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The nonlinear steepening of finite amplitude magnetohydrodynamic sMHDd waves propagating
perpendicular to the magnetic field is investigated. The nonlinear evolution of a planar fast
magnetosonic wave in a homentropic flow field is understood well through simple waves. However,
in situations where the wave is moving through a variable area duct or when the flow field is
nonhomentropic, the concept of simple waves cannot be used. In the present paper, the
quasi-one-dimensional MHD equations that include the effect of area variation and density gradients
are solved using the wave front expansion technique. The analysis is performed for a perfectly
conducting fluid and also for a weakly conducting fluid. Closed form solutions are obtained for the
nonlinear evolution of the slope of the wave front in the limits of infinitely large and small
conductivity. A general criterion for a compression wave to steepen into a shock is obtained. An
analytical expression for the location of shock formation is derived. The effect of area variation and
density gradient on shock formation is studied and examples highlighting the same are presented.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1901693g

I. INTRODUCTION

The nonlinear steepening of finite amplitude magnetohy-
drodynamic sMHDd waves propagating perpendicular to the
magnetic field sfast magnetosonic wavesd is investigated in
this paper. The profile of a finite amplitude fast magnetosonic
wave gets distorted and tends to steepen as a consequence of
nonlinearity. The compressive part of the wave pulse travels
faster than the expansive part and hence wave crests tend to
catch up with wave troughs. This evolution will lead to a fast
reshaping of the initially smooth velocity and magnetic field
profiles with subsequent breakdown at the leading part of the
wave resulting in shock formation.1 This phenomena is of
great interest in many areas such as the study of solar
flares1,2 and other astrophysical phenomena,3 discharges be-
tween electrodes in laser cavities, applications relating to
thermonuclear fusion, MHD generators to name a few.

A number of studies have been performed to investigate
shock formation in MHD flows. Vrsnak and Lulic1,2 studied
the formation and evolution of a large amplitude fast mag-
netosonic waves in a perfectly conducting low b plasma, in
the context of the solar corona.1,2 Using an analysis based on
simple waves, they derived explicit expressions for the time
and the distance needed for the transformation of the pertur-
bation’s leading edge into a shock wave. Stefenlo et al.

4

developed an exact analytical solution of the nonlinear MHD
equations for planar disturbances having a certain initial pro-
file traveling across the external magnetic field in a cold
plasma. Ödblom5 derived analytical solutions for the nonlin-
ear evolution of planar MHD waves propagating either
across or along the magnetic field in warm, isothermal, and
adiabatic plasma using simple waves. Bharadwaj6 studied the
formation of shock waves in reactive MHD flows in a cylin-

drical geometry. Orta et al.
7 used numerical simulations to

follow the shock formation. However, all these studies were
performed in uniform medium. Except for Ref. 6 which was
performed in cylindrical coordinates, all other studies dealt
with plane waves in homogeneous medium in constant area
ducts.

The nonlinear steepening of a planar wave in a homen-
tropic flow is understood well through simple waves.1,2,4,5

The characteristics of a simple wave have constant slopes
and the Riemann invariants are constant along these charac-
teristics. However, in the case of variable area ducts or strati-
fied media, the Reimann invariants of the system are not
constant along the characteristics. As a result, shock forma-
tion time and distance are underestimated or overestimated
sdepending on the direction of propagation in relation to the
density or area gradientd if these effects are neglected. MHD
flows in variable area ducts has application in lasers and
other terrestrial applications. Wave propagation through
stratified media has applications in astrophysical applica-
tions. In the present paper, the analysis is performed taking
into account the effects of area variation and density gradi-
ents.

The steepening of acoustic waves snon-MHDd in the
presence of area and entropy gradients has been studied by
many authors. The effect of spherical geometry was dis-
cussed by Appert et al.

8 in the context of nucleation of liq-
uids. Lin and Szeri9 investigated the steepening of acoustic
waves in the presence of entropy gradients, in the context of
sonoluminescence of bubbles. Tyagi and Sujith10 investi-
gated the steepening of acoustic waves in variable area ducts
in the presence of entropy gradients. They9,10 used the wave
front expansion technique to obtain an evolution equation for
the slope of the wave front. In the present paper, the analysis
is further generalized to describe the case of nonlinear dis-
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tortion of finite amplitude fast magnetosonic waves in the
presence of area and density gradients.

The rest of the paper is organized as follows: In Sec. II,
the method of wave front expansion is used to determine the
time evolution of a wave front of a fast magnetosonic wave
in an infinitely conducting medium. The effect of variable
area ducts and stratified medium are presented in Sec. III. In
Sec. IV the steepening of the wave in a weakly conducting
fluid is discussed.

II. SHOCK FORMATION IN A MEDIUM
WITH INFINITE CONDUCTIVITY

A. Governing equations

In the system considered here, the disturbance is propa-
gating along the x direction, perpendicular to the magnetic

field which is along the z direction sBW =Bêzd. Assuming an
inviscid and non-heat-conducting, isentropic gas, the quasi-
one-dimensional equations of motion for a gas with infinitely
large conductivity smagnetic Reynolds number much larger
than oned can be written as follows.11–13

For continuity,

]r

]t
+

1

A

]

]x
srAud = 0, s1d

where, A is the area of cross section.
For Faraday’s law,

]BW

]t
+ suW · ¹W dBW + s¹W · uWdBW = sBW · ¹W duW . s2ad

Applying this to the quasi-one-dimensional system consid-
ered here, the right-hand side will be zero and Eq. s2ad re-
duces to

]B

]t
+

1

A

]

]x
sBAud = 0. s2bd

For momentum,

rS ]u

]t
+ u

]u

]x
D +

]p

]x
+

1

m
B

]B

]x
= 0. s3d

For energy,

spt + upxd − a2srt + urxd = 0, s4d

where, a=Îu]p /]rus=const is the isentropic speed of sound.
The momentum equation can be rewritten as

rS ]u

]t
+ u

]u

]x
D +

]p*

]x
= 0. s5d

Here, p*= p+ sB2 /2md is the sum of the hydrodynamic and
magnetic pressures. Also, Eqs. s1d and s2bd show that in the
one-dimensional s1Dd situation, when the frozen-in condition
is satisfied, B /r is a constant.1

Combining Eqs. s2bd and s4d gives

]p*

]t
+ u

]p*

]x
+

ra*2

A

]sAud
]x

= 0, s6d

where the fast magnetosonic velocity a* is defined by

a*2 = a2 + a2, s7ad

where

a =Î B2

rm
s7bd

is the Alfven speed.
These equations form a hyperbolic system, and along

with the equation of state, they completely describe the flow.
The undisturbed medium is assumed to be at rest. To study
the propagation and distortion of a wave in the medium,
these equations are manipulated and written along their char-
acteristics in the st ,xd plane,

d+u

dt
+

1

a*r

d+p*

dt
+

ua*

A

dA

dx
= 0 on C+:

d+x

dt
= u + a*, s8d

d−u

dt
−

1

a*r

d−p*

dt
−

ua*

A

dA

dx
= 0 on C−:

d−x

dt
= u − a*, s9d

ds

dt
= 0 on C0:

dx

dt
= u , s10d

where s is the entropy, which can be expressed in terms of
the pressure and density as p / rg =expfs /cng where cn is the
specific heat at constant volume

d

dt
SB

r
D = 0 on C0:

dx

dt
= u . s11d

In the above set of equations d+ /dt, d− /dt, and d /dt are the
derivatives taken along the C+, C−, and C0 characteristics,
respectively.

In the present problem, a finite amplitude wave with
compact support having a discontinuity in its first derivative
at the wave front is considered. It can be shown that the
leading edge of the wave propagates along the characteristics
C+ and C− with velocities a* and −a*, respectively.12 Since
the undisturbed medium is at rest, C0 characteristics are ab-
sent at the wave front. The rate of steepening of the leading
edges is followed using the technique of wave front expan-
sion. A shock forms when the slope at the leading edge be-
comes infinity. The disadvantage of the present method is
that it neglects the possibility of formation of shock in the
middle of the wave. It however illustrates the effect of area
variation and density variation on the nonlinear distortion of
the wave. Furthermore, the method yields a closed form so-
lution which is of valued significance.

B. Wave front expansion

In the neighborhood of the wave front, a new coordinate
system, j=x−Xstd is defined, where Xstd is the position of
the wavefront. Physically, j represents the distance measured
from the wave front. Therefore, sid j=0⇒x=Xstd, describes
the motion of the wavefront; siid j.0 is the region of the
undisturbed quiescent medium into which the wave propa-
gates; siiid j,0 is the region behind the wave front where
the flow is unsteady. The motion of the leading edge of the
right running wave is governed by the following equation:
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Ẋstd = a0
*fXstdg , s12d

where “ · ” indicates time derivative, and the subscript “0”
indicates the value of the flow variable in the undisturbed
medium. Henceforth, the analysis is performed for the right
running wave. The left running wave can be analyzed in a
similar fashion. As the wave propagates, a flow variable l

can be expanded in terms of its derivatives at the wave front
as follows:

lsj,td = l0fXstdg + jl1std +
j2

2
l2std + … for j , 0, s13ad

lsj,td = l0fXstdg + jl08fXstdg +
j2

2
l09fXstdg + … for j . 0,

s13bd

where l indicates p*, r, or u and l1 ,l2 ,… denote the cor-
responding spatial derivatives behind the wave front. Since
j.0 is an undisturbed region, u0fXstdg=0. Further, to
clarify, since a discontinuity in the first and the higher de-
rivatives are present at the wave front,

l1std Þ l08fXstdg, l2std Þ l09fXstdg,… , s14d

where “8” indicates spatial derivatives. Left-hand side of the
inequalities in Eq. s14d are derivatives behind the wave front
sdisturbed regiond and right-hand side are derivatives in front
of the wave front sundisturbed regiond. However, for the
cross-sectional area A0sxd, all the derivatives are known on
both sides of the wave front, i.e., A1std=A08fXstdg, A2std
=A09fXstdg and so on. If a*=a*sp* ,rd, then,14

a*sp*,rd = a0
*fXstdg + jp1

*S ]a0
*

]p*D
r

+ jr1S ]a0
*

]r
D

p*
+ … .

s15d

Furthermore, the derivatives with respect to t can be obtained
using:14

F ]

]t
G

x

ªF ]

]t
G

j

+ F ]j

]t
G

x

F ]

]j
G =

]

]t
− a0

*fXstdg
]

]j
. s16d

The terms in Eqs. s1d, s5d, and s6d are expanded using Eqs.
s13ad, s15d, and s16d. Comparing the coefficients of j0 and
j1, one finds j0 terms,

a0
*sr08 − r1d + r0u1 = 0, s17d

p1
* = r0u1a0

*, s18d

sp0
*
8 − p1

*d − a0
*2sr08 − r1d = 0; s19d

j1 terms,

sr08 − r1da0
*A1 + A0sṙ1 − r2a0

*d + r0A0u2 + 2r0A1u1

+ 2r1u1A0 = 0, s20d

− r1u1a0
* + r0su̇1 − u2a0

*d + r0u1
2 + p2

* = 0, s21d

ṗ1
* − a0

*p2
* + p1

*u1 = 2a0
*Sp1

*]a*

]p* + r1

]a*

]r
Dsr08 − r1da0

*

+ a0
*2sṙ1 − r2a0

* + r1u1d . s22d

The matrix formed by the coefficients of first derivatives in
Eqs. s17d–s19d is singular. Hence, the first sets of equations
reduce to p0

*
8=0, which is as expected in a quiescent me-

dium.
Similarly, coefficients of the second derivatives, Eqs.

s20d–s22d, form a singular matrix. Hence on elimination of
second derivatives and changing the thermodynamic state
variables from sr , pd to sr ,sd, Eqs. s20d–s22d yields, after
some manipulation:

du1

dt
+ F3

2
a0

*
8 +

1

2

r08

r0

a0
* +

a0

2

A08

A0
Gu1 + G0u1

2 = 0. s23d

G= u1/a*] sra*d /]rus is the nonlinearity parameter.15 The
value of G can be evaluated, knowing the equation of state.

To trace the evolution of the wave front as a function of
its propagation distance, a change of variable, t to y=Xstd is
effected. Here, y denotes the position of the wave front. As a
result, Eq. s23d reduces to

du1

dy
+ F3

2

a0
*
8

a0
* +

1

2

r08

r0

+
1

2

A08

A0
Gu1 +

G0syd

a0
* u1

2 = 0. s24d

This equation can be reduced to a linear equation as

d

dy
S 1

u1
D − F3

2

a0
*
8

a0
* +

1

2

r08

r0

+
1

2

A08

A0
G 1

u1

=
G0syd

a0
* . s25d

The solution to this equation with an initial slope u1s0d at the
leading edge can be written as

1

u1syd
=

IFs0d
IFsydu1s0d

+
1

IFsyd
E

0

y
IFsŷdG0sŷd

a0
*sŷd

dŷ , s26d

where, IFsyd=a0
*syd−3/2r0syd−1/2A0syd−1/2. Equation s26d de-

scribes the nonlinear evolution of the leading edge of a wave
front of a fast magnetosonic wave traveling into a stationary
MHD fluid governed by a general equation of state a*

=a*sp* ,rd, in the presence of density gradients. A shock
forms when uu1sydu→`. If ys indicates the shock formation
distance, then the shock formation time can be obtained from

ts = E
0

ys dy

a0
*syd

. s27d

Equation s26d can be used to track the evolution of the
slope of a wave front, and shock formation, in variable area
ducts and in the presence of density gradients. This will be
illustrated in various situations in the following sections.

For a compression wave front, the initial slope is nega-
tive; i.e., u1s0d,0, and can be for convenience written as
u1s0d=−uu1s0du. Then Eq. s26d becomes

1

u1syd
=

IFs0d
IFsydF 1

uu1s0du
−

1

IFs0d
E

0

y
IFsŷdG0sŷd

a0
*sŷd

dŷG . s28d

Equation s28d gives the slope of the wave front at a position
y. As G0 is positive, there is a possibility that the right-hand
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side of Eq. s28d could become zero at some finite value of
y=ys. This will occur when

uu1s0du =
1

1

IFs0d
E

0

ys IFsŷdG0sŷd

a0
*sŷd

dŷ

. s29d

At this stage, the first derivative of the wave front becomes
infinite. This phenomenon is referred to as a shock. It can be
seen from Eq. s29d that the steepening of a compression
wave front into shock is greatly influenced by variations in
density and the cross-section area of the duct. Furthermore, it
can be seen that only sufficiently steep compression wave
fronts steepen into a shock; they must have an initial slope

uu1s0du .
1

1

IFs0d
E

0

`
IFsŷdG0sŷd

a0
*sŷd

dŷ

. s30d

It is clear from Eq. s30d that if the integral
e0

`fIFsŷdG0sŷd /a0
*sŷdgdŷ does not converge, all compression

wave fronts will steepen into shocks at some finite distance
ys given by Eq. s29d. If it converges, only those compression
wave fronts having initial slope satisfying Eq. s30d will
steepen into shocks.

III. EXAMPLES

All the examples presented in this paper are for an ideal
gas where the equation of state a*=a*sp* ,rd can be written
as

a*2 = g
p*

r
+

1

m
FB

r
G2S1 −

g

2
Dr .

For such a gas, G0 can be evaluated as

g + 1

2
+

1

m
FB

r
G2S1 −

g

2
D r0

a0
*2 .

However, the analysis in Sec. II is quite general and can be
applied to study shock formation in any fluid.

A. Homentropic environment

A homentropic medium is considered first to illustrate
the effect of area variation on shock formation.

1. Steepening of a plane wave in a constant area duct

For the sake of comparison, results are presented for a
plane wave in an infinite homentropic medium sG=G0

=constd. This also helps in illustrating the effect of G on the
distortion of the wave. For a uniform medium, Eq. s28d re-
duces to

u1std =
u1s0d

1 + G0u1s0dt
. s31d

It can easily be seen from the above expression that only
compression waves can steepen to form shocks. Further, the
rate of steepening of the leading edge is obtained by differ-
entiating Eq. s31d as

du1

dt
= − G0u1

2std . s32d

It can easily be seen from the above expression that the value
of G0 decides the extent of nonlinear distortion. The presence
of a magnetic field increases the value of G0, thereby increas-
ing the rate of wave steepening and causing early shock for-
mation. If a shock forms, the time of shock formation stsd
and the distance traveled by the wave before it turns into a
shock sad are given by

ts = −
1

u1s0dG0

, a = −
a0

*

u1s0dG0

. s33d

2. Shock formation in a variable area duct

In this section we investigate shock formation in variable
area ducts, in a homentropic environment. The wave distor-
tion and steepening of a wave front into a shock are affected
very much by the changes in the cross-sectional area of the
duct and changes in density in the duct. In this section, the
effect of variation of area of cross section alone on the wave
form distortion will be discussed. Although Eq. s28d is appli-
cable for any smooth duct, in this analysis only ducts with
monotonically increasing sdivergingd or decreasing sconverg-
ingd cross section will be considered. In fact, any smooth
duct consists of many converging and diverging ducts, each
of which can be analyzed separately. In this analysis, a right
running wave is considered. A left running wave can be ana-
lyzed in a similar fashion.

The evolution equation for the slope of a compression
wave front can be written as

1

u1

= −ÎA0syd
A0s0dF 1

uu1s0du
−

G0

a0
*E

0

y ÎA0s0d

A0sŷd
dŷG . s34d

The expression for shock formation distance can be written
as

E
0

ysÎA0s0d

A0sŷd
dŷ =

a0
*

uu1s0duG0

= l . s35d

Here, l is the shock formation distance for a plane wave
front in a constant-area duct in homentropic conditions.

It can easily be seen from Eq. s35d that for a divergent
duct, the shock formation is delayed when compared to a
duct with constant cross-section area. In the case of a con-
vergent duct, the shock formation distance will be less than
l. For a homentropic environment, the shock condition re-
duces to

uu1s0du .
1

G0

2
E

0

`ÎA0s0d

A0sŷd
dŷ

. s36d

It can easily be shown using the properties of improper inte-
grals that for a converging duct, the integral
e0

`ÎAs0d /Asŷddŷ is divergent. Consequently, any compres-
sion wave front traveling in a convergent passage will even-
tually steepen into a shock. If the area of cross section of a
convergent duct becomes zero at some point y*, the integral
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e0
`ÎAs0d /Asŷddŷ should be replaced with e0

y
*ÎAs0d /Asŷddŷ.

In this case, every compression wave front will steepen into
a shock before y*.

In the case of divergent ducts, there is a possibility that
e0

`ÎAs0d /Asŷddŷ may converge. This usually occurs when a
duct is diverging rapidly se.g., an exponential hornd. For a
compression wave front to steepen into a shock in such a
duct, the magnitude of the initial slope must exceed a mini-
mum value. However for a duct that is diverging less rapidly,
such as a conical horn, any compression wave front can
steepen into a shock, given sufficient length.

These results are identical to the results derived by Tyagi
and Sujith10 in the absence of MHD effects, except that a is

replaced here by a* and sg+1d /2 by G0. The analysis for
various types of ducts given by Tygai and Sujith10 can easily
be applied for the evolution of fast magnetosonic waves.

B. Effect of stratified medium

In this section, the effect of a change in entropy of the
environment on wave form distortion will be investigated. In
the present analysis, the entropy is altered by varying the
density, which is in turn related to the speed of wave propa-
gation. In order to elucidate the effect of an entropy gradient
on the wave propagation, a duct with a constant cross section
is considered. In this case, the condition for shock formation
for a compression wave becomes

uu1s0du =
1

1

a0
*s0d3

E
0

ys Fa0
*s0d

a0
*sŷd

G9/2Fr0s0d

r0sŷd
G1/2Fg + 1

2

gp0
*

r0

+
1

m
F B

r0

G2S1 −
g

2
DSg + 3

2
Dr0Gdŷ

. s37d

The integral here is of the form

I = E
0

` F g

r0

+ hr0G−9/4 1

r0
1/2F e

r0

+ fr0Gdŷ

. minFr0
3/4se + fr0

2d

sg + hr0
2d9/4 GE

0

`

dŷ . s38d

where e=gsg+1d /2p0
*, f =1/mfB /rg2s1−g /2dsg+3d /2, g

=gp0
*, and h=1/mfB /rg2. Hence, if Z=minfr0

3/4se+ fr0
2d / sg

+hr0
2d9/4gÞ0, the integral will diverge.
As long as the density has a nonzero finite value at in-

finity, the integrand of I is nonzero, and the integral will
diverge, and every compression wave, irrespective of the ini-
tial slope, will steepen to form a shock. However, when the
density at infinity becomes zero or infinite, the minimum
value of above expression is zero. Physically, this means that
a* is infinite if density is zero or infinite. Hence the flow in
this case behaves like an incompressible fluid, where the
wave form cannot be distorted. However, this does not imply
that the shock does not form, since the wave could have
steepened before reaching infinity, before the fluid starts be-
having like an incompressible fluid sin this case the integral
diverges even when the minimum value Z is zerod. However,
if the wave does not steepen even at large distances sbefore
the fluid behaves like an incompressible fluidd, then it will
not steepen afterwards due to the above-mentioned reason
sin this case the integral converges when Z is zerod. It must
be noted however that these effects are for waves with small
initial slope; waves with large initial slopes steepen since
they do not get affected much by these gradients.

First we consider the limiting case of magnetic pressure
being zero. Equation s37d then reduces to

uu1s0du =
1

g + 1

2a0s0d
E

0

ys Fa0s0d

a0sŷd
G3/2

dŷ

. s39d

This is the result given by Tyagi and Sujith10 for shock for-
mation in the absence of MHD effects. Next, considering the
limiting case of compressional Alfvén wave, where the mag-
netic pressure being much higher than the hydrodynamic
pressure sbe= pe / pB!1d, it can be shown that

a*2 =
1

m
FB

r
G2

r, G =
3

2
. s40d

It is interesting to note that the fluid behaves as if it has a g

value of 2 as the magnetic pressure pmag~r2. This results in
the value of nonlinearity parameter G0 being sg+1d /2=3/2.

FIG. 1. Evolution of a compression wave front for various values of B /r for
a linear density profile sr=1+yd; uu1s0du=0.1.
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1

uu1s0du
=

1

3

2

1

a0
*s0d

E
0

ys Fa0
*s0d

a0
*sŷd

G7/2

dŷ

. s41d

When a compression wave moves in an environment where
the density is decreasing, it can be shown that
e0

`fa0
*s0d /a0

*sŷdg7/2dŷ diverges. Consequently, every compres-
sion wave traveling in such an environment will blow up at
some finite distance. On the other hand, in the presence of a
positive density gradient, the integral e0

`fa0
*s0d /a0

*sŷdg7/2dŷ

may diverge or converge depending on the nature of the
density variation. If the integral diverges, every compression

wave front will steepen into a shock at some finite distance.
However, if the integral converges, the initial slope of the
wave front must exceed a minimum value in order to steepen
into a shock.

For an arbitrary value of the ratio between the magnetic
pressure and the hydrodynamic pressure, Eq. s37d has to be
evaluated for a given density profile. For a linear density
profile r=Ky+K1, Eq. s37d reduces to

uu1s0du =
1

a*s0d3/2rs0d1/2fusrd − usr1dg
, s42d

where

usrd = r0
7/437ehs5g + 3hr0

2d + 7fgs5g + 7hr0
2d − 5s7fg + 3ehdsg + hr0

2dS1 +
hr0

2

g
D

2

F1F7

8
,
1

4
,
15

8
,−

hr0
2

g
G

K35g2hsg + hr0
2d5/4 4 . s43d

Figure 1 illustrates the evolution of a wave with a given
value of initial slope through a given linear density field for
various values of B /r. It can be seen that the effect of in-
creasing B /r values on the compression waves is to increase
the rate of wave steepening, causing early shock formation.

Figure 2 shows the variation of shock formation distance
with changes in the value of the initial slope of the distur-
bance fu1s0dg for various values of B /r for a given linear
density profile. Higher values of the initial slope lead to
shorter shock formation distance. It can clearly be seen that
higher the value of B /r, shorter the shock formation dis-
tance.

Figure 3 depicts the evolution of a wave with a given
initial slope and strength of the magnetic field for various
values of density gradient, keeping B /r constant. It is seen

that as the density gradient increases, the rate of wave steep-
ening decreases, and shock formation is delayed.

Figure 4 shows the dependence of shock formation dis-
tance on the value of the initial slope of the disturbance
fu1s0dg for different values of density gradient for a given
linear density profile, keeping B /r constant. It is seen that
the density gradient considerably affects the value of shock
formation distance.

IV. SHOCK FORMATION IN A WEAKLY CONDUCTING
GAS

The basic equations governing the unsteady motion of a
weakly conducting, inviscid, non-heat-conducting gas are
given by the following:13

Continuity,

]r

]t
+ u

]r

]x
+ r

]u

]x
+

ru

A

dA

dx
= 0. s44d

Momentum,

rS ]u

]t
+ u

]u

]x
D +

]p

]x
= − sB0

2u . s45d

Energy,

FIG. 2. The dependence of shock formation distance on the initial slope for
various values of B /r for a linear density profile sr=1+yd.

FIG. 3. Evolution of a compression wave front for various values of density
gradient sKd for a linear density profile sr=1+Kyd. The value of B /r is kept
constant as 1; uu1s0du=0.1.
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S ]p

]t
+ u

]p

]x
D − a2S ]r

]t
+ u

]r

]x
D = sg − 1dsB0

2u2. s46d

These equations form a hyperbolic system, and along with
the equation of state, they completely describe the flow. The
undisturbed medium is assumed to be at rest. To study the
propagation and distortion of a wave in the medium, these
equations are manipulated and written along their character-
istics in the st ,xd plane

d+u

dt
+

1

ra

d+p

dt
+

ua

A

dA

dx

= F sg − 1du − a

ra
GsB0

2u on C+:
d+x

dt
= u + a , s47d

d−u

dt
−

1

ra

d−p

dt
−

ua

A

dA

dx

= − F sg − 1du + a

ra
GsB0

2u on C−:
d−x

dt
= u − a . s48d

Using the wave front expansion technique described in Sec.
II B, and comparing the coefficients of j0 and j1, one finds

j0 terms,

a0sr08 − r1d + r0u1 = 0, s49d

p1 = r0u1a0, s50d

sp08 − p1d − a0
2sr08 − r1d = 0; s51d

j1 terms,

sr08 − r1da0A1 + A0sṙ1 − r2a0d + r0A0u2 + 2r0A1u1

+ 2r1u1A0 = 0, s52d

− r1u1a0 + r0su̇1 − u2a0d + r0u1
2 + p2 = − sB0

2u1, s53d

ṗ1 − a0p2 + p1u1 = 2a0a1sr08 − r1da0 + a0
2sṙ1 − r2a0

+ r1u1d . s54d

The matrix formed by the coefficients of first derivatives in
Eqs. s49d–s51d is singular. Hence, the first set of equations
reduce to p08=0, which is as expected in a quiescent medium.

Similarly, coefficients of the second derivatives in Eqs.
s52d–s54d form a singular matrix. Hence on elimination of
second derivatives, Eqs. s52d–s54d yield, after some manipu-
lation:

du1

dy
+ F1

2

a08

a0

+
1

2

A08

A0

+
1

2

sB0
2

r0a0
Gu1 +

g + 1

2a0

u1
2 = 0. s55d

This equation can be rewritten in linear form as

d

dy
S 1

u1
D − F1

2

a08

a0

+
1

2

A08

A0

+
sB0

2

2r0a0
G 1

u1

=
g + 1

2a0

. s56d

The solution of Eq. s53d is given by

1

u1syd
=

1

u1s0d
IFs0d
IFsyd

+
g + 1

2a0

1

IFsyd
E

0

y
IFsŷd

a0

dŷ , s57d

where

IF =
1

Îa0A0

expF−
sB0

2

2
E

0

y
dŷ

r0a0
G . s58d

Shock forms when uu1s0du→`. Therefore the location for
shock formation can be obtained from the following expres-
sion:

1

uu1s0du
=

g + 1

2a0s0d
E

0

ys Fa0s0d
a0syd

G3/2FA0s0d
A0syd

G1/2

3expS−
sB0

2

2
E

0

y
dŷ

r0sŷda0sŷdDdy . s59d

The exponential term in Eq. s59d can be evaluated for spe-
cific density profiles. For example, if r0syd= smy+cd2, Eq.
s59d reduces to

1

uu1s0du
=

g + 1

2a0

r0s0ddE
0

y F r0syd
r0s0d

G«FA0s0d
A0syd

G1/2

dy , s60d

where d=−sB0
2 /4mÎgP0 and «=3/4+d.

First, the case of a constant-area duct is considered. If «

is greater than zero, when the density is increasing, the inte-
gral diverges. Consequently, every compression wave travel-
ing in such an environment will steepen after some finite
distance. This also leads to a decrease in shock formation
distance as compared to the case with constant density. On
the contrary, the shock formation distance increases as com-
pared to the constant density case, when « is negative. In the
presence of a negative density gradient, « can only be posi-
tive. In this situation, the integral will converge, and there-
fore, the initial slope of the wave front must exceed a mini-
mum value in order to steepen into a shock.

For the case of a wave moving into a gas with uniform
density, it can easily be seen that shock formation distance in
a convergent duct is less than shock formation in a constant

FIG. 4. The dependence of shock formation distance on the initial slope for
various values of density gradient sKd for a linear density profile sr=1
+Kyd. The value of B /r is kept constant as 1. Note that for the case of K

=−1, shock forms only for high values of uu1s0du.
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area duct. On the other hand, in the case of divergent ducts,
compression waves may or may not become shocks depend-
ing on the nature of area variation.

V. SUMMARY

The steepening of fast magnetosonic waves into shocks
is studied using the wave front expansion technique. A
closed form solution for the steepening of the leading edge
of wave front is obtained for a perfectly conducting fluid.
Also, expressions for time and location of shock formation
are obtained.

It is shown that the shock formation distance in a con-
vergent duct is always less than the shock formation distance
in a constant-area duct with uniform density. However, for
divergent ducts, compression waves may or may not become
shocks depending on the area variation of the duct. For ducts
diverging very rapidly, a compression wave front will
steepen to form a shock if the magnitude of the initial slope
exceeds a certain value. However for a duct that is diverging
less rapidly ssuch as a conical hornd, any wave front can
steepen into a shock given sufficient length.

For a stratified medium, it is shown that as long as the
density has a nonzero, finite value at infinity, any disturbance
will steepen to form a shock. It is shown that the effect of
magnetic field is to cause early shock formation. It is also
shown that as the density gradient increases, shock formation
is delayed. In the limit of magnetic pressure being much
larger than the hydrodynamic pressure, the nonlinearity pa-
rameter reduces to 3/2, as the fluid behaves as if it has a
ratio of specific heats of 2. Finally an expression for the

evolution of the leading edge of wave front traveling in a
weakly conducting gas is obtained.

The results obtained from this analysis can be used as
bench marks for checking the accuracy of numerical codes
for MHD flows.
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