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Mapping Data-Parallel Tasks Onto Partially
Reconfigurable Hybrid Processor Architectures
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Abstract—Reconfigurable hybrid processor systems provide a
flexible platform for mapping data-parallel applications, while
providing considerable speedup over software implementations.
However, the overhead for reconfiguration presents a significant
deterrent in mapping applications onto reconfigurable hardware.
Partial runtime reconfiguration is one approach to reduce the
reconfiguration overhead. In this paper, we present a methodology
to map data-parallel tasks onto hardware that supports partial
reconfiguration. The aim is to obtain the maximum possible
speedup, for a given reconfiguration time, bus speed, and com-
putation speed. The proposed approach involves using multiple,
identical but independent processing units in the reconfigurable
hardware. Under nonzero reconfiguration overhead, we show
that there exists an upper limit on the number of processing
units that can be employed beyond which further reduction in
execution time is not possible. We obtain solutions for the min-
imum processing time, the corresponding load distribution, and
schedule for data transfer. To demonstrate the applicability of
the analysis, we present the following: 1) various plots showing
the variation of processing time with different parameters; 2)
hardware simulations for two examples, viz., 1-D discrete wavelet
transform and finite impulse response filter, targeted to Xilinx
field-programmable gate arrays (FPGAs); and 3) experimental
results for a hardware prototype implemented on a FPGA board.

Index Terms—Data-parallel tasks, divisible load theory, dynam-
ically reconfigurable logic (DRL), hybrid processor architectures,
partial reconfiguration.

I. INTRODUCTION

RECONFIGURABLE systems use adaptive hardware to
address the varying needs of different applications [1].

The reconfigurable logic, generally a field-programmable gate
array (FPGA), augments the functionality of a general-purpose
processor (GPP). The current trend is to incorporate the re-
configurable logic fabric (RF) on the same die as the GPP, to
alleviate the problem of communication overhead between the
GPP and the RF [2]. Despite the reduced communication over-
head in such hybrid processor architectures, one of the major
roadblocks to reconfigurable computing being adopted in the
mainstream has been the large delay associated with hardware
reconfiguration. Large reconfiguration times mandate the use
of applications with large computation times to amortize the
reconfiguration overhead.

In the literature, various techniques have been described for
reducing the reconfiguration delay overhead. These include con-
figuration compression, configuration caching and prefetching,
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configuration relocation and defragmentation, utilizing multiple
contexts, and using partial runtime reconfiguration (RTR) [2].
Partial RTR (PRTR) allows for changing the functionality of a
portion of the RF area, while the remaining area stays active in
computation. PRTR has received favourable attention in com-
mercially available hardware implementations [3], [4].

Partially reconfigurable hardware provides the framework
to compensate for large reconfiguration times. However, the
methodology for using this feature to reduce the execution time
of an application remains an open and active area of research.
Recent research comprises of static as well as dynamic sched-
uling algorithms proposed for minimizing the reconfiguration
overhead in partially reconfigurable hardware [5]–[9]. These
techniques operate at the task/subtask level and can be used for
any application.

Among the various applications, signal/image processing,
multimedia, and vision applications remain the most attractive
for implementation on reconfigurable systems [6], [7], [10].
These target applications comprise of tasks that operate on
large amounts of data and possess a high degree of data par-
allelism [11]. For such tasks, it is possible to have multiple
independent processing units (PUs) operating on different parts
of the input data. Since the PUs operate independently, each
PU can start functioning as soon as the RF area allocated to
it is configured. This offers the potential to further minimize
the RF reconfiguration overhead and obtain a greater degree of
acceleration [12], [13].

However, since the RF is part of a hybrid processor system,
the memory bandwidth available to the RF is usually limited. RF
access to memory generally occurs over a common bus that con-
nects the RF to the memory system and all PUs utilize this bus
for data access. Moreover, for a partially reconfigurable system
with a single configuration port, the PUs have to be configured
sequentially. Reconfiguration delay and limited data bandwidth
are, therefore, two main architectural constraints present in a hy-
brid processor system. Since the PUs operate on large amounts
of data, careful data scheduling is required in order to get the
best possible performance. For example, it is intuitively clear
that the PUs that are configured earlier should get a larger frac-
tion of the total input, but it is not clear what the optimum load
fractions are. To get this, as well as to determine the maximum
speedup that can be obtained under these constraints, a quanti-
tative analysis of the system is necessary.

In order to carry out the analysis, we have modified the frame-
work of divisible load theory (DLT) [14] to include partial re-
configuration. Our analysis gives us the solution for the fol-
lowing:

1) optimum number of PUs that are useful in getting the
largest speedup ;
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Fig. 1. Architecture model used for analysis of the hybrid processor architec-
ture (a modified version of that presented in [16]). The block “GPP” includes
the main processor as well as its associated cache.

2) actual processing time using PUs;
3) corresponding load distribution.
In the analysis, we consider two general cases: 1) when load

transfer to a PU is not possible in parallel with PU configura-
tion/computation and 2) when load transfer to a PU is possible
when the PU is either undergoing configuration or active in com-
putation. Case 1) corresponds to the situation “without front-
end” and case 2) corresponds to the situation “with front-end,”
in DLT parlance [14]. The analysis itself is quite general and
does not assume anything about relative values of the reconfig-
uration time, bus speed, or the computation times. Therefore, it
can also be used for multi-FPGA systems in which the configu-
ration is carried out sequentially.

The rest of the paper is organized as follows. In Section II,
we present the system architecture model used in our analysis.
Section III gives a background on DLT, as well as the compu-
tation and communication model used. Section IV provides a
motivating example using the case of two PUs. Section V pro-
vides a detailed analysis and the solution for total processing
time for PUs. In Section VI, a discussion of the analysis, its
applicability, and limitations are presented. In Section VII, we
present hardware simulation examples for 1-D discrete wavelet
transform (DWT) and finite impulse response (FIR) filter, as
well as details of an experiment carried out on an FPGA board.
Section VIII contains the conclusions of this paper.

II. SYSTEM ARCHITECTURE MODEL

The system considered is a hybrid processor architecture. In
the literature, various schemes of coupling between the dynam-
ically reconfigurable logic (DRL) and the GPP have been pro-
posed [2]. In this paper, it is assumed that the DRL has direct
access to memory through a common bus. This loosely coupled
architecture allows many local memory banks to be associated
with the DRL and is, therefore, more suitable for data-parallel
applications.

Fig. 1 shows the system architecture model. If the DRL is
a slave, data transfer to the DRL is initiated and performed by
a controller that performs direct memory access (DMA). The
DMA controller is a bus master that fetches data from memory
and sends it to the PUs. If the DRL is a bus master, the data
transfer is performed by the PUs themselves, in which case a
memory controller interfaces to the main memory. The memory
controller is a bus slave which accepts requests from any bus
master and provides the requested data from memory. The GPP
is also a bus master; it typically controls the various operations

and might also perform some tasks which are not mapped to the
RF.

The DRL can be configured to accommodate PUs,
. Each PU has a local RAM required for storing

data. This is similar to distributed memory multiprocessor
architectures. Image processing and computer vision applica-
tions can be efficiently mapped onto such architectures [17].
The local RAM could either be an external SRAM [18] or the
BlockRAMs present in Virtex FPGAs from Xilinx. The local
RAM of all the PUs are a part of the GPP address space and,
therefore, accessible by the GPP.

Reconfiguration of the DRL is under the control of a config-
uration controller (CC). The CC is programmed by the GPP to
perform the required sequence of reconfigurations. The configu-
ration data is typically stored in Flash memory, whose contents
can be changed by the GPP whenever necessary. The starting
address and size of configuration data is programmed into con-
trol registers in the CC by the GPP, before application execution
begins. This is possible since the configuration strategy is deter-
mined offline. The CC is, therefore, quite simple, compared to
the CC model described in the literature earlier [19]. As shown
in Fig. 1, there is a separate configuration bus. For the analysis,
we have ignored the overheads due to GPP control commands
and the bus protocol. This is a good approximation since this
overhead is typically small for a large input data size.

Before a quantitative analysis of the described system is car-
ried out, we need to define the model for data computation and
communication. Since this is based on DLT, we first present a
brief background on DLT.

III. BACKGROUND ON DLT AND MODEL FOR

COMPUTATION AND COMMUNICATION

DLT has its origins in the paper by Cheng and Robertazzi
[20], which was motivated by the requirement for processing
large amounts of data in distributed intelligent sensor networks.
DLT concerns itself with the analysis of parallel and distributed
systems using linear models for data computation as well as
communication, with the objective of obtaining the minimum
possible processing time. In general, the theory can be applied
to data-parallel tasks that operate on large amounts of data. The
following basic assumptions form the foundations of DLT:

1) application load is arbitrarily divisible and the different
load parts can be processed independently, without any
precedence constraints;

2) time required for data transfer to any PU is linearly propor-
tional to the amount of data transferred;

3) computation time at each PU increases linearly with the
amount of data processed.

These assumptions hold good in a variety of applications,
including signal/image processing and vision applications [21],
and form the basis of our computation and communication
model.

The notation that we use for our computation and communi-
cation model is given below. For convenience, this is the same
as the notation used in [14] and [22]. The standard PU and the
standard bus are those which are used as reference. These are
“conveniently defined fictitious units” (quoted from [14]).
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Time taken to process entire load by a standard PU.

Time taken to transfer entire load on a standard bus.

Constant that is inversely proportional to the speed
of a PU. Each PU can process the entire load in
duration .

Constant that is inversely proportional to the speed
of the data bus. The entire load can be transferred
over the bus in a duration .

Fraction of total load assigned to PU .

Finish time of PU . This corresponds to the
instant finishes computing its allocated load.

Optimum processing time for PUs, defined as
.

From the definitions above, it is clear that the standard PU has
1, while the standard bus has 1. Even though in practice

we deal only with the quantities and instead of
and , serves as a way to compare PUs with different speeds,
whereas can be used to compare buses with different speeds
or bandwidths.

In addition to the notation presented, we use the following:

Time taken to configure/reconfigure a single PU in the
DRL. In this paper, we use the terms configure and
reconfigure interchangeably.

As explained previously, given PUs, we need to find the
optimum load distribution so that the overall processing time is
minimized. This can be expressed as

(1)

Here, is the set of all possible load distributions. Given
(i.e., a particular load distribution), each of the

PUs finish in times . The finish time for the task
is . The above equation indicates that we
need to find the load distribution that gives the minimum finish
time. In [23], it has been proven that for bus networks, the solu-
tion to the problem above gives the condition that all PUs stop
computing at the same time, i.e., . This
can be explained intuitively as follows. If any one of the PUs
completes execution earlier, it is possible to allocate more load
to that PU and, thus, achieve a smaller overall processing time.

The normalization equation for the load is

(2)

Using the notations given in this section, the time taken to
transfer a load fraction to is , while the time
taken by for processing it is . Under the linearity
assumption, the ratio of the processing time of a load to the
time taken to transfer the load over the bus, is a constant for a
given task

(3)

Fig. 2. Timing diagram of load distribution, for the case of full reconfiguration
and partial reconfiguration with small T . The label “Bus” corresponds to the
data bus. During partial reconfiguration, the PUs are configured one by one. In
both cases, � + � = 1 and T (2) = T = T as explained in Section III.

The computation and communication model considered pro-
vides a tractable model for determining the solution for pro-
cessing time [24]. However, reconfiguration introduces an ad-
ditional dimension to the analysis using DLT. In fact, we show
that there is also an upper limit to the number of PUs that are
useful in computation. This is demonstrated with the help of a
motivating example in Section IV.

IV. MOTIVATING EXAMPLE

We consider the case when there are two PUs of equal speed
to be configured in the DRL ( 2 in Fig. 1). Let us consider
the case without front-end. We need to determine the configura-
tion sequence and load distribution to the PUs such that the pro-
cessing time is optimum. We have two options for distributing
the load as follows.

1) Using full reconfiguration: In this case, the strategy is to
first configure both the PUs by adopting full reconfigura-
tion of the DRL. This is followed by optimal load distri-
bution. This situation, shown in Fig. 2(a), is the same as
the situation in DLT literature [23], except for an overhead
of for reconfiguration. Since the PUs finish simultane-
ously, we can equate and to get one equation in
and . The normalization (2) with 2 gives us another
equation. These two equations are enough to solve for the
two unknowns (load fractions) and

(4)

(5)

where is given by (3). The optimum processing time is
, which is

(6)

If we use partial reconfiguration, it is possible to initiate
load transfer as soon as one of the PUs is configured. Using
partial reconfiguration will, therefore, give a smaller pro-
cessing time. This is now analyzed.
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2) Using partial reconfiguration: The strategy adopted here is
to partially reconfigure the DRL to accommodate , fol-
lowed by partial reconfiguration to accommodate . As
soon as is configured, load transfer to is initiated.
Load transfer to is done in parallel with configuration
of . The load distribution, however, depends on the value
of the reconfiguration time . The different cases are con-
sidered separately in the sections that follow.

A. Small

If the configuration time is sufficiently small, it is possible
for the configuration of to be completely hidden in the load
transfer time for . This situation is shown in Fig. 2(b). The
configuration of does not affect the load distribution. There-
fore, the load fractions are the same as that for the full reconfig-
uration case given by (4) and (5). The optimum processing time
is now given by , i.e.,

(7)

This is smaller than that for full reconfiguration by an amount
equal to . The configuration time of will be hidden as long
as , which gives the condition

(8)

for (7) to hold true.

B. Large

We now consider the case when is so large that (8) is vi-
olated. If the same load fractions are used, will not be ready
(configured) to accept data immediately after the load is deliv-
ered to . One possible scheme is to feed as much data as pos-
sible to till becomes ready, followed by the transfer of the
remaining load to . In this case, and the finish
times of the PUs are given by

(9)

(10)

The simplifications in terms of are based on
and . Since (8) is violated, (9) and (10) indicate
that . This is shown in Fig. 3(a). The situation depicted
in this timing diagram is valid as long as .

However, since , the processing time can be reduced
by transferring a portion of load meant for , to . This means
that some portion of the reconfiguration time of will be un-
covered, giving rise to an idle time , on the data bus. The sit-
uation is depicted in Fig. 3(b). Clearly, data transfer to must
begin as soon as the configuration of is over, to ensure min-
imum processing time. For the situation shown in Fig. 3(b), the
expressions for finish times of the PUs are

(11)

(12)

Fig. 3. Different options when reconfiguration time is large [(8) is violated].
Option (a) is suboptimal since some load allocated to p can be transferred to
p [as shown in (b)], to achieve smaller processing time T (2) = T = T . (a)
Large T , suboptimal. (b) Large T , optimal.

Using the normalization (2) with 2 and equating and
, we get the following expressions for the load fractions and

optimum processing time

(13)

(14)

As becomes larger, increases and decreases. Eventu-
ally, when , 0 and 1. This es-
sentially means that the entire load can be processed by one PU
and the second PU becomes unnecessary. The processing time
using a single PU is

(15)

For all values of larger than , it is clear that
. This means that a single PU can finish processing

the entire load before is configured. Therefore, it is not useful
to have more than one PU and the optimum number of PUs is
one.

The case of two PUs demonstrates that the optimal load dis-
tribution scheme can be different for different values of the re-
configuration time . Choice of a particular load distribution
as well as the number of PUs must be made depending on the
value of . In Section V, we extend the analysis for PUs,
where is the maximum number of PUs that can be accommo-
dated within the RF.

V. ANALYSIS WITH PROCESSING UNITS

For the system considered in Section II, the analysis is carried
out for two cases—case without front-end and the case with
front-end. These are now considered.

A. Without Front-End

This case is similar to the one considered in the example in
the previous section. Load transfer is not possible to a PU in
parallel with configuration or computation. This analysis can be
used for architectures that satisfy the following conditions.

1) Either a) the PUs are slaves and the DMA controller cannot
directly access the RAM within a PU before configuration
of the PU, i.e., the PU contains the interface between the
RAM and the data bus, or b) the PUs are bus-masters and,
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Fig. 4. Timing diagram for case without front-end: n = 6 and q = 3.

hence, fetch data from memory by themselves. Therefore,
data transfer is not possible before configuration of the PU.

2) Either 1) the RAM associated with each PU is
single-ported, or 2) the RAM associated with each PU is
multiported, but the PUs are designed so that all the ports
are occupied during computation. Therefore, data transfer
to a PU is not possible while it is busy with computation.
Efficient pipelined implementations of data-parallel tasks
normally use multiple input and output streams [11],
where each data stream corresponds to a dedicated RAM
port.

The PUs are configured one after the other, in the order
. We saw in the previous section that all the available

PUs may not contribute towards the optimal solution. Let the
number of PUs that participate in computation be .
Since the PU speeds are identical, the load fractions decrease
monotonically from to to ensure that all PUs stop com-
puting simultaneously. Depending on the relative values of
and the load fractions, it is possible that the reconfiguration
time is hidden by the load transfer time for some or all of the
PUs (except ). Let the reconfiguration time be hidden for the
PUs and let the reconfiguration of be exposed
by an idle gap on the data bus after load transfer to . Fig. 4
shows this for the specific case of 6 and 3. Since no
gap occurs after load transfer to PUs , we have the
following relations:

...

(16)

Among these, the last equation is the most restrictive, since
values monotonically decrease with . Also, since a gap occurs
after load transfer to , we have

(17)

From (16) and (17), we can see that . Since the
load fractions are monotonically decreasing, we also have

(18)

To ensure minimum possible processing time, load transfer to
must start immediately after configuration. It follows from

(18), therefore, that a bus idle gap exists after load transfer to
. Similarly, idle gaps exist after load transfer to each of the

PUs . This is depicted in Fig. 4. From the timing
diagram in Fig. 4, the finish times of the PUs can be written as

.
(19)

Equating finish time for the first PUs, we have for
, which gives

(20)

Using (3) and (20), we get

(21)

where is the frac-
tion of time spent in computation. We refer to as the PU speed
factor. From (21), we get

(22)

Equating the finish times for the remaining PUs, we have
for , which gives

(23)

Using , we can relate the load fractions and as

(24)

Using the normalization (2) for PUs and substituting for
from (22) and (23) and using (24), can be written as

(25)
Using (24) and (25), the expression for is

(26)
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The optimum processing time is given by

(27)

where is given by (26). The value of in (26) can be obtained
as follows. The reconfiguration time must satisfy (16) and
(17). Therefore, we can combine (16) and (17) to get

(28)

Let us now consider the inequality

(29)

where . In the inequality above, is a function of .
Substituting for using (22) and using the expression for
from (26), the previous inequality reduces to

(30)

where and

(31)

Now substituting in (30) will give the left-hand side of
(28). Reversing the inequality and using 1, we get the
right-hand side of (28). Therefore, (28) can be written as the
following two relations:

(32)

(33)

must satisfy both these conditions for .
For the case (no gaps), the lower limit on implied
by (32) is not necessary, whereas for 1 (gaps after each
PU load transfer), the upper limit on indicated by (33) is not
necessary. We can, therefore, write down the conditions that
must satisfy for different values of

.
(34)

We must choose the value of such that satisfies the ap-
propriate condition for the selected , as given by (34). Once

has been determined, we can compute the load fractions
using (22), (23), (25), and (26). The optimum processing time
can then be computed using (27). It may be noted that the inter-
vals of , implied by (34) for different values of , abut each
other and, therefore, span a contiguous range of possible values
of . This is clear from the fact that

Fig. 5. Without front-end: algorithm to determine maximum number of PUs n
that can take part in computation, out of them available PUs. The corresponding
value of q, load distribution, and processing time are also obtained.

With a nonzero reconfiguration time , it is possible that
all the available PUs are not used for computation. In fact,
if the processing time using PUs is less than or equal
to the time instant becomes ready for computation, we
can be sure that (and the remaining PUs) cannot con-
tribute towards reducing the processing time. This can be used
to determine the maximum number of PUs that are useful.
The procedure is given in Fig. 5. The algorithm performs
two searches—for and for . In the worst case,

and , in which case the algorithm
runtime complexity is . The algorithm is run offline,
before the start of application execution, and the value of
and load fractions are determined beforehand.

We now define two quantities, the normalized processing time
and the normalized reconfiguration time

(35)

In Fig. 6(a), the plot of the normalized processing time with
respect to the number of PUs utilized, is shown for 0.94.
This is the value of for one of the examples described in
Section VII. From Fig. 6(a), we can see that the processing time
reduces with an increase in the number of PUs. For a given ,
there exists a maximum number of PUs , beyond which it is
not possible to get a further reduction in the processing time.
Therefore, for minimum processing time, one must use PUs
in the system. Also, it can be seen that for a fixed PU speed, the
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Fig. 6. Plot of the normalized processing time � for the case without front-end.
(a) Shows the variation with different number of PUs used, with each curve for
a different value of reconfiguration time. (b) Shows the variation with the PU
speed factor �. Each curve (for a particular n) is plotted only for those values
of � for which a solution exists, i.e., n � n . (a) � versus n, � = 0.94, (b) �
versus �, � = 0.5.

processing time increases with , which is as expected. Also,
as expected, the number of useful PUs increases as decreases.
In the limit when 0, the theory is identical to the con-
ventional DLT and keeps reducing monotonically with the
number of PUs, with no limit on the maximum number of PUs.

A plot of the variation of the normalized processing time with
the PU speed factor is given in Fig. 6(b). 1 as
and 0 when 0. We can see that the processing time
increases with , as expected. Each curve in the plot is for a
particular value of number of PUs used. The curves (each for
fixed ) are plotted only for those values of which give a valid
solution, i.e., . We can see from Fig. 6(b) that solution
with more PUs exists only for slower PUs, i.e., for large . This
is as expected.

B. With Front-End

Here, we consider the case when data transfer to a PU is pos-
sible while it is being configured or while it is performing com-
putation. This analysis can be used for architectures that satisfy
the following conditions.

1) The PUs are slaves and the DMA controller has access
to the RAM associated with a PU even before the PU is
configured. This is possible if a fixed interface is provided
between the RAM and the data bus and the RAM is external
to the PU.

Fig. 7. Timing diagram for computation of first installment, for the two cases
of value of T relative to zT . n � m PUs participate in computation. The
subscript 1 in n indicates that it is the first installment. (a)zT � T , (b)
zT > T .

2) The RAM associated with each PU has a minimum of two
ports. If the RAM is dual-ported, one port can be utilized
for data input/output during PU computation, while the
other port can be used by the DMA controller to transfer
data to the RAM in parallel. If the RAM is multi-ported,
the PUs are designed so that during computation, one RAM
port is left free to allow for load transfer.

The situation considered here is a special case of the gen-
eral situation of processors with arbitrary release times on a
bus network considered in [22]. The release times correspond to
the time instants when the PUs are ready to start computation,
i.e., after the PUs are configured. All the different cases that
need to be considered have been treated exhaustively in [22].
We have made some improvements to the solution presented in
[22], which results in a slightly different scheduling algorithm
from the one proposed in [22]. For the sake of completeness, we
present the complete analysis. Our contributions are pointed out
wherever applicable.

Using the notation in [22], the release time of PU is denoted
as . In our case, the release times of the PUs correspond to
the time they are ready for computation, after configuration. If
the PUs are each configured successively, the release times are

(36)

Depending on the value of , there are two cases to be con-
sidered.

1) Case 1 : All the load is transferred before the
first PU is configured. The entire load is processed in a single
installment. Let be the number of PUs that participate in com-
putation, to give a minimum finish time. As derived in [22], the
load fractions and optimum processing time are given by

(37)

(38)

where is given by (36). The timing diagram is shown in
Fig. 7(a). The number of PUs that participate in computation
is determined based on the fact that the load fraction values
should be positive quantities. Knowing that the load fractions
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Fig. 8. Algorithm to determine n, the number of PUs that can participate in
computation, for case 1 as well as case 2.

decrease monotonically, it is enough to check for 0.
The iterative procedure to determine is described in [25],
presented here in Fig. 8. As before, the value of obtained will
satisfy .

2) Case 2 : In this case, the load is delivered
in multiple installments and the load distribution strategy is as
follows. First, as much load as possible is transferred to the PUs
within duration . This forms the first installment. The load
fractions and finish time for the first installment, as derived in
[22], are

(39)

(40)

where is given by (36). The number of PUs that participate
in processing the first installment is obtained using the algorithm
in Fig. 8. For the purpose of discussion, let us denote the number
of PUs utilized in the th installment as . All the PUs finish
computation of the first installment at time . During com-
putation, the second installment is loaded in the RAM for a du-
ration equal to . For the second install-
ment, the release times of the participating PUs is given by

.
(41)

If , only two installments are sufficient to
process the entire load. The optimum processing time is

. The situation is similar to Case 1 and the same proce-
dure is used to obtain the load fractions and finish time. On the
other hand, if , more than two installments are
needed to process the entire load. The load fractions and finish
time for the second installment are obtained in the same manner
as the first installment of Case 2. The process is continued using
as many installments as required, till all the load is consumed.

Consideration of a special case: Let us consider a situation
when the number of participating PUs becomes equal to
(maximum possible number of PUs) after installments.
Then, after installments, the PUs will have identical release
times for all the remaining installments. In this case, using (39)
and (40) with identical ’s, it turns out that the load is dis-
tributed equally among all the PUs. If is the load
fraction distributed in the th installment , the execution
time for the installment is . As before, the next in-
stallment is distributed during this duration. There-
fore, we have which can be written as

(42)

Fig. 9. Special case for m = 3 as shown in (a) it is not possible for the PUs
to consume all the load. (b) Shows the proposed solution for k = 4, where
A,B,C ,D, andE are, respectively,L zT ,L wT =n,L zT ,
L wT =n, and fwT =n. (a) The special case. (b) The proposed solution.

where . If 1, the successive load frac-
tions keep reducing. In this case, there is one difficulty. This is
when the load fractions reduce to an infinitesimally small value
before all the load is consumed. This scenario is depicted in
Fig. 9(a) for 3. In the figure, corresponds to the time
duration for the first installments. After processing install-
ments, the PUs have an identical release time . The load re-
maining after distributing installments is , 1. In
the situation depicted, it is not possible to consume all the re-
maining load . This is mathematically captured as

Execution time for load using PUs
(43)

which can be written as

(44)

Denoting [Fig. 9(a)], the previous equation can
be rewritten as

(45)

We shall refer to the situation when (45) holds as the special
case. In [22], a heuristic solution for the special case is pre-
sented, wherein the processor execution is delayed by a duration

so that the entire load can be processed
in two installments. When this heuristic is used, the processing
time does not always decrease monotonically with increase in
the number of PUs utilized. An example when this occurs is for

0.8 and 0.1, shown in Fig. 10 (dashed line). This type
of behavior of processing time is undesirable.

We present an improved solution for the special case, based
on a multi-installment strategy. This is depicted in Fig. 9(b). The
basic idea of delaying PU execution is the same as in [22]. Let
the idle time of the PUs be . Then the effective release time is

. From Fig. 9(b), the total load fraction delivered
in the installment to all PUs is

(46)

where

(47)
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Fig. 10. Comparison of the plot of � versus n obtained using the scheduling
algorithm in [22] and by using our proposed algorithm. The plots are for � =
0.8 and � = 0.1.

As before, the execution time for th installment is
for . We fix the total number of installments to and
then choose such that only the last installment computation
occurs after the time instant . That is

(48)

The load installments are still related by (42), which gives

(49)

Using (46)–(49), we get

(50)

The PU idle time is then . The execution time for pro-
cessing the load is . The finish time is, there-
fore, given by

(51)

Fig. 9(b) shows the proposed solution for 3 and
4. As described earlier, the special case occurs when 1.
Therefore, (50) and (51) indicate that when

. In other words, one can achieve a finish time as close
to as desired, by choosing an appropriately large value of

. For an infinitely large number of installments, the proposed
solution is optimum, since the finish time cannot possibly be
reduced below in any load distribution scheme.

The special case can also occur when . This is pos-
sible if computation times are small and the load fractions tend
to zero even before is configured. However, as long as
the condition for special case (45) holds, we need not consider
any additional PU, since it is possible to get a finish time close
to with our multi-installment strategy. If is small,
and can be adjusted to get a finish time as close to as
desired.

Fig. 11. With front-end: complete algorithm for determining the load distribu-
tion and processing time.

The complete solution procedure is given in Fig. 11. The al-
gorithm runtime complexity depends on the number of load in-
stallments, which in turn depends on the values of , ,

, and . In the algorithm in Fig. 11, we have not consid-
ered the case when 0, since zero reconfiguration time does
not occur in practice. For the special case, it was observed that
a value of 20 is generally sufficient to get good results.
This is depicted in Fig. 10 (solid line) for the case 0.8 and

0.1. As desired, the processing time decreases monotoni-
cally with the number of PUs utilized.

The variation of the normalized processing time ( ) with
and is similar to that for the case without front-end Fig. 6.
There exists an optimal number of PUs , which increases as
decreases. Also, the processing time increases with and more
PUs can be used for larger values of .

VI. DISCUSSIONS

Our analysis gives us the optimum load fractions as well as
the maximum number of useful PUs, for a given reconfiguration
delay and computation speed relative to the bus speed ( and ).
This data can be used in two ways. Given an area constraint for
the DRL, it is possible to know the maximum number of PUs
that can be accommodated in the DRL. If , our analysis
shows that we need to use only PUs and some of the DRL
area will remain unused. If , it is possible to get the
finish time using our analysis, but it will not be the best possible
speedup that can be obtained for the given values of and .
Alternatively, if we want a certain finish time, it is possible to
use this analysis to find the minimum area required to get the
required finish time. For example, if we want 8 10 with

0.5 and 0.94 in a “no front-end” architecture, it can
be seen from Fig. 6(b) that we need not use more than two PUs.
This information can be used within any task-based scheduler
to get an optimized schedule.

The analysis presented in the previous section assumes that
after processing, the PU output result data remains within the
local memory. Since the local memory is part of the overall
memory address space, the output data can either be used by the
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Fig. 12. Variation of minimum processing time and the optimum number of
PUs, with input load duration. (a) T (n ) versus zT , (b) n versus zT .

GPP or by a subsequent task to be performed within the DRL or
by any other peripheral. In this case, there is no need to transfer
the data to external memory. However, the analysis will not be
valid if the DRL has to be completely reconfigured, immedi-
ately after the PUs finish execution, to perform another task that
requires the local memory. In this case, we need to transfer data
from the local memory to external memory. For such a situa-
tion, the analysis presented in this paper will not give the op-
timum finish time. The result transfer time must then be taken
into consideration along with a bus bandwidth constraint. The
details of this analysis are given in [26] and [27].

Fig. 12 shows the variation of the minimum processing time
as well as the corresponding value of , with change in the
load transfer duration . The figure shows it for both cases,
i.e., with and without front-end. For the front-end case, we have
set 20. The chosen value of 0.77 is for the FIR filter
example to be discussed in Section VII. The load duration can
increase either as a result of increase in the input data size or
due to a reduction in the data bus bandwidth. As the load dura-
tion increases, it is possible to use more PUs in the case without
front-end, to get an optimum processing time. This is, however,
not the case with front-end, since beyond a certain point, the
special case comes into play, which eliminates the need for ad-
ditional PUs to reduce the processing time.

From Fig. 12, we observe that for the front-end case is al-
ways less than or equal to that for the case without front-end.
This means that a lower area is occupied in the DRL for the
front-end case. In addition, processing time is smaller for the
front-end case. The front-end architecture for the DRL, there-
fore, seems to be better. However, as mentioned earlier, one
RAM port must be left free during computation in the case with
front-end, to allow for load transfer from the data bus. For ex-
ample, if we have dual-ported RAM within each PU, the case
without front-end can use both the ports during computation.
On the other hand, in the front-end architecture, the PU compu-
tation unit has access to only one RAM port. This can result in a
reduction in computation speed. In other words, the apparent ad-
vantage of the front-end architecture could be offset by a degra-
dation in computation speed. Choice of the appropriate architec-
ture can be made only after quantifying the speed degradation,
which is application dependent.

One important aspect of the problem considered in this paper
is that RTR is used because all parts of an application cannot be
simultaneously mapped to the RF. During the course of execu-
tion of an application, tasks are sequentially configured on the
RF, whenever they are encountered. Our work aims to obtain the
minimum possible processing time, whenever the RF needs to
be configured to accommodate a new task. This work is orthog-
onal to the use of reconfiguration for achieving larger functional
density, reported elsewhere [28].

VII. EXAMPLE APPLICATIONS

We have applied the theory developed in the previous
sections to two examples—namely, 1-D discrete wavelet
transform (DWT) and FIR filter. Hardware simulation results
are presented for both examples. In addition, experimental
proof-of-concept on actual FPGA hardware is presented for the
FIR filter example.

A. Simulation Details and Results

For each example application, we have designed dedicated
PUs to perform the required function. The hardware description
for a single PU was targeted onto a Xilinx FPGA of the Virtex
family, which supports partial reconfiguration with one column
or frame being the basic unit for reconfiguration. Partial recon-
figuration of Xilinx FPGAs is done by using partial bitstreams.
In order to obtain partial bitstreams for each of the PUs, we have
used the module-based partial reconfiguration flow described in
[3], with each PU corresponding to a module. Xilinx ISE 6.3
(Service Pack 3) software was used for generating the required
partial bitstreams. For configuration clock frequency less than
50 MHz, the number of configuration clock cycles for reconfig-
uration using the SelectMAP interface directly corresponds to
the number of bytes in the partial bitstream [29]. The configu-
ration clock can be different from the system clock used by the
PUs during computation. The value of is then calculated as

Number of system clock cycles for configuration
Number of system clock cycles for total load transfer

(52)



1020 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2006

TABLE I
RESULTS FOR 1-D DWT: � = 0.94, T = 1.7 � 10 clks AND zT = 5 � 10 clks. “CALCULATED” VALUES ARE FROM

THE DERIVED EQUATIONS, WHEREAS THE “ACTUAL” VALUES ARE MEASURED FROM HARDWARE SIMULATION

Similarly, the value of may be computed using

Number of system clock cycles for computation of given load
Number of system clock cycles required to transfer same load

(53)

The details for each individual example are presented as fol-
lows. The examples correspond to implementations of the
case without front-end. Implementation of the front-end case
requires a preconfigured data interface within each PU, and
hence, it was not attempted. Instead, estimates of the processing
time for the front-end case are provided, using the values of
and computed for the case without front-end.

1) 1-D DWT: We have chosen the (9,7) wavelet filter kernel
for implementing a single-level 1-D DWT. We have designed
the 1-D DWT unit based on the basic design presented in [30].
The designed PU performs in-place computation on 16-bit data
samples. The data bus is taken to be 32 bits wide, whereas the
configuration bus is 8 bits. The frequency of the configuration
clock, system clock, and data bus are taken to be identical. From
a sample simulation, the value of was determined using (53).
The PU speed factor was then calculated to
be 0.94. It was verified in simulation that 0.94 is almost
constant with different amounts of load fed to the PU.

The input data size was taken as 100 000 samples, which cor-
responds to 5 10 system clock cycles. A single
DWT PU was then targeted to the Xilinx Virtex-II Pro FPGA
XC2VP30. Based on the partial bitstream size, the normalized
reconfiguration time was then computed using (52). The com-
puted value is 3.4, which gives 3 [see Fig. 6(b)]. The
system was then simulated for 1, 2, 3. The required load
fractions were computed using the analysis in Section V-A. For
simulation, each PU was provided access to sufficient amount of
RAM to hold its input data. The data bus was modeled as simple
READ and WRITE. The hardware simulation results are presented
in Table I. From the table, we observe that the values of ob-
served in simulation are close to that computed from the derived
equations, and minimum occurs for 3 as expected.

When equal loads are provided to the PUs, i.e.,
for , the finish time corresponds to the time instant
when finishes computation. For this case, the expression for
the finish time can be obtained as

(54)

Table I shows the simulation results when the PUs are provided
with equal loads, as well as the values computed using (54).
From the table, we can see that the proposed load schedule gives
a lower processing time compared to equally dividing the load
among the PUs. Table I also gives some estimates for the finish
time for the front-end case, using 3.4 and 0.94. As ex-
pected, the finish times are smaller for the front-end case. How-
ever, possible increase in due to usage of RAM port during
load transfer (Section VI) has not been accounted for.

2) FIR Filter: We have used Xilinx CoreGenerator to obtain
a 16th order (17-tap) low-pass FIR filter core. The filter core
is based on distributed arithmetic and accepts 8-bit input data
every 8 clock cycles. Each PU is designed with the FIR core
and surrounding control logic for input and output data transfer.
Input and output data are taken as 8-bits wide. The data bus as
well as the configuration bus are taken to be 8-bits wide. The
data bus is actually an interface to SRAM, and is designed to
transfer each byte every three clock cycles. Our theory is appli-
cable here since a single SRAM port is equivalent to the con-
straint of using a shared bus.

The input data size is again 100 000 samples, which gives
3 10 clock cycles. The PU is targeted to a Xilinx

Virtex XCV300 FPGA, with the resulting partial bitstream size
being approximately 6 10 bytes. The configuration clock fre-
quency is taken to be half the system clock frequency, there-
fore, 1.2 10 system clock cycles, which gives
0.4. We also have 0.77, computed from sample simula-
tions of a single PU. Using these values of and , our anal-
ysis gives 5. Hardware simulations were carried out for

1 5, with each PU having access to as much local
RAM as necessary. Hardware simulation results for the FIR
filter are given in Table II. As before, the simulated values are
close to the computed values. Also, the proposed load distri-
bution is better than distributing equal load to all PUs. Again,
estimated values of the finish times for the front-end case are
smaller than those for the no-front-end case, assuming same
values of and .

B. Experimental Results

We now describe the experiment carried out on actual FPGA
hardware. The hardware platform is the XSV-300 board from
XESS Corporation [31]. The board components and connec-
tions pertinent to our experiment is depicted in Fig. 13. Access
to all components on the board from the desktop personal com-
puter (PC) is through the complex programmable logic device
(CPLD). For, e.g., to transfer data between the PC and onboard
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TABLE II
RESULTS FOR FIR FILTER: � = 0.77, T = 1.2 � 10 clks AND zT = 3 � 10 clks. “CALCULATED” VALUES ARE FROM

THE DERIVED EQUATIONS, WHEREAS THE “ACTUAL” VALUES ARE MEASURED FROM HARDWARE SIMULATION

Fig. 13. XSV-300 board components and connections relevant to our experi-
ment.

SRAM, the CPLD and FPGA must be programmed with the re-
quired interfaces and control logic. Similarly, programming the
Flash memory requires the appropriate logic to be programmed
in the CPLD. The XSTOOLS software package is used for
programming the CPLD. The XSTOOLS software is also used
for programming the FPGA whenever the SRAM needs to be
accessed. We have developed “C” programs to READ/WRITE

SRAM and Flash memory from the PC, through the PC parallel
port. The FPGA logic for accessing SRAM is based on the “PC
to SRAM interface” design in [32], whereas the CPLD designs
are based on examples available on the XESS website [31].

For our experiment, the configuration data required for FPGA
reconfiguration is stored in the Flash memory. The configuration
data constitutes of the following: 1) initial power-up configura-
tion of the FPGA, which has the fixed controller modules as well
as placeholders for the PUs and 2) partial bitstream for each PU.
A state machine programmed in the CPLD carries out the re-
quired reconfiguration. Configuration is initiated as soon as ap-
propriate control signals are received from the PC parallel port.
The CPLD then configures the FPGA with the initial config-
uration 1). After that, the PUs are sequentially configured. Re-
configuration is done through the SelectMAP port of the FPGA.
The data lines of the SelectMAP port are directly connected to
the data lines of the Flash memory. The CPLD controls the Se-
lectMAP control signals, while simultaneously issuing the ap-
propriate address and read signals to the Flash. After configura-
tion of every PU, the CPLD signals a pulse on the cpld_rdone
pin of the FPGA, while asserting a logic high on cpld_valid.

Fig. 14. Layout of FIR filter example implemented on XCV300, as seen in the
FPGA_Editor Xilinx software.

The FIR filter example presented in Section VII-A.2 was tar-
geted onto the XCV300 FPGA. Two PUs were implemented on
the FPGA, as shown in the layout in Fig. 14. The different mod-
ules marked on the layout are explained as follows.

1) PU , : The FIR filter PUs.
2) Memory controller/Arbiter: This module accepts requests

from the PUs for reading/writing data to SRAM, and issues
the appropriate control/data signals to the SRAM. Each
PU requests for data as soon as it is configured, so some
arbitration is required to ensure that load transfer occurs in
the required order.

3) SRAM connector module: On the XSV-300 board, the
SRAM chip has its interface pins connected to almost the
entire top portion of the FPGA, as indicated in Fig. 14. The
SRAM connector module is required for providing access
to SRAM pins that are not directly attached to the Memory
controller module.

Connection between the PUs and Memory controller module,
as well as between the SRAM connector and Memory con-
troller, is through fixed, unidirectional routing lines called
bus-macros [3]. In particular, connection between and the
memory controller is through long bus-macros that run “over”

. The long bus-macros were created using the methodology
outlined in [33]. These lines provide reliable connection even
while is undergoing reconfiguration.

Xilinx modular design flow [34] was used for implementing
all the required modules. However, for generating the partial
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Fig. 15. Plots of input square wave and low-pass filtered output samples ob-
tained from the experiment carried out on the XSV-300 hardware board.

bitstreams, the difference-based flow was used [3]. The differ-
ence-based flow ensures that the fixed part (in particular, the
SRAM connector module) remains the same during reconfigu-
ration of the PUs. During reconfiguration of each PU, the en-
tire FPGA height spanning the width of the PU is reconfigured.
However, since the SRAM connector module remains the same,
the reconfiguration of the portion of the SRAM connector that
lies above the PU occurs in a glitchless manner, so it is possible
for the SRAM interface to be active even during PU reconfigu-
ration.

The local RAM for each PU was implemented using Xilinx
lookup tables (LUTs) within each PU. The maximum capacity
of the local RAM turned out to be 64 bytes per PU. This pre-
sented a serious problem for testing our theory, since such a
small load (at normal values of ) gives 1. The execution
time of each PU was artificially stretched by inserting a delay of
4096 clock cycles between processing of successive input sam-
ples. This resulted in 1370, consequently increasing
to 3.

The number of input samples was taken as 100 bytes (
300). In order to ensure that there is no interdependency in the
computations carried out by the PUs, the last sixteen input sam-
ples fed to must also be input to . Consequently, the ef-
fective input size is 84 samples. This overlap of data is indi-
cated in Fig. 15, for the square wave input. With the input data
stored in SRAM, the runtime partial reconfiguration experiment
was carried out. As soon as a pulse on cpld_rdone signal is ob-
served (when cpld_valid 1), the memory controller issues a
start signal to the PU that is configured. The rest of the process of
load transfer and computation occurs as outlined earlier. After
computation, each PU requests the memory controller/arbiter to
transfer result data back to SRAM. Contents of SRAM are later
read back into the PC. The output samples obtained are shown
in Fig. 15. The outputs from each PU are then combined as in-
dicated, to get the required low-pass filtered output signal.

TABLE III
EXPERIMENTAL RESULTS FOR FIR FILTER: � = 1370 ) � = 0.99927.

CONFIGURATION CLOCK FREQUENCY IS HALF THAT OF THE SYSTEM CLOCK.
BASED ON BITSTREAM SIZE, T IS TAKEN AS 1.2 �10 clks FOR COMPUTING

� . zT = 300 clks. CALCULATED VALUE OF T IS 3.86 �10 clks

Table III gives the time information recorded from the experi-
ments. The time is recorded within the memory controller using
a counter that increments every 1024 clock cycles. The counter
values are written back to SRAM, which are then READ into the
PC along with the output data. We observe that the start times
of (which is the time instant is ready after configuration)
is almost the same as ( 1, 2), as expected. We can also
see that the measured finish times are almost equal, and are very
close to that obtained from theory (3.86 10 clks). It may be
noted that cannot be implemented due to limited FPGA
area. Further, for 3, 0.04 which corresponds to 4
samples input to ; this cannot be implemented since must
be given at least 16 input samples, corresponding to overlapped
data as mentioned earlier.

VIII. CONCLUSIONS

In this paper, we have described a methodology for mapping
data-parallel applications onto reconfigurable hybrid processor
architectures. We have modified the framework of DLT in order
to account for reconfiguration overhead of PUs. When the re-
configuration overhead is absent, the processing time reduces
with the inclusion of every additional PU. In contrast, when
there is a reconfiguration overhead, we have demonstrated that
there exists an upper limit on the number of PUs that can be
used in the RF, beyond which an improvement in processing
time cannot be obtained. We have shown this for two cases—the
case when load cannot be transferred to the DRL in parallel
with reconfiguration/computation and the case when parallel
load transfer is possible. Algorithms for obtaining the optimum
number of PUs and analytical expressions for the corresponding
optimum load fractions, load transfer schedule, and processing
time were derived.

Hardware simulations of two examples, viz., 1-D DWT and
FIR filter, targeted to Xilinx FPGAs, were presented. The theory
developed was used to obtain the optimum number of PUs
to be used in the FPGA, as well as the load fractions and data
transfer schedule, based on the estimated value of reconfigura-
tion time. Hardware simulations were performed for all values
of , to show that optimum processing time is achieved for

. Simulations also showed that the proposed load distri-
bution results in smaller processing time, compared to a simple
strategy of equally distributing the load to all PUs. Implementa-
tion of a hardware prototype on an XSV-300 FPGA board was
then presented. It was shown that the finish time obtained on
the hardware prototype was close to that obtained from theory.
The practical applicability of the theory developed was, thus,
demonstrated.
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