of the Neighboring Nodes. Since ln 𝐿𝑁 = 𝑎+ 𝑏(𝑐𝑧𝑁 +𝑡𝑁 − 𝑑𝑘(𝑁)), where 𝑎, 𝑏, 𝑐, and 𝑑 are as defined in Section 3.1,𝑐 denotes the weight of the central node compared to the
neighboring nodes in the corresponding likelihood. Note
that, since𝑃1 > 𝑃2, we have 𝑐 > 1, and if 𝑐 is close to 1, then the
six neighboring nodes are as important as the event node. So,
as the value of 𝑐 increases, the importance of the neighboring
nodes decreases. Also, 𝑑 gives some idea about the role of the
number of adjacent nodes, that is, 𝑘(𝑁). Recall that 𝑃1 and 𝑃2
are the probabilities of responding (i.e., reporting the node𝑁
as the event hexagon) by the sensors 𝑆𝑁 and 𝑆𝑁󸀠 , respectively,
when 𝑁 is the event hexagon and 𝑁󸀠 is a neighboring node
of𝑁. So, we numerically calculate the quantities 𝑃1, 𝑃2, 𝑐, and𝑑 for some values of the parameters (see Table 3).

From the theoretical results in Section 3.1, we see that𝑃1 and 𝑐 increase as 𝑝1 increases, while 𝑃2 and 𝑑 do not
depend on 𝑝1. On the other hand, while 𝑃2 increases with 𝑝2,𝑐 and 𝑑 decrease and 𝑃1 is independent of 𝑝2. Therefore, the
importance of the neighboring nodes decreases with 𝑝1 and
increases with 𝑝2, as expected and observed in Table 3.

6.2. Estimation of the Parameters. In practice, the parameters𝑝1, 𝑝2, 𝑝𝑤, and 𝑝𝑐 may be unknown. We can, however,
estimate the parameters by some experimentation.

Note that, under M0, 𝑍𝑁 follows Ber(𝑝𝑤) for all 𝑁 ∈ 𝑅.
Hence, 𝑝𝑤 is the expected value of 𝑍𝑁 given M0. So we
perform the experiment by keeping the ROI normal. The
proportion of 𝑍𝑁’s having value 1 gives an estimate of 𝑝𝑤.
Repeat this experiment several times, so that the average of
the proportions over the repeated experiments can be taken
as an estimate of 𝑝𝑤.

Note that 𝑝1 is the expected value of 𝑌𝑁 under M𝑁. So,
we perform the experiment by keeping an event in some
node 𝑁 of the ROI. The proportion of 𝑌𝑁’s having value 1
gives an estimate of 𝑝1. Repeat this experiment for several
times, so that the average of the proportions over the repeated
experiments can be taken as an estimate of 𝑝1. Similar
experiments will give estimates of 𝑝2 and 𝑝𝑐 as well.
6.3. Incorporation of Heterogeneity and Uncertainty in Param-
eters. Let 𝜃 = (𝑝1, 𝑝2, 𝑝𝑐, 𝑝𝑤) denote the set of parameters,
which has been assumed to be the same for all the nodes.
While, in practice there is no reason why the parameters
should be same for all the nodes, it is also not clear how these
would be different across𝑁. This unexplained heterogeneity
can be incorporated by assuming the 𝜃’s, for different 𝑁, to
be independent realizations from a common distribution.

Let 𝜃𝑁 = (𝑝1𝑁, 𝑝2𝑁, 𝑝𝑐𝑁, 𝑝𝑤𝑁) denote the set of param-
eters for node 𝑁. We assume that 𝜃𝑁, 𝑁 ∈ 𝑅, are i.i.d. from
some distribution, say 𝑔(𝜃). Also assume that, given 𝜃𝑁, 𝑁 ∈𝑅, 𝑍𝑁’s are independent. Note that 𝑔(𝜃) denotes the joint
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Table 1: Simulation of estimated probabilities for some values of the parameters.

Other parameters Simulation of different probabilities with 𝑝𝑐 = 0.9
𝑝1 𝑝2 𝑝𝑤 𝑆1 𝑆2 𝑆3 𝑁3 𝑆4 𝑁4 𝑆5 𝑁5
0.9 0.0 0.01 0.00 0.08 0.81 18.16 0.81 59.85 0.82 18.17

0.9 0.3 0.01 0.00 0.47 0.69 5.44 0.70 14.81 0.73 5.70

0.9 0.4 0.01 0.00 0.60 0.79 5.11 0.78 13.51 0.80 5.12

0.9 0.5 0.01 0.00 0.70 0.85 4.64 0.85 11.50 0.86 4.88

0.9 0.6 0.01 0.00 0.79 0.90 3.82 0.91 08.18 0.92 3.90

0.9 0.0 0.001 0.35 0.50 0.81 3.17 0.81 7.17 0.81 3.18

0.9 0.3 0.001 0.36 0.59 0.82 3.03 0.83 6.34 0.86 3.06

0.9 0.4 0.001 0.35 0.67 0.87 2.89 0.87 6.18 0.89 3.03

0.9 0.5 0.001 0.36 0.75 0.90 2.89 0.89 5.85 0.93 2.96

0.9 0.6 0.001 0.36 0.83 0.94 2.74 0.93 5.33 0.96 2.79

0.99 0.0 0.01 0.00 0.08 0.89 17.43 0.90 56.20 0.89 17.70

0.99 0.3 0.01 0.00 0.51 0.73 5.18 0.73 12.98 0.79 5.77

0.99 0.4 0.01 0.00 0.62 0.81 5.09 0.82 13.01 0.84 5.21

0.99 0.5 0.01 0.00 0.73 0.88 4.97 0.88 12.69 0.89 5.04

0.99 0.6 0.01 0.00 0.81 0.92 3.66 0.92 7.35 0.93 3.57

0.99 0.0 0.001 0.35 0.57 0.89 3.19 0.89 6.69 0.89 3.20

0.99 0.3 0.001 0.35 0.62 0.88 2.99 0.87 6.00 0.90 3.02

0.99 0.4 0.001 0.36 0.70 0.90 2.91 0.91 5.83 0.93 2.97

0.99 0.5 0.001 0.36 0.79 0.93 2.82 0.94 5.67 0.95 2.83

0.99 0.6 0.001 0.36 0.84 0.95 2.75 0.95 5.31 0.97 2.68

Other parameters Simulation of different probabilities with 𝑝𝑐 = 0.99
𝑝1 𝑝2 𝑝𝑤 𝑆1 𝑆2 𝑆3 𝑁3 𝑆4 𝑁4 𝑆5 𝑁5
0.9 0.0 0.01 0.00 0.08 0.90 18.2 0.89 55.62 0.90 17.58

0.9 0.3 0.01 0.00 0.54 0.76 5.14 0.76 13.08 0.79 5.64

0.9 0.4 0.01 0.00 0.67 0.85 5.05 0.85 12.92 0.87 5.12

0.9 0.5 0.01 0.00 0.77 0.91 4.86 0.90 12.10 0.91 5.02

0.9 0.6 0.01 0.00 0.86 0.94 3.57 0.93 7.24 0.95 3.57

0.9 0.0 0.001 0.36 0.57 0.90 3.18 0.89 6.61 0.89 3.19

0.9 0.3 0.001 0.36 0.65 0.88 2.98 0.89 6.34 0.92 3.02

0.9 0.4 0.001 0.36 0.73 0.92 2.87 0.92 5.91 0.94 2.91

0.9 0.5 0.001 0.35 0.81 0.94 2.81 0.94 5.51 0.96 2.82

0.9 0.6 0.001 0.37 0.88 0.96 2.72 0.96 5.24 0.97 2.90

0.99 0.0 0.01 0.00 0.09 0.98 16.9 0.98 51.40 0.98 17.6

0.99 0.3 0.01 0.00 0.58 0.83 5.66 0.83 14.73 0.87 5.69

0.99 0.4 0.01 0.00 0.69 0.90 5.43 0.91 14.38 0.92 5.69

0.99 0.5 0.01 0.00 0.80 0.94 4.61 0.94 11.19 0.95 4.73

0.99 0.6 0.01 0.00 0.87 0.96 3.26 0.97 6.26 0.96 3.35

0.99 0.0 0.001 0.35 0.62 0.98 3.20 0.98 6.32 0.98 3.28

0.99 0.3 0.001 0.36 0.69 0.94 2.90 0.94 5.88 0.97 3.00

0.99 0.4 0.001 0.36 0.76 0.95 2.89 0.96 5.59 0.98 2.85

0.99 0.5 0.001 0.36 0.83 0.97 2.70 0.97 5.48 0.98 2.80

0.99 0.6 0.001 0.36 0.89 0.98 2.68 0.98 5.19 0.99 2.69

distribution of the four parameters. For simplicity, we may
assume them to be independent, so that 𝑔(𝜃) can be written
as 𝑔(𝜃) = 𝑔1(𝑝1)𝑔2(𝑝2)𝑔𝑐(𝑝𝑐)𝑔𝑤(𝑝𝑤). In this situation, the
likelihood for the modelM0 is

Π𝑁∈𝑅 ∫𝑝𝑧𝑁𝑤𝑁(1 − 𝑝𝑤𝑁)(1−𝑧𝑁)𝑔𝑤 (𝑝𝑤𝑁) 𝑑𝑝𝑤𝑁, (17)

where the integration is over the range of 𝑝𝑤𝑁. Similarly, the
likelihood for the modelM𝑁 can be written as

Π𝑁󸀠∈𝑅 ∫𝐿(𝑁󸀠)𝑁 (𝜃𝑁) 𝑔 (𝜃𝑁) 𝑑𝜃𝑁, (18)

where the integral is over the four-dimensional space given by

the range of 𝜃𝑁 and 𝐿(𝑁󸀠)𝑁 (𝜃𝑁) is the contribution of the𝑁󸀠th
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Table 2: Simulation of estimated success probabilities and number of searches for different threshold values (𝐶) and some values of the
parameters with 𝑝𝑐 = 𝑝1 = 0.9.

Other parameters 𝐶 = 0.6 𝐶 = 0.7 𝐶 = 0.8 𝐶 = 0.9
𝑝2 𝑝𝑤 Success Search Success Search Success Search Success Search

0.0 0.01 0.81 18.21 0.81 18.25 0.81 18.21 0.81 18.17

0.3 0.01 0.87 13.72 0.78 9.13 0.75 6.64 0.73 5.70

0.4 0.01 0.89 8.86 0.85 6.47 0.82 5.46 0.80 5.12

0.5 0.01 0.93 6.88 0.90 5.69 0.89 5.05 0.86 4.88

0.6 0.01 0.97 5.27 0.96 4.91 0.93 4.04 0.92 3.90

0.0 0.001 0.80 3.27 0.80 3.21 0.80 3.17 0.80 3.18

0.3 0.001 0.91 4.15 0.91 3.65 0.87 3.31 0.86 3.06

0.4 0.001 0.94 4.25 0.94 3.69 0.93 3.31 0.89 3.03

0.5 0.001 0.97 4.24 0.97 3.64 0.96 3.26 0.93 2.96

0.6 0.001 0.99 3.96 0.98 3.18 0.98 3.04 0.96 2.79

Table 3: Values of 𝑃1, 𝑃2, 𝑐, and 𝑑 for 𝑝𝑐 = 0.9.
Parameters 𝑝𝑤 = 0.1 𝑝𝑤 = 0.2

𝑝1 𝑝2 𝑃1 𝑃2 𝑐 𝑑 𝑃1 𝑃2 𝑐 𝑑

0.7

0.3 0.66 0.34 1.865 0.202 0.69 0.41 2.139 0.298

0.4 0.66 0.42 1.526 0.234 0.69 0.48 1.674 0.330

0.5 0.66 0.50 1.302 0.268 0.69 0.55 1.378 0.363

0.6 0.66 0.58 1.135 0.302 0.69 0.62 1.166 0.397

0.8

0.3 0.74 0.34 2.114 0.202 0.76 0.41 2.484 0.298

0.4 0.74 0.42 1.730 0.234 0.76 0.48 1.944 0.330

0.5 0.74 0.50 1.476 0.268 0.76 0.55 1.600 0.363

0.6 0.74 0.58 1.287 0.302 0.76 0.62 1.354 0.397

0.9

0.3 0.82 0.34 0.241 0.202 0.83 0.41 2.907 0.298

0.4 0.82 0.42 1.981 0.234 0.83 0.48 2.275 0.330

0.5 0.82 0.50 1.690 0.268 0.83 0.55 1.873 0.363

0.6 0.82 0.58 1.474 0.302 0.83 0.62 1.584 0.397

node to the likelihood 𝐿𝑁, given the value 𝜃𝑁, as described in
Section 3.1.

Similar technique can also be used to incorporate param-
eter uncertainty. Even though the parameters can be assumed
to be same for all the nodes, there may be reasonable
uncertainty about the constancy of the parameter values.
As in the Bayesian paradigm, the set of parameters may be
assumed to be a realization from a distribution, say 𝑔(𝜃).
Then, the likelihoods for the modelsM0 andM𝑁 are

∫Π𝑁∈𝑅𝑝𝑧𝑁𝑤 (1 − 𝑝𝑤)(1−𝑧𝑁)𝑔𝜃 (𝑝𝑤) 𝑑𝑝𝑤,
∫Π𝑁󸀠∈𝑅𝐿(𝑁󸀠)𝑁 (𝜃) 𝑔 (𝜃) 𝑑𝜃, respectively.

(19)

The choice of𝑔(𝜃)maybe a difficult one.However, sometimes
there may be specific information available regarding the
distribution of 𝜃, which can be incorporated in the model.

6.4. When More Sensors Can Detect the Event Square. We
may consider the situation when sensing radii are larger and
more sensors can detect the event hexagon but with different
probabilities. With respect to a particular node, classify the

remaining nodes with respect to the probability of detecting
the event at that node, which may as well depend on the
distance from the particular node. Suppose that the sensors
in the 𝑖th class detect the event hexagon with probability𝑝𝑖, 𝑖 = 1, 2, 3, . . .. The theoretical analysis is similar to that of
Section 3, but having more probability terms.

6.5. Concluding Remarks. In this paper, we consider the
problem of fault detection in wireless sensor network (WSN).
We discuss how to address both the noise-related mea-
surement errors (𝑝1 and 𝑝2) and sensor fault (𝑝𝑐 and 𝑝𝑤)
simultaneously in fault detection, where the ROI is parti-
tioned into regular hexagons with the event occurring at
only one hexagon. We propose fault detection schemes that
explicitly introduce the error probabilities into the optimal
event detection process. We develop the schemes under the
consideration of model selection technique, multiple model
selection technique, and Bayesian model averaging method.
The different error probabilities are calculated by means of
simulation. Note that the same analysis can be carried out
when ROI is partitioned into squares and sensors are placed
at the centers.
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Nandi et al. [25] consider similar problem in wireless
sensor network (WSN), in which the event can take place
at the center of one particular square (or hexagon) of the
grid covering the ROI. In our paper, we allow the event
square to be any one in the grid. Our approach can also
be used for the problem of [25] with only two models to
be considered for selection. In [25], the authors develop
the scheme under the consideration of Neyman-Pearson
hypothesis test, where the null and alternative hypotheses
correspond to the two models. In model selection approach,
we select the model with higher likelihood. In classical
Neyman-Pearson hypothesis test, a model is selected if its
likelihood is greater than some constant times the likelihood
of the other. This constant is fixed before the test depending
on the size of the test. In model selection approach, the
constant is 1, leaving no choice for the size of the test. On the
other hand, we cannot apply the classical Neyman-Pearson
test withmore than twomodels to be considered for selection.

The principle of hypothesis testing places a large confi-
dence in the null hypothesis and does not reject it unless there
is strong evidence against it.This safeguard of null hypothesis
cannot be ensured in the model selection approach of
Section 3.1. However, the multiple model selection approach
of Section 3.2 provides some safeguard in this regard.

This principle of model selection can be extended to
the situation when there are more than one event hexagon
and the objective is to detect the event hexagons. We may
also assume that the sensors can detect different types of
events. That is, response of sensors may not be only binary;
sensors can measure distance, direction, speed, humidity,
wind speed, soil makeup, temperature, and so forth and send
the measurement of continuous type variables to the base
station. One needs a different formulation of the problem in
such case which will be taken up in future.
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