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Abstract: In this paper, we explore the use of an optical correlation technique to decompose 

different radial as well as azimuthal order modes of Laguerre Gaussian (LG) beams. We 

experimentally demonstrate the decomposition of single as well as composite LG beams and 

compare it with simulations. We report the modal decomposition with 27 dB extinction over 

several radial and azimuthal orders. Finally, we show that our modal decomposition is 

capable of sorting mode spectrum consisting of up to 10 LG modes with an accuracy of better 

than 97.8%. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

In quantum information processing and quantum key distribution (QKD), increased number 

of quantum states could provide faster data manipulation with enhanced security [1]. 

Specifically, an increase in the number of orthogonal states in a quantum communication link 

could potentially improve both its security and photon efficiency. Such orthogonality in 

optical beams has also been exploited in classical communication channels to increase the 

data rates, for example Tb/s data rates have been demonstrated in both free-space [2] and 

optical fiber links [3,4]. 

Laguerre Gaussian (LG) beams with different radial and azimuthal modal numbers are a 

family of orthogonal basis set that has been gaining widespread attention lately. In particular, 

LG beams with different azimuthal modal number (the so-called “vortex” beams) are widely 

exploited in the optical communications [2–4]. Recently, it has been argued that radial modal 

number should also be used to increase the space-bandwidth product [5] of an optical system. 

One of the key issues in tracking the propagation of such beams as well as their 

demodulation is the quantification of their purity. To accomplish this, we need robust mode 

sorters or modal decomposition algorithms that accommodate a wide range of the modal 

spectrum with high accuracy. Recently, Guodong et al. experimentally demonstrated a 200 

Gbit/s free-space optical link with a bit error rate of 3.8 × 10−3 by multiplexing LG beams 

with different radial indices [6]. In such experiments, they clearly show that the bit error rate 

primarily depends on the mode demultiplexing or decomposition method at the receiver end. 

While excellent results have been demonstrated with practical mode sorters [7,8], they 

have been limited in the number of modes that they can sort. On the other hand, modal 

decomposition has been demonstrated to address a wide range of the spectrum although their 

accuracy may be limited by the specific algorithm that is used [9–11]. For example, the same 

group mentioned above has reported 15 dB power extinction between the zeroth and first 

radial order LG modes using an optical correlation technique at the receiver end [12]. This is 

limited by the fact that they have used only the phase structure of the LG modes in the 

decomposition process. 

In this work, we demonstrate the use of an optical correlation technique that incorporates 

both amplitude as well as phase structure of LG modes to accomplish the modal 

decomposition. We experimentally demonstrate >25 dB power extinction between zeroth and 
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first radial order LG modes, limited only by the bit resolution of the camera used in our setup. 

We have also verified the decomposition of composite, mode-multiplexed beams consisting 

of up to 10 different radial/azimuthal modes. Finally, we show that we can potentially extend 

this technique to measure the power of Bessel beams with higher radial orders [13] in optical 

fiber by properly considering the polarization into account [14]. 

2. Modal decomposition based on optical correlation technique 

Modal decomposition is a well-known technique for analyzing the structure of an optical 

beam upon propagation and has been widely used for several different applications. For 

example, modal decomposition based on optical correlation technique has been used to 

determine the beam quality upon propagation in a few-mode optical fiber [15]. It has also 

been used to determine the angular momentum density of Bessel beams [11] and recently, the 

technique has been used by Andrew et al. for analyzing an image transmitted through a 

turbulent medium [10,16]. In our article, we use a similar technique for decomposing the 

mode multiplexed LG beams with different radial and azimuthal orders. Specifically, we 

perform modal decomposition based on computer-generated holograms (CGHs) using spatial 

light modulator (SLM) as described below. 

The transverse electric field of a linearly polarized LG beam in cylindrical coordinates 

(ρ,φ) is given by the expression, 
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where w is the beam waist, Cl,p is a constant, LGp
|l | is a generalized Laguerre polynomial with 

azimuthal and radial indices of l and p respectively. The constants Cl,p is chosen such that the 

LG beams form an orthonormal basis set. Here we consider only horizontally polarized beams 

as our SLM responds to only that polarization state. 

In modal decomposition method, any scalar light beam (U) can be represented by a 

superposition of LGl,p modes with corresponding complex weights Wl,p as shown in Eq. (1). 

The complex weight of a mode is calculated by optically correlating the input beam with the 

complex conjugate of the mode (Eq. (3)). 

 , , ,l p l p l pU W LG=  (2) 

 *

, ,l p l p
W ULG rdrdφ=   (3) 

Equation (3) is essentially a dot product operation between the input beam and the 

complex conjugate of the mode. To perform this operation experimentally, we use a spatial 

light modulator (SLM) and convex lens as shown in Fig. 1. The input beam LGl,p is multiplied 

with its complex conjugate mode using a SLM by encoding necessary holograms (discussed 

below). To perform the integral operation, we propagate the reflected beam through the 

convex lens. 
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Fig. 1. Experimental realization of dot product operation. 

The electric field corresponding to the reflected beam at the Fourier plane of the convex 

lens is given by Eq. (4) [17]. 
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where ( )2 2r u v= + , ( )1tan /u v−Θ = , u and v are spatial frequencies, f is the focal length 

of the convex lens, λ is the wavelength, and k is the propagation constant of the beam. 

The center of the Fourier plane Uf(0,0), which is commonly referred as the DC component 

gives the weight of the LGl,p mode. Since the camera captures the intensity, we take the 

square root of the observed intensity to obtain the field weight. However, it should be noted 

that we lose the phase information of the beam in this process and as such, we do not capture 

the relative phase between different modes. 

By following the above procedure, the complex weight Wl,p of different modes may be 

determined by loading the de-multiplexing hologram of each mode on the SLM. A key aspect 

of our technique is the utilization of both the phase and amplitude structure of the target LG 

mode for optical correlation. Previously, different methods have been proposed by Davis et al 

[18], Long et al [19], and Arrizon et al [20] for generating the scalar field from the phase-only 

SLM. Of these, Arrizon’s algorithm is widely used because it has been demonstrated to 

provide relatively high signal to noise ratio [21] and it requires <1.17π phase range of the 

SLM. 

In this approach, any complex field s(x,y) with amplitude function a(x,y) ranging from 0 

to 1 and phase function θ(x,y) as expressed in Eq. (5) can be generated through the CGH 

using a phase modulation function ( ),a θΨ represented in Eq. (6). 

 ( ) ( ) ( )( ), , exp ,s x y a x y i x yθ=  (5) 

 ( ), ( ) sin( ),a f aθ θΨ =  (6) 

where f(a) has to be accurately determined to generate the complex field. This process is 

explained below. 

When a beam with electric field U is incident on the SLM encoded with such phase 

modulation function ( ), ,a θΨ  the beam is spatially modulated. The reflected beam from the 

SLM can be expressed in Fourier series expansion using Jacobi–Anger identity [22] as, 
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where Jm is the Bessel function of first kind with order m. In the Fourier expansion, the phase 

of the first component (m = 1) is identical to the phase structure of the complex field. Also, by 

equating the magnitude of the first component to the magnitude function of the complex field 

as shown in Eq. (8), f(a) can be determined. 

 [ ]1

1( ) ,f a J Aa−=  (8) 

where A is a constant. 

The maximum value of A for which Eq. (8) can be satisfied is A ≅ 0.5819, which 

corresponds to the first maximum of the first-order Bessel function J1. Since the 

corresponding argument of the first order Bessel function is 1.84, the required phase range of 

the SLM in this case is −1.17π/2 to + 1.17π/2. Hence by substituting Eq. (8) in Eq. (7), we 

generate complex function s(x,y) in the first harmonic of the above Bessel series. In order to 

achieve the spatial isolation of s(x,y) from the other harmonics, a phase carrier 2π(u0 x + v0 y) 

is added to the phase of the encoded field, θ (Eq. (9)). 
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The resultant first order diffraction from the SLM (Eq. (10)) is propagated through lens to 

accomplish the dot product operation. 

 ( ) ( ) ( )( )0 0
. , exp , 2U a x y i x y u x v yθ π+ +  (10) 

It is to be noted that the higher order Fourier components in the image plane consist of 

weights of higher azimuthal charges of the incident LG beam, which may be useful for 

sorting the modes of composite beams. However, in our work, we consider only the first order 

Fourier component and sequentially sort multiple modes in the same setup. 

3. Experimental details 

Based on the above optical correlation algorithm, we proceed to experimentally demonstrate 

the modal decomposition of azimuthal as well as radial orders of LG beams. The schematic of 

the experimental setup used to implement the optical correlation technique is shown in Fig. 

2(a). 

 

Fig. 2. (a) Experimental setup for implementing the optical correlation technique. DFB: 

Distributed feedback laser; L1 (f = 10 cm), L2 (f = 20 cm): Convex lens; PH: Pin-hole; P: 

Polarizer; SLM: Spatial light modulator; M: mirror; LLF: Laser line filter at 1064 nm; CCD: 

Charge-coupled device camera. (b) Phase response of the SLM at 1064 nm wavelength. 

The output beam from a polarization maintaining fiber-pigtailed distributed feedback 

(DFB) laser source (Lumics, Inc.) at 1064 nm wavelength is collimated using a convex lens 

(L1, f = 10 cm). The collimated beam is transmitted through a polarizer (P) to ensure that we 

obtain a horizontally polarized beam aligned to the preferred polarization axis of the phase-

only spatial light modulator (HoloEye PLUTO-2-NIRO-023). The phase response of the SLM 

is shown in Fig. 2(b). We use the linear portion (between the highlighted red spots) of 1.17π 
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radians for generating the holograms. In our experiments, the SLM is partitioned into two 

equal halves. One half is programmed to generate the required LG beam and the other half is 

programmed to perform the dot product operation as part of the modal decomposition. 

A mirror (M) is used to direct the beam generated from one half of the SLM to the other 

half corresponding to a propagation distance of 30 cm. The diffracted beam from the second 

half of the SLM is collected using a convex lens (L2 with f = 20 cm) located at a distance of 

50 cm from the SLM and is imaged in the Fourier plane using a CCD camera (Thorlabs Inc.). 

A laser line filter is incorporated in front of the camera to filter the ambient light. As 

mentioned earlier, we observe the DC component in the Fourier plane to obtain the weight of 

a particular mode. By loading the appropriate CGH on the SLM, the modal weights of 

different modes are obtained. 

4. Results and discussion 

We initially implement the optical correlation algorithm for modes with different radial 

number (p = 0, 1) and same azimuthal number (l = 0), like LG00 and LG01 modes. The LG00 

mode of beam waist 0.8 mm is generated by loading the appropriate CGH computed using the 

above Arrizon’s algorithm [20] on the first half of the SLM (shown in Fig. 3(a)). The first 

order diffracted beam is then used for modal decomposition in the second half of the SLM by 

performing the dot product operation with decomposition CGHs corresponding to the LG00 

and LG01 modes (shown in Figs. 3(c), and 3(d) respectively). Since the diffracted beam is 

typically larger than the above beam waist (0.8 mm), we need to vary the decomposition 

CGH radius (denoted as ‘R’ in Figs. 3(c), and 3(d)) to determine the optimum radius that 

provides the best extinction in the transmitted power between the target mode and its 

orthogonal mode. For example, when we generate a LG00 mode we anticipate maximum 

extinction between the target LG00 mode (matched) and the LG01 mode (orthogonal) for a 

particular radius of the decomposition CGH. The results from such an experiment are shown 

in Fig. 3(e), wherein the normalized power measured for different combination of generation 

and decomposition CGH settings is plotted as a function of different radius (R) of the 

decomposition CGH. Note that the normalization is performed with respect to the power 

measured in the desired mode. 

 

Fig. 3. (a), (b) Intensity patterns of LG00, LG01 modes respectively. (c), (d) Decomposition 

CGHs of LG00 and LG01 modes respectively, R: decomposition CGH radius. (e) Normalized 

power measured for different combination of generation (Tx) and decomposition (Rx) CGH 

settings as a function of decomposition CGH radius. 

From Fig. 3(e), we note that the maximum power extinction of ~27 dB is obtained 

between LG00 (matched) and LG01 (orthogonal) modes for a decomposition CGH radius of 

0.9 mm when the generation CGH corresponds to the LG00 mode. A similar power extinction 

of 27 dB between the LG00 (orthogonal) and LG01 (matched) modes is observed when the 
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generation CGH corresponds to the LG01 mode (given in Fig. 3(b)). Interestingly, the 

maximum extinction in this case occurs for a decomposition CGH radius of 1 mm. We 

attribute the difference in the decomposition CGH radius to the spherical aberration of the 

SLM as well as the convex lens for a beam of higher order transverse mode such as the LG01 

beam [23]. Note that the maximum extinction that could be measured in our experiments (27 

dB) is limited by the bit depth of the camera used (8 bit) and it could be improved further by 

using a higher bit camera. 

The Fourier plane images captured with the camera for the above matched and orthogonal 

cases are shown in Fig. 4. The first and second rows represent the Fourier plane images of 

LG00 beam optically correlated with LG00 (matched) and LG01 (orthogonal) modes 

respectively. When the LG00 decomposition CGH radius is increased, the DC component 

(center value of the Fourier plane) remains constant. Whereas the DC component 

corresponding to the orthogonal mode (LG01) gradually decreases, reaches minimum at 0.9 

mm decomposition CGH radius and then increases. Similarly, the Fourier plane images 

obtained by optically correlating LG01 beam with LG00 (orthogonal) and LG01 (matched) 

modes are shown in third and fourth rows of Fig. 4 respectively. When the LG00 

decomposition CGH radius is increased, the DC component (center value of the Fourier 

plane) gradually decreases, reaches minimum at 1.0 mm waist and then increases. Please note 

that these results are quantified through the plot of Fig. 3(e), as discussed above. 

 

Fig. 4. First and second rows - Fourier plane images obtained by optically correlating LG00 

beam with LG00 (matched) and LG01 (orthogonal) modes; Third and fourth rows - LG01 beam 

with LG00 (orthogonal) and LG01 (matched) modes. 

We extend the implementation of our optical correlation algorithm for modes with 

different radial number (p = 0, 1) and higher azimuthal number (l = 1), specifically the LG10 

(Fig. 5(a)), and LG11 (Fig. 5(b)) modes. The decomposition CGHs corresponding to LG10, 

LG11 modes are shown in Figs. 5(c), and 5(d) respectively. As described earlier, the 

decomposition CGH radius of LG10 and LG11 modes are varied and the measured power 

values for the matched and orthogonal cases are shown in Fig. 5(e). A power extinction of 27 

dB is obtained at 0.9 mm and 1.0 mm, between the LG10 and LG11 modes when the 

generation CGH corresponds to LG10 and LG11 modes, respectively (orthogonal cases). The 

Fourier plane images associated to these measurements are shown in Fig. 6, which are 

quantified in the plot of Fig. 5(e). 
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Fig. 5. (a), (b) Intensity patterns of LG10, LG11 modes respectively. (c), (d) Decomposition 

CGHs of LG10 and LG11 modes respectively, R: decomposition CGH radius. (e) Normalized 

power measured for different combination of generation (Tx) and decomposition (Rx) CGH 

settings as a function of decomposition CGH radius. 

Fig. 6. First and second rows - Fourier plane images obtained by optically correlating LG10 beam with LG10 

(matched) and LG11 (orthogonal) modes; Third and fourth rows – LG11 beam with LG10 (orthogonal) and LG11 

(matched) modes. 

In the above experiments, we prove that we can achieve high extinction (27 dB, limited by 

the camera bit resolution) between the matched and orthogonal cases when we use two radial 

order modes (p = 0, 1) with two azimuthal order modes (l = 0, 1). It remains to be seen 

whether this technique is scalable to higher mode indices. In order to explore this, we 

extended the above optical correlation experiments to higher azimuthal order modes (l = −4 to 

+ 4). The observations from such experiments are summarized using a parity plot (Fig. 7). For 

simplicity, we used a constant decomposition CGH radius R of 1.0 mm for these experiments. 
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Fig. 7. Normalized power measured from optical correlation technique for different 

combinations of generated and decomposition LG modes with radial mode order p = 0, 1 and 

azimuthal mode order l = −4 to + 4. Diagonal elements represent parity and the off-diagonal 

elements represent the magnitude of coupling to neighboring modes. Q1-Q4 corresponds to the 

different quadrants in the above plot. 

The diagonal elements of the parity plot represent the power measured when the generated 

and decomposition CGH corresponding to LG modes are matched and the off-diagonal 

elements represent the power coupled to neighboring modes. From Fig. 7, we observe the 

following: when LG beams with p = 0 and l = −4 to + 4 are generated and correlated with 

matched decomposition CGH patterns (corresponding to diagonal values in Q1 quadrant), the 

normalized power is uniform and maximum. However, we do observe a finite amount of 

power when correlated with the orthogonal p = 1 decomposition CGH patterns 

(corresponding to diagonal values in Q2). For l = 0 mode, we observe an extinction of ~23dB. 

This degradation of extinction compared to an expected value of 27 dB is due to the non-

optimal decomposition CGH radius of 1 mm used in the above measurements (as evident 

from Fig. 3(e)). Furthermore, we observe an increase in the power measured as we increase 

the azimuthal number (l). For example, when LG-40 is generated, we noticed only 15.5 dB 

extinction between LG−40 and LG−41 modes. This degradation in extinction for higher order 

azimuthal modes is once again attributed to the wavefront aberration introduced by the SLM 

as well as the associated optics for a beam of higher order transverse mode such as the LG 

beams studied here [23]. 

Interestingly, when LG beams with p = 1 are generated we noticed that power coupling to 

the p = 0 LG modes is much lower (extinction of 27 dB, corresponding to diagonal values in 

Q4). Specifically, when LG-41 is generated we obtained 27 dB extinction between LG−41 and 

LG−40 modes (which is better than the converse case). This is not surprising since we are 

using the optimal decomposition CGH radius for this case compared to the above case. 

It should be noted that a similar optical correlation technique has been reported recently 

by other groups. A collinear phase shifting holographic method [24] is reported with a modal 

extinction ratio of ~24 dB between LG1,0 and LG1,1. Another optical correlation technique 

based on phase retrieval method [25] is reported for decomposing LGl,p (l = 0, 0 ≤ p ≤ 2) 
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modes with less than 10 dB modal extinction ratio between the mode of interest and the 

neighbouring modes. Optical correlation technique based on intensity flattening [26] is 

reported for decomposing LGl,,p (l = 0, 0 ≤ p ≤ 7) radial order modes. Unfortunately, modal 

extinction ratios of the decomposed modes are not presented in the article. A maximum 

visibility (ratio of the power in the desired mode to the power in all the modes) of 99.1% is 

reported. Finally, a radial mode sorter [27] has been reported for decomposing LGl,,p (−2 ≤ l ≤ 

2, 0 ≤ p ≤ 1) modes with a maximum modal extinction ratio of 10 dB. 

In comparison with the above methods, our method is tested for LGl,,p (−4 ≤ l ≤ 4, 0 ≤ p 

≤1) modes having both azimuthal and radial orders. We obtain a modal extinction ratio of 27 

dB (limited by our camera resolution) irrespective of the input mode, which is greater than 

any of the extinction ratios of the above mentioned schemes. We obtain a visibility of ~99.9% 

in our experiments, which is also greater than the visibility obtained in optical correlation 

technique based on intensity flattening [26]. 

So far, we discussed the modal decomposition using optical correlation algorithm for the 

case wherein only a single mode is generated. In several practical applications including 

Mode Division Multiplexing systems, modal decomposition has to be performed for 

composite (two or more) modes. In the following discussion, we demonstrate the use of the 

optical correlation algorithm to perform modal decomposition for (i) the case of two 

generated LG modes followed by (ii) the case of 10 generated LG modes. 

For the first case, we generate a composite beam consisting of LG00, LG01 modes for 

several relative power levels. We decompose the individual modes using the appropriate 

decomposition CGHs (Figs. 3(c), and 3(d)) for a decomposition CGH radius of R = 1.0 mm 

and finally obtained the relative power levels of the decomposed modes. The parity plot of the 

relative power levels for decomposed modes versus that for generated modes is shown in Fig. 

8(a). 

From Fig. 8(a), we notice that the negative ratio values for the generated modes (power in 

LG00 mode < power in LG01) yield the expected ratio values for the decomposed modes 

within experimental error bars. On the other hand, we observe a deviation from the ideal 

parity line for positive ratio values for the generated modes (power in LG00 mode > power in 

LG01). For example, a 10 dB power deviation (well beyond our experimental error) is 

observed between them when the generated LG00 mode power is 24 dB higher than the LG01 

mode power. We notice a similar behavior when we consider a composite beam with LG10 

and LG11 modes. 

 

Fig. 8. (a) Decomposition power extinction Vs. generated power extinction of composite 

beams LG00 and LG01, LG10 and LG11 for R = 1 mm. (b) Decomposition power extinction Vs. 

generated power extinction of LG00 and LG01 composite beam for R = 1 mm and R = 0.9 mm. 

                                                                                                Vol. 27, No. 9 | 29 Apr 2019 | OPTICS EXPRESS 13190 



One possible explanation for the above behavior is the variance in the decomposition 

CGH radius for the LG00 and LG01 modes as demonstrated in Fig. 3(e). In order to verify this 

hypothesis, we performed the optical correlation of composite (LG00, LG01) mode at a 

decomposition CGH radius of 0.9 mm as well. The ratio value of decomposition power for 

different ratio values of generated power for R = 1.0 mm and R = 0.9 mm are shown in Fig. 

8(b). In case of R = 0.9 mm, the decomposition ratio values are consistent with that for 

generated modes for positive ratio values, whereas for negative ratio values, they deviate 

from the parity line. This behavior is exactly opposite to the R = 1.0 mm case, which confirms 

the above hypothesis. 

Finally, we demonstrate the use of the optical correlation algorithm for decomposing a 

composite beam consisting of LG-21 and LG21 modes the results of which are shown in Fig. 9. 

The decomposition is carried out for radial modal indices p = 0, 1 as well as azimuthal modal 

indices l = −4 to + 4. 

 

Fig. 9. (a) Intensity structure of the generated composite beam consisting of LG-21 and LG21 

modes. (b) Weights of the generated (markers) and decomposition (bars) LG mode spectrum 

for radial orders p = 0, 1 plotted as a function of different azimuthal mode indices l = −4 to + 4. 

(c) Intensity structure simulated using the experimentally obtained modal weights. 

As seen in Fig. 9(b), we observe an excellent match between the weights of the generated 

composite beam and the decomposed composite beam. Moreover, the extinction for the other 

modes is found to be 27 dB (although not obvious in Fig. 9(b)) thereby reconfirming the 

results presented earlier in Fig. 7. We show further that the intensity structure of the 

reconstructed composite beam based on the decomposed beam weights illustrated in Fig. 9(c) 

closely resembles the generated intensity structure of Fig. 9(a). 

We extended the above investigation to the case of a composite beam consisting of 10 

different LG modes (azimuthal mode indices l = −2 to + 2 and radial mode indices p = 0, 1). 

A sample modal distribution is chosen such that the generated mode weights (denoted as 

markers in Fig. 10) are halved for consecutive azimuthal mode index (both positive and 

negative values). As in the above case, we observe that the decomposed modal weights agree 

well with the generated modal weights across the entire mode spectrum. The relatively high 

error observed for the LG−20 and LG20 modes are due to the non-optimal radius of the 

decomposition CGH, as explained previously. However, the intensity structure of the 

reconstructed beam (illustrated in Fig. 10(c)) based on the experimentally obtained modal 

weights closely resembles the generated composite beam of Fig. 10(a). 
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Fig. 10. (a) Intensity structure of the generated composite beam consisting of 10 LG modes. (b) 

Weights of the generated (markers) and decomposition (bars) LG mode spectrum for radial 

orders p = 0, 1 plotted as a function of different azimuthal mode indices l = −4 to + 4. (c) 

Intensity structure simulated using the experimentally obtained modal weights. 

5. Conclusions 

In conclusion, we report the first systematic study on the decomposition of LG modes 

consisting of different radial order as well as azimuthal modes using the optical correlation 

technique. We demonstrate high extinction (27 dB) while decomposing the LG beam 

irrespective of the modal index, although it requires a slight adjustment of the decomposition 

CGH radius. This result is well supported through a parity plot consisting of radial modal 

index p = 0, 1 as well as azimuthal modal index l = −4 to + 4. We also demonstrate strong 

decomposition performance for the case of composite beam consisting of two LG beams with 

better than 93% accuracy over a dynamic range of 20 dB, limited by the above adjustment of 

the decomposition CGH radius. The modal decomposition has been extended to a composite 

mode spectrum consisting of 10 modes, with an accuracy of better than 97.8%. Efforts are 

underway to realize the potential of the optical correlation technique demonstrated here to 

perform a single shot decomposition of composite LG beams. 
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