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Two nonlinear interfacial elasticity models—interfacial elasticity decreasing linearly and
exponentially with area fraction—are developed for the encapsulation of contrast microbubbles. The
strain softening �decreasing elasticity� results from the decreasing association between the
constitutive molecules of the encapsulation. The models are used to find the characteristic properties
�surface tension, interfacial elasticity, interfacial viscosity and nonlinear elasticity parameters� for a
commercial contrast agent. Properties are found using the ultrasound attenuation measured through
a suspension of contrast agent. Dynamics of the resulting models are simulated, compared with
other existing models and discussed. Imposing non-negativity on the effective surface tension �the
encapsulation experiences no net compressive stress� shows “compression-only” behavior. The
exponential and the quadratic �linearly varying elasticity� models result in similar behaviors. The
validity of the models is investigated by comparing their predictions of the scattered nonlinear
response for the contrast agent at higher excitations against experimental measurement. All models
predict well the scattered fundamental response. The nonlinear strain softening included in the
proposed elastic models of the encapsulation improves their ability to predict subharmonic response.
They predict the threshold excitation for the initiation of subharmonic response and its subsequent
saturation. © 2010 Acoustical Society of America. �DOI: 10.1121/1.3418685�
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I. INTRODUCTION

Intravenously injected gas-filled microbubbles �typical
diameter �10 �m� have been approved as ultrasound con-
trast agents for cardiovascular imaging in the United States,
Europe and elsewhere. They are also actively being investi-
gated for imaging of other organs such as liver, kidney and
brain and have been approved for such applications in Eu-
rope and elsewhere.1 A free bubble with a radius of 1 �m
lasts in water for 30 ms.2 Contrast microbubbles derive their
stability against dissolution from the protective encapsula-
tion made of proteins �human serum albumin for Optison,
GE Healthcare, Princeton, NJ�, lipids �SonoVue, Bracco,
Geneva, Switzerland; Definity, Lantheus Medical Imaging,
N. Billerica, MA; Sonazoid, GE Healthcare, Oslo, Norway�
and surfactants �Imavist, Alliance Pharmaceuticals, San Di-
ego, CA�. However, the encapsulation also affects the scat-
tering response of the bubbles. A proper characterization of
the encapsulation and its relationship with the scattering
function therefore are critical for design of new and im-
proved contrast agents. Following up on our recent investi-
gations of encapsulation,3,4 this paper proposes two new non-
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linear viscoelastic models for the bubble encapsulation,
apply them to find the properties of the encapsulation of a
commercial contrast agent �Sonazoid�, and investigate its
subharmonic response.

Although several models have been developed to de-
scribe the effects of encapsulation on bubble dynamics, the
physics remains incompletely understood.3–18 The earliest
models by de Jong and co-workers used parameters—shell
friction and shell elasticity—to characterize the encapsula-
tion. Church12 developed the first detailed theoretical model
of the encapsulation as a layer of incompressible rubbery
material with linear bulk constitutive viscosity and elasticity.
He performed a theoretical analysis using a perturbation
method without relating the model to any specific contrast
microbubble. Nonetheless, Hoff et al.19 and many subse-
quent studies4,20 used this model to investigate and analyze
in vitro experiments of contrast microbubbles. A major con-
cern about the model lies in its assumption of incompress-
ibility and material homogeneity of the encapsulating layer.
Biochemical analysis21–23 reveals the encapsulation often to
be a monolayer, or at most a few-molecules-thick, which is
therefore neither homogeneous nor isotropic. The model due
to Church or its modification due to Hoff et al.19 also re-
quires a value for the thickness of the layer. Furthermore, the

constitutive equation for the encapsulation in this model is
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based on the assumption of small deformation which might
not be appropriate for the large radius change experienced at
stronger excitations e.g., those giving rise to a subharmonic
response.

In 2003, we proposed a zero-thickness interface model
with intrinsic interfacial rheology �stress-strain relation� for
the encapsulation.3 For a bubble size ���m� far larger than
the thickness ��nm� of the encapsulation, such a zero-
thickness interface model is appropriate, and it avoids pre-
scription of the encapsulation thickness and any specific as-
sumption about the bulk material of the encapsulation. In
that paper, a two-pronged approach for rigorous material
characterization was proposed—finding the model param-
eters through one �attenuation� experiment, and an indepen-
dent validation against a second �nonlinear scattering� ex-
periment. The simplest rheology—Newtonian interface with
a dilatational interfacial viscosity ��s� and a surface tension
��0�—was adopted. The attenuation of ultrasound measured
through a solution of the contrast agent was used to find the
encapsulation properties. The parametrized model was then
validated against a second measurement, scattered harmonic
and non-harmonic responses. Applying the Newtonian model
�NM� to a number of different commercial contrast agents
predicted unusually high values of surface tension ��0

�0.7–40 N /m� compared to the uncontaminated air-water
interface value �0.07 N/m�. Yet the model predicted the ex-
perimentally observed subharmonic response very well for
the contrast agent Optison. The unphysical value of surface
tension insinuated a non-Newtonian rheology for the inter-
face with an explicit interfacial elasticity Es. The constituent
surface active molecules in the encapsulation are in close
association with each other giving rise to a solid like inter-
face rather than a Newtonian fluid like interface. Indeed in-
troduction of elasticity in a viscoelastic model �referred to as
the constant elasticity model �CEM�� led to a reasonable
value of surface tension ��0�0.02 N /m� for Sonazoid
bubbles.4 Also both the NM and the CEM predict the same
value for the dilatational viscosity ��10−8 N s /m�, as ex-
pected, because introducing elasticity should not change the
viscous component. Despite such welcome features, the
CEM failed when judged for its ability to predict subhar-
monic response. In fact, the Newtonian model with its large
unphysical surface tension value fared far better in predicting
the threshold for and the level of the subharmonic response
than the CEM and a modified version of Church’s model due
to Hoff et al.19 The failure was attributed to the linear model
of interfacial elasticity which presumably does not correctly
describe the large oscillation that generates the subharmonic
response. Consequently, here we pursue a nonlinear exten-
sion of our viscoelastic model.

Constitutive modeling of material behavior is a difficult
task especially for a nanometer thick encapsulation. Here the
simplest extensions of the linear Hooke’s law—a quadratic
elasticity model �QEM� �interfacial elasticity varying lin-
early with area fraction� and an exponential elasticity model
�EEM� �elasticity varying exponentially�—are adopted. A
linear viscoelastic model due to Marmottant et al.13 is also
considered. These authors give an elegant description of the

elasticity arising from the change in surface tension with the
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bubble area. The model results in an expression of the elas-
ticity, which is the same as our constant elasticity model in
the linear regime. However, their model is linear only within
a range with lower and upper limits—a buckling radius be-
low which the encapsulation buckles with the surface tension
becoming zero, and a rupture radius above which the encap-
sulation breaks and the surface tension assumes the value of
an uncontaminated air-water interface. Determination of
these radii is not easy, but reasonable values of parameters
were shown to predict well the temporal dynamics of a mi-
crobubble radius, including a “compression only behavior”
where a contrast microbubble compresses more than it ex-
pands. Such behavior was experimentally observed for Sono-
vue bubbles.13,24 Following our investigation of a constant
elasticity model of Sonazoid,4 constitutive models appropri-
ate for membranes such as Mooney-Rivlin �strain-softening�
and Skalak �strain-hardening� models were applied to the
encapsulation of contrast microbubbles, where the authors
performed a parametric investigation of the effects of the
various constitutive parameters on the response of a bubble
surrounded by such membranes.25 These models have been
widely used for membranes of capsules and biological
cells,26,27 that contain incompressible liquid in contrast to the
compressible gas in a microbubble, and therefore do not un-
dergo volume change. Membrane models �e.g., Mooney-
Rivlin model for rubbery material� find the membrane
stresses using the generalized strain energy, which is a func-
tion of the invariants of the finite deformation membrane
strains. Different functional forms of the strain energy give
rise to different nonlinear constitutive laws for the membrane
including strain softening and hardening.27 Skalak et al.28

proposed a specific form of nonlinear strain energy function
for the membrane of the red blood cells, which has an almost
incompressible area; the form is chosen to incorporate the
experimental result that “a change of shape at constant area
requires relatively small stresses as compared with the
stresses required to increase the area of the membrane.”
Therefore, it is unclear if such specialized membrane consti-
tutive laws are appropriate for the microbubble encapsula-
tion. Moreover, for the radial oscillation of microbubbles �in
contrast to shape deformation of capsules�, where area frac-
tion is the only relevant parameter, such general models are
not necessary, and using them lead to difficulty in explaining
the underlying physics. A Maxwell model appropriate for a
“fluid like” membrane �in contrast to a “solid like” mem-
brane where Kelvin’s model is more appropriate� with exten-
sions to nonlinear viscosity have also been applied to the
modeling of the bubble encapsulation.14,15

In this paper, the ultrasound attenuation through a mi-
crobubble solution and a linearized Rayleigh-Plesset type
model are used to determine the characteristic properties of
the encapsulation of Sonazoid bubbles. Our previous mea-
surement with these bubbles is used. The behaviors of dif-
ferent models for this contrast agent are investigated in detail
by varying frequency and excitation levels. Then the full
nonlinear bubble dynamics model is applied to predict the
fundamental and subharmonic responses for various frequen-

cies and compared to measurement.
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II. MATHEMATICAL FORMULATION

A. Interfacial rheological models for encapsulations

Viscoelasticity is introduced in the constant elasticity
model �CEM� using a surface dilatational elasticity term Es

in the following way:4

Es = � ��

��
�

�=0
, � = �0 + Es� , �1�

where �=dA /A= ��R /RE�2−1� is the fractional change in
area from unstrained position �radius RE�, and �0 is the ref-
erence surface tension at that unstrained position. Note that
this formulation is identical to the one in the model due to
Marmottant et al.13 in the linear regime. However, one could
introduce surface elasticity as an independent property with-
out relating it to the surface tension �see the discussion in
Ref. 29�. If it is related to the surface tension, one might
impose a condition of non-negativity on the surface tension29

��R�=� �0 + Es	� R

RE
�2

− 1
 for �0 + Es	� R

RE
�2

− 1
 � 0

0 for �0 + Es	� R

RE
�2

− 1
 � 0.

�2�

However, if dilatational elasticity is introduced as an inde-
pendent property, the first line in Eq. �2� suffices, as is used
in Ref. 4. The interfacial stress gives rise to a jump in the
normal stress at the interface �see Ref. 27 for a detailed deri-
vation�. In the present spherically symmetric problem, it ap-
pears as a pressure jump: The dynamic boundary condition at
the gas-liquid interface becomes

pr=R = PG − 4�
Ṙ

R
−

4�sṘ

R2 −
2�0

R
−

2Es

R
	� R

RE
�2

− 1
 , �3�

where pr=R is the pressure in the surrounding liquid just out-
side the bubble, PG is the gas pressure inside the bubble;
because motion inside the bubble is neglected, inside stress
is the isotropic hydrostatic pressure. Moreover, � is the vis-
cosity of the surrounding liquid, and �s denotes the surface
dilatational viscosity. The second term in the right-hand-side
is due to the viscous normal stress in the liquid. The last
three terms are the interfacial stresses due to dilatational vis-
cosity, surface tension and surface dilatational elasticity, re-
spectively. In the case of a Newtonian interface, Es=0. Note
that if the non-negativity is not imposed, and dilatational
elasticity is independently introduced, Eq. �3� might lead to a
net compressive stress on the interface. Such a state will
induce Euler type buckling in the encapsulation,26,27 as seen
for encapsulated bubbles.30 Wrinkled bubbles were shown to
bind better to their target site.31 However, to accurately de-
scribe the buckling behavior, encapsulation rheology needs a
bending resistance term. For the present purpose, where only
spherical dynamics is considered, it suffices to assume that
there is a finite bending resistance that determines the right
wrinkling behavior, which, however, does not play any role
in the spherical dynamics.26 In this paper, models with and

without the constraint of non-negativity imposed on the sur-
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face tension will be considered. The model with a non-
negative effective surface tension is denoted with �NN�.32

In the rest state �Ṙ�t=0�=0�, nominally the inside pres-
sure PG is higher than the outside pressure by the Laplace
term 2�0 /R. However, for an elastic encapsulation, there ex-
ists a possibility of an equilibrium rest state PG0= P0, where
a compressive elastic stress in a compressed interface exactly
balances the surface tension. Such a state is critical for long
time stability of a contrast microbubble.2,29 Another possibil-
ity is that the surface tension is zero at the initial area
���R0�=0�, which is the case for the Marmottant model if
R0=Rbuckle because the model assumes ��R�Rbuckle�=0.13

The elastic stabilization in our model results in

RE = R0�1 −
�0

Es�−1/2
. �4�

Below, two models for variation in the surface dilatational
elasticity ES are introduced: the quadratic elasticity model
and the exponential elasticity model.

1. QEM

As the area fraction increases, the constituent molecules
in the encapsulation are distended from their close packed
conformation. As a result the encapsulation elasticity re-
duces. The consequent strain-softening can be modeled by a
linearly varying elasticity �Fig. 1�

Es = �E0
s − E1

s� for E0
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� �5�
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FIG. 1. �Color online� A representative figure depicting the change of inter-
facial elasticity with fractional change of area for constant �CEM�, quadratic
�QEM�, and exponential �EEM� elasticity models.
0 1
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where E0
S and E1

S are characterization parameters to be deter-
mined. The second condition ensures that the elasticity re-
mains positive �unlike the effective surface tension, negative
contrast to the incompressible form of the equation used in
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elasticity would result in an unphysical behavior�. The dy-
namic boundary condition at bubble interface �3� then is re-
placed by
pr=R = �PG − 4�
Ṙ

R
−

4�SṘ

R2 −
2�0

R
−

2�

R
�E0

S − �E1
S� for E0

s − E1
s� � 0

PG − 4�
Ṙ

R
−

4�SṘ

R2 −
2�0

R
for E0

s − E1
s� � 0  . �6�
Imposing the condition of pressure equilibrium �PG0= P0� at
the initial zero motion state obtains a quadratic equation for
�0 �initial area fraction�. Solving it, one obtains

RE = R0�1 +
E0

s − ��E0
s�2 + 4�0E1

s

2E1
s �−1/2

, �7�

where the initial equilibrium radius is chosen to be smaller
than the unstrained radius �the correct root of the quadratic
equation� so that the resulting compressive strain balances
the surface tension leading to a pressure equilibrium.

2. EEM

Quadratic model �5� introduces an abrupt change in elas-
ticity to ensure positive dilatational elasticity. With the in-
creasing area fraction, the progressive loss of elasticity could
be better modeled by an exponential decay �Fig. 1�

Es = E0
s exp�− �s�� , �8�

with �s and E0
s to be determined. As before, using dynamic

boundary condition at the rest state and imposing PG0= P0,
one obtains

2�0

R0
+

2E0
s

R0
�0 exp�− �s�0� = 0. �9�

Linearizing it for a small value of �0 obtains a quadratic
equation similar to the quadratic model above. RE is given by
Eq. �7� for QEM, when E1

s is replaced with �sE0
s as follows:

RE = R0	1 + �1 − �1 + 4�0�s/E0
s

2�s �
−1/2

. �10�

B. Encapsulated bubble dynamics

Motion of the liquid surrounding the bubble is governed
by the following equation:

	�RR̈ +
3

2
Ṙ2� = pr=R−P0 + pA�t� −

R

c

dPG

dt
, �11�

where P0 is the hydrostatic pressure, c is the sound speed and
pA�t� is the excitation pressure. Dynamic boundary condition
�3� at the bubble interface provides p�r=R�. Note that in
Ref. 4 here the first-order compressibility effect is incorpo-
rated following Ref. 33. Introduction of compressibility
changes the characteristic parameter values for the encapsu-
lation by less than 1%. However, compressibility may affect
the nonlinear dynamics. The gas pressure inside the bubble is
assumed to follow a polytropic gas law PGR3k= PG0R0

3k with
the polytropic constant k=1, which strictly corresponds to
isothermal behavior; for typical contrast agent content k is
close to unity even for adiabatic processes �k=1.066 for
C4F10, k=1.033 for SF6�.

Using Eq. �11� along with the appropriate dynamic
boundary condition, one obtains the following Rayleigh-
Plesset type equation:

	�RR̈ +
3

2
Ṙ2� = PG0�R0

R
�3k�1 − 3k

Ṙ

c
� − 4�

Ṙ

R
−

4�sṘ

R2 −
2�0

R

−
2Es

R
	� R

RE
�2

− 1
 − P0 + pA�t� , �12�

with initial conditions R�t=0�=R0, and Ṙ�t=0�=0. Es is ei-
ther a constant �CEM� or given for different �QEM or EEM�
models by Eq. �5� or Eq. �8�. Note that the nature of excita-
tion �shape of pA�t�� has been found to critically affect the
scattered response. Simulations in Ref. 4 were performed
with a sinusoidal pulse having a Gaussian envelope modu-
lating the amplitudes of 64 cycles. Here a sinusoidal pulse
consisting of 64 cycles of constant amplitude, which is closer
to what was used in the experiment, is used. A specific en-
capsulation is characterized by values of the parameters for
each model ��0 ,�s ,Es� for viscoelastic rheology with con-
stant elasticity, �0, �s, E0

s , E1
s for the quadratic model and �0,

�s, E0
s , �s for the exponential model. To obtain scattering

cross-section, the system is solved using a stiff solver
�ODE15s� in MATLAB

® �Mathworks Inc., Natick, MA�. The
total scattering cross-section

Ss�
� = �
Rmin

Rmax

�s�R;
�n�R�dR �13�

is obtained from the simulated scattered pressure PS�t� as
follows:4

�s�r,t� =
4��r2Ps�r,t�2�

P2 , PS�r,t� = 	
R

r
�2Ṙ2 + RR̈� . �14�
A
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n�R�dR is the number of bubbles per unit volume with radius
in the range �R ,R+dR�, and the range of bubble radii is
given by �Rmin,Rmax�. The angular brackets indicate average
over a time period. Frequency content is determined using
Fourier transform.

C. Determination of characterization parameters
using attenuation

The attenuation of ultrasound measured through a di-
luted Sonazoid solution reported in Ref. 4 is used to deter-
value obtaining essentially the same characteristic values for
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mine the characteristic parameters pertaining to each model.
The experiment was performed at low excitation level �as the
classical linear theory of attenuation being invalid at higher
excitations34�. Therefore, one can linearize the nonlinear
bubble dynamics, Eq. �12�, to obtain a harmonic oscillator
equation for periodic excitation pA�t�= PA sin 
t. The proce-
dure is similar to what was reported in Ref. 4. From the
oscillator equation, one can readily obtain the resonance fre-
quency 
0 and damping  for each model. They are

0
2 =

1

	R0
2	3kP0 −

4�0

R0
+

4Es

R0

 ,

=
1

	R0
2 �3kP0 + ��, � = 4�1 +

E0
s − ��E0

s�2 + 4�0E1
s

2E1
s ����E0

s�2 + 4�0E1
s

R0
� , �15�

=
1

	R0
2	3kP0 +

2E0
s

R0
� �

�s��1 + 2�s − ��
, � =�1 +
4�0�s

E0
s ,
respectively for the CEM, QEM and EEM. The damping
term  is the same for all three models

 =
1

	
0R0
2�4� + 4

�s

R0
+

3kPG0R0

c
� . �16�

One can see that the first term in Eq. �16� is the damping due
to the surrounding liquid, the second due to the interface, and
the last due to radiation.3,4 Note that in contrast to Refs. 3
and 4, where the incompressible Rayleigh-Plesset equation
was used, here the introduction of compressibility automati-
cally obtains the radiation damping term which is slightly
different from the classical expression radiation=
2R0 /
0c.
The extinction cross-section �e for the linearized dynamics is
given by4,35

�e = 4�R0
2 c


0R0

�2

��1 − �2�2 + �22�
, � =


0



, �17�

giving rise to attenuation ��
� in dB/distance

��
� = 10 log10e�
Rmin

Rmax

�e�R;
�n�R�dR , �18�

where e is the base of natural logarithm, n�R�dR is the num-
ber of bubbles per unit volume with radius in the range
�R ,R+dR�, and the range of bubble radii is given by
�Rmin,Rmax�. Knowing the bubble properties and the dis-
cretized size distribution, this integral can be evaluated. Son-
azoid has a relatively narrow size distribution with an aver-
age mean diameter of 3.2�0.2 �m with a number
concentration of 0.78�0.38 billions /ml.36 We have used
both the radius distribution37 as well as the average radius
the encapsulation. To find the characteristic parameters per-
taining to a model, an error function between the measured
attenuation and the model attenuation is used as follows:

Er��0,�s,E0
s , . . .� = �

i

���
i� − �meas�
i��2. �19�

The error function is minimized to obtain the parameters
using MATLAB

®.

III. RESULTS AND DISCUSSION

A. Acoustic characterization

The experimental attenuation data previously reported in
Ref. 4 are used here for determining the characteristic prop-
erties of the bubble encapsulation. It was shown there that
the attenuation varies linearly with increasing bubble con-
centration indicating negligible interactions. Using error
minimization �19� we find the properties for different models
and report them in Table I. For comparison, we use the same
attenuation data to find properties for the model due to Mar-
mottant et al.13 The Marmottant model requires values of the
buckling radius Rbuckling and break-up radius Rbreak-up. These
are hard to determine. Following the original reference �Ref.
13�, we take Rbuckling=R0, and Rbreak-up=1.5Rbuckling. Param-
eter estimation using an actual size distribution or using the
average radius value lead to the same parameter values �i.e.,
within the range of experimental scatter� for Sonazoid. How-
ever, using an average radius value, one can achieve attenu-
ation values from model fairly close to the measured data
�Fig. 2�a��, while using the actual radius distribution results
in a simulated attenuation qualitatively similar to the mea-

sured data, but the details remain different �Fig. 2�b��. One
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can understand it by assessing the strict constraints of mod-
eling with a complete distribution—bubbles of different radii
lead to different dynamics. This also indicates the sensitivity
of the radius distribution in finding the property values. In-
deed, if one uses a radius distribution that is 10 times less or
more than the measured one, the estimation procedure
fails—the model cannot give rise to a low error, i.e., close to

TABLE I. Property values for Sonazoid encapsulation according to various

Quadratic model Exp

�s

��10−8 kg /s�
�0

�N/m�
E0

S

�N/m�
E1

S

�N/m�
�s

��10−8 kg /s�

Mean 1.2 0.019 0.53 0.75 1.2
Range
�about mean� �0.4 … �0.1 �0.015 �0.4

FIG. 2. Measured and fitted attenuation to determine the interface param-
eters for Sonazoid bubbles according to different models. �a� Parameters
estimated with average mean radius and number concentration. �b� Param-
eters estimated using size distribution. Concentration is 0.103 ml/l of Son-

azoid in Isoton II.
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measured attenuation for any set of property values. This
exercise gives stronger credence to the property determina-
tion procedure adopted here.

Table I shows that the value of shell compressibility �
=0.53 N /m obtained for the Marmottant model is the same
as the surface dilatational elasticity values �Es=0.53 N /m
for QEM and Es=0.55 N /m for EEM� for the elastic models
as expected from the fact that the constant elasticity model
and the Marmottant model are the same in the linear elastic
regime �Rbuckling ,Rbreak-up�. For QEM �5� and EEM �8�, one
can also note the consistency condition E1

s�QEM�
��sE0

s�EEM� being satisfied by the values listed in Table I.
Also the value of the surface dilatational viscosity �S for the
Marmottant model is of the same order as that of the other
models. Note that the parameters obtained for the Marmot-
tant model by de Jong and co-workers are of the similar
order—van der Meer et al.17 found �=0.54�0.1 N /m, and
�s=2.3�10−8 kg /s, Marmottant et al.13 found �
=1.0 N /m, and �s=1.5�10−8 kg /s, and Gorce et al.16

found �=0.55 N /m, and �s=0.78�10−8 kg /s all for Sono-
vue contrast microbubbles. Below, the fundamental and sub-
harmonic scatterings predicted by different models are inves-
tigated comparing them with experimental measurement.

B. Radial dynamics

The bubble dynamics, Eq. �12�, is solved for an initial
radius using the material parameters of the encapsulation
�from Table I� to obtain the bubble radius as a function of
time. Figure 3 shows them for the constant elasticity �CEM�,
quadratic �QEM� and the exponential �EEM� elasticity mod-
els for varied acoustic excitations �0.1, 0.5, 1.5, and 2.0
MPa� all at 3 MHz. Note that for the lowest level of excita-
tion �0.1 MPa�, all curves coincide—for weaker oscillations,
the nonlinearity remains inactive. However at higher excita-
tions, the curves for nonlinear viscoelastic models deviate
from the constant elasticity one due to the strain softening
included in the former models. QEM and EEM show similar
behavior for all frequencies and excitation levels. The strain-
softening included in the nonlinear models results in larger
radial excursions—as the bubble expands, the surface resists
expansion with an effectively smaller elasticity modulus.
Previously in Ref. 4 we found that unlike the constant elas-
ticity model, a Newtonian model �NM� for the encapsulation
fares better in comparing with the measured subharmonic
response. To investigate this issue further, the radius vs time
curve according to the NM model is also included in Fig. 3.
It shows slight deviation relative to the elastic models at 0.1

els.

ial model Marmottant model

0

m�
E0

S

�N/m� �
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��10−8 kg /s�
�
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�0.1 �0.05 �0.4 �0.1 …
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�
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0.0
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Newtonian and the elastic models. At 0.5 MPa, the radial
excursion is smaller than the nonlinear viscoelastic models,
but at higher pressures �1.5 and 2.0 MPa�, the Newtonian
model matches better with the nonlinear models in their am-
plitude of oscillations. Similar results were found at other
��3 MHz� frequencies �not shown here for brevity�. The
higher radial excursion for the NM model can explain its
better performance in predicting the subharmonic response
of a contrast microbubble compared to CEM.

Recently, de Jong and co-workers found that contrast
microbubbles experience a “compression only” behavior for
the phospholipid coated agents Sonovue and BR14 �Bracco,
Geneva, Switzerland�, in that the radial excursion away from
the equilibrium radius is not symmetric, but the bubble com-
presses more than it expands.13,24 The compression only be-
havior is attributed to the buckled state of the encapsulation
below Rbuckle—where the authors assume the surface tension
to be zero. As mentioned before, Marmottant et al.13 as-

FIG. 3. Radius-time curves for a 1.6 �m Sonazoid bubble according to d
acoustic pressures �a� 0.1 MPa, �b� 0.5 MPa, �c� 1.5 MPa, �d� 2.0 MPa.
sumed the same in their model. The rising surface tension

3852 J. Acoust. Soc. Am., Vol. 127, No. 6, June 2010
hinders large distension when the bubble expands, but as the
bubble compresses into a buckled state, the zero surface ten-
sion leads to an asymmetry in dynamics between the expan-
sion and the compression phases. As noted before, in the
viscoelastic models proposed here, one can choose to impose
the nonnegativity on the surface tension �see Eq. �2��. On the
other hand, surface elasticity could be treated as an indepen-
dent property, and in that case, the effective surface tension
could become negative leading to a net compressive stress.
In fact, unlike the case of a zero surface tension in the buck-
led state, such a net compressive stress can be thought of as
a direct cause for buckling of the encapsulation. In Fig. 4, the
simulated radial dynamics using the exponential and Mar-
mottant models �the quadratic model’s behavior is similar to
the exponential model� are compared. We also include an
exponential model, where nonnegativity �NN� has been im-
posed. Marmottant and the nonnegative exponential models
predict very similar results unlike the other exponential

nt encapsulation models at insonication frequency of 3 MHz and various
iffere
model for all cases; they also favor compression only behav-
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�d� 6
ior more than the other one. Both at 3 and 6 MHz, one sees
a compression only behavior for the Marmottant and the
non-negative exponential models but not for the regular ex-
ponential model at the acoustic pressure of 0.1 MPa. At 0.5
MPa, compression only behavior is again shown by these
two models for 6 MHz but not for 3 MHz. The radial excur-
sion at 3 MHz even for these two models is almost symmet-
ric. At 1.5 MPa excitation, for 3 MHz all curves show larger
expansion than compression, and for 6 MHz, the Marmottant
and exponential �NN� models predict that bubbles compress
marginally more than they expand. According to Ref. 24
compression only behavior is defined as when the maximum
expansion to maximum compression is less than 50%. Figure
4 shows that the Marmottant model predicts 85% for this

FIG. 4. Radius-time curves for a 1.6 �m Sonazoid bubble according to vari
pressures �a� 3 MHz, 0.1 MPa, �b� 6 MHz, 0.1 MPa, �c� 3 MHz, 0.5 MPa,
ratio at 6 MHz and 1.5 MPa. Note that the experiments by de

J. Acoust. Soc. Am., Vol. 127, No. 6, June 2010
Jong and co-workers showing compression only behaviors
for Sonovue and BR14 were performed at lower acoustic
pressures �0.25 MPa.

C. Scattered fundamental and subharmonic response

The fundamental and subharmonic scattered responses
from Sonazoid bubbles were measured and reported for four
different frequencies—2, 3, 4.4 and 6 MHz.4 The scattered
fundamental response showed increase with increasing pres-
sure; all models showed similar trends. The subharmonic sig-
nal component on the other hand was negligible until a
threshold excitation, and then a rapid growth occurred fol-
lowed by saturation. Plotting the subharmonic data against

1/2

odels of the encapsulation at different insonication frequencies and acoustic
MHz, 0.5 MPa, �e� 3 MHz, 1.5 MPa, �f� 6 MHz, 1.5 MPa.
ous m
mechanical index MI= PA / f �where PA is the acoustic
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pressure amplitude measured in MPa and f is the frequency
�MHz�� showed an approximate collapse of the data for dif-
ferent frequencies in that paper.4

The scattered response from the radial dynamics is com-
puted using Eq. �14� for scattered pressure. The fundamental
and the subharmonic responses are computed using an FFT
of the scattered pressure. The model predictions are com-
pared against the same experimental measurements reported
in Ref. 4. The experimental data are matched at the lowest
excitation level as was also done in Ref. 4 to account for the
scattering volume. Figure 5 shows that the fundamental re-

FIG. 5. �Color online� Measured and predicted fundamental response of So
MHz, �d� 6 MHz.
sponse is modeled very well by all models as was also the
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case previously.4 We have also plotted the response from the
linearized system for the EEM model, which matches very
well the full nonlinear dynamics except at 2 MHz.

In Fig. 6, the subharmonic response from Sonazoid and
the predictions from different models are plotted. As noted
before, subharmonic response unlike the fundamental re-
mains negligible until a threshold pressure is exceeded. Each
of the models similarly generates no subharmonic response
until a threshold excitation. At 2 MHz, all models except the
constant elasticity perform well. As was shown before4 the
constant elasticity model �CEM� does not predict the subhar-

d bubbles at various excitation frequencies: �a� 2 MHz, �b� 3 MHz, �c� 4.4
nazoi
monic response well for any frequency. It fails to predict a
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sharp threshold except at 3 MHz, where it predicts a value
twice that found in the experiment. The failure of CEM was
thought to result from the model’s inability to correctly de-
scribe the constitutive behavior of the encapsulation for
stronger oscillation. As is evident from the plots, other mod-
els show a threshold value for subharmonic excitation and
predict the saturation level of subharmonic response very
well at each of the frequencies. Although the Marmottant
model is similar to CEM, it effectively incorporates nonlin-
earity by prescribing a different behavior above the rupture
radius. The threshold values predicted by the different mod-
els are listed in Table II. Figure 6 shows that the non-
negative exponential model results in a response very similar

FIG. 6. Measured and predicted subharmonic response of Sonazoid bubbles
MHz.
at various insonication frequencies: �a� 2 MHz, �b� 3 MHz, �c� 4.4 MHz, �d� 6
to the Marmottant model. This can be explained by noting

J. Acoust. Soc. Am., Vol. 127, No. 6, June 2010
TABLE II. Threshold pressure �in MPa� for subharmonic scattering ob-
tained experimentally and from different models.

Frequency
�MHz�

2 3 4.4 6

Experiments 0.24 0.33 0.36 0.4
CEM … 0.65 … …
QEM 0.15 0.20 0.35 0.50
EEM 0.25 0.35 0.45 0.65
EEM �NN� 0.35 0.55 0.90 1.45
Marmottant 0.30 0.50 0.85 1.45
Sarkar et al.: Nonlinear models of UCA encapsulation 3855



that as the bubble shrinks, both prescribe the surface tension
to be zero below a certain value of the bubble radius. The
QEM and the EEM perform the best in predicting the experi-
mentally measured threshold values. The Marmottant and the
EEM �NN� models predict threshold values higher than the
measured ones, especially at the higher frequencies of 4.4
and 6 MHz. Although each of the models predicts greater
threshold value at the higher frequencies, the EEM and QEM
provide better match with experiment. QEM and EEM are
similar in response �see Fig. 3�, but QEM model performs
better in matching the experimental results at 4.4 and 6 MHz.

IV. SUMMARY

Nonlinear models for the encapsulation of a contrast mi-
crobubble have been developed and investigated. The encap-
sulation was treated as a complex interface characterized by
constitutive parameters such as surface tension �0, dilata-
tional viscosity �s, dilatational elasticity E0

s and new nonlin-
earity parameters—E1

s for the QEM model, where the elas-
ticity decreased linearly with area fraction, and �s for the
EEM model, where the elasticity varied exponentially. Both
nonlinear models represent strain softening resulting from
the decreased association between constituent molecules in
the encapsulation as its area increases. They resulted in very
similar overall response.

The constitutive parameters are key to the mechanical
characterization of a specific contrast microbubble agent. In
this paper, the parameters associated with a commercial con-
trast agent Sonazoid were determined �Table I� using mea-
surement of attenuation as a function of frequency. The pa-
rameter values pertaining to a recent model due to
Marmottant et al. were also found for comparison. Different
models are consistent in that the values of constitutive pa-
rameters arising in them for the same contrast agent can be
related to each other. Effects of imposing a constraint of
nonnegative effective surface tension �comprising of the ref-
erence surface tension and the interfacial elasticity effects�
were investigated. The constraint resulted in a behavior very
similar to the Marmottant model, because both models pre-
scribe zero surface tension below certain bubble radii. Both
�nonnegative exponential and Marmottant� models show
compression only behavior at lower acoustic pressures as is
observed for certain contrast microbubbles. We have recently
shown that effectively non-negative surface tension leads to
only neutral stability for an encapsulated contrast bubble
against dissolution—as a bubble reaches the compressed
state where the surface tension is zero, the bubble does not
have any stabilizing force against further shrinking.32 It
therefore can dissolve away by fluctuation.

The models were investigated for their ability to predict
the measured nonlinear scattering. Each of the models pre-
dicted the fundamental response well. The CEM was shown
to perform poorly in predicting the subharmonic response of
Sonazoid4—it does not predict a threshold value of the
acoustic excitation for the subharmonic response seen in ex-
periments. In contrast, introduction of strain softening in
QEM and EEM led to the prediction of the threshold value

and subsequent saturation. The model due to Marmottant et

3856 J. Acoust. Soc. Am., Vol. 127, No. 6, June 2010
al. also showed a threshold value and saturation, because of
its similarity with the nonlinear models presented in this pa-
per. However, the constraint of nonnegativity imposed on it
as well as a modified EEM model leads to threshold values
significantly higher than the experiment at higher frequen-
cies.
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