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Abstract: The metabolome of an organism depends on environmental factors and intracellular regulation

and provides information about the physiological conditions. Metabolomics helps to understand

disease progression in clinical settings or estimate metabolite overproduction for metabolic engineering.

The most popular analytical metabolomics platform is mass spectrometry (MS). However, MS

metabolome data analysis is complicated, since metabolites interact nonlinearly, and the data

structures themselves are complex. Machine learning methods have become immensely popular for

statistical analysis due to the inherent nonlinear data representation and the ability to process large

and heterogeneous data rapidly. In this review, we address recent developments in using machine

learning for processing MS spectra and show how machine learning generates new biological insights.

In particular, supervised machine learning has great potential in metabolomics research because of

the ability to supply quantitative predictions. We review here commonly used tools, such as random

forest, support vector machines, artificial neural networks, and genetic algorithms. During processing

steps, the supervised machine learning methods help peak picking, normalization, and missing data

imputation. For knowledge-driven analysis, machine learning contributes to biomarker detection,

classification and regression, biochemical pathway identification, and carbon flux determination.

Of important relevance is the combination of different omics data to identify the contributions of the

various regulatory levels. Our overview of the recent publications also highlights that data quality

determines analysis quality, but also adds to the challenge of choosing the right model for the data.

Machine learning methods applied to MS-based metabolomics ease data analysis and can support

clinical decisions, guide metabolic engineering, and stimulate fundamental biological discoveries.

Keywords: machine learning; MS-based metabolomics; metabolic engineering; synthetic biology;

metabolic flux analysis; multi-omics

1. Introduction

Metabolomics is a rapidly emerging field aiming to identify and quantify cellular metabolites.

Together with genomics, transcriptomics and proteomics, metabolomics provides valuable insights into

the composition of organisms. Mass spectrometry (MS)-based metabolomics is frequently used because

of a wide analyte coverage, high sensitivity, high selectivity and high throughput. Metabolomics raw

data are inherently complex, and continuous improvements of analysis pipelines are necessary for
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optimal information retrieval. The complexity stems from the systemic linear and nonlinear interactions

among metabolites and the structure of spectrographic data. The challenges associated with the

structure of MS data include features (e.g., peaks) typically outnumbering the samples, high noise

levels, batch effects during measurements, and missing values. Hence, the metabolomics community

has always been eager to adopt new mathematical and computational tools to improve data analysis.

Here, we will focus on the potential of machine learning (ML) to support metabolomics data analysis

and show the ability of ML to resolve nonlinear relationships and process large heterogeneous datasets.

Moreover, we will focus on supervised ML approaches that provide quantitative predictions and are

suitable for hypothesis-driven research [1].

In ML, statistical models are trained on data to make reasonable predictions on unknown data.

The ML tools use different algorithms and Table 1 provides a brief overview to commonly used

supervised ML models. The ‘overfitting risk’ describes the tendency of a statistical model to fit noise in

the training samples, eventually leading to performance losses on the test data. Note, while Table 1

indicates the overfitting tendencies of a ‘typical’ ML tool, each ML tool can be set-up from linear

to highly nonlinear. For example, an Artificial Neural Network (ANN) with only linear activation

functions is but a linear multivariate analysis, and the Random Forest (RF) will represent complex and

possibly noisy relationships when implemented with deep decision structures. The item ‘interpretation’

judges how direct the feature is connected to the target value prediction and thus allows direct

biological understanding of the decision. Methods transforming features into latent variables impede

the interpretation of individual feature contributions to the prediction. The ‘features/sample’ indicate

how robust the ML tools are when there are more features than samples observed, as is common

in MS spectrometry. Finally, the ‘implementation’ indicates how easily a running pipeline can be

generated reflecting factors such as data processing, and the complexity of hyperparameter choices.

The different qualities of the ML tools become particularly exposed when working on diverse data,

a topic discussed later.

Nonlinear data analysis was applied to metabolomics since its origins. Among the first ML methods

applied were ANNs: in 1990, Curry and Rumelhart published ‘MSnet’ to distinguish metabolite

composition classes [7] and ANNs were continuously applied and improved [8–10]. In the late 90s,

Genetic Algorithms (GAs) were employed for biomarker identification and to discover interpretable

correlations in MS data [6,9]. RF and Support Vector Machines (SVM) entered metabolomics a few

years later [11–13]. Since then, the frequency of ML-related terms in the metabolomics literature is

constant compared to all metabolomics articles (Figure 1). Publications on metabolomics have increased

explosively since 2000, with currently over 17,000 publications (Figure 1, green bar). While articles

with ML tools grew with a similar rate compared to the overall metabolomics articles, the analytical

approach of projection to latent structure (aka Partial Linear Regression, PLS) increased even stronger

and dominates the metabolomics analysis. Among the ML tools, the popularity of GAs dropped while

RFs experienced the largest overall growth, and ANNs grew particularly during the most recent period.

ML has made rapid progress and now supplies a diverse spectrum of algorithms. Most of the

ML tools developed have user-friendly interfaces and enable chemometricians to test various ML

solutions and improve the applications for spectral analysis. For example, the Scikit-learn environment

in Python provides functions for implementation, along with excellent documentation [14]. The Python

library TPOT is an ML support system with an automated generation of tree-based predictors [15].

MS data analysis guides and add-ons for tools with a visual interface were published for WEKA [16]

and KNIME [17]. As mentioned, ANN-based analysis is rapidly evolving. Many data analysis fields

have embraced ANN, fueled by the availability of large datasets, hardware developments and the

development of novel algorithms. New methods evolved from ANN, including convolutional neural

networks (CNNs) suited for peak characterization and encoder–decoder systems suited for latent

variable projections. Several software tools help the implementation of ANN-based data analysis,

for example, Keras with TensorFlow implementation, Theano, Caffe, or Pytorch [18]. Additionally, the
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unabated interest in ANN produces a vast source of educational material and ‘massive open online

courses’ (MOOC).

In this review, we give a summary of the recent developments of supervised machine learning for

metabolomics analysis. Specifically, we focus on random forest (RF), support vector machine (SVM),

artificial neural network (ANN), and genetic algorithm (GA). Figure 2 shows the metabolomics workflow

and the steps benefitting from ML. First, we discuss the procedures of data processing that have

benefitted from ML, including peak picking and integration, metabolite annotation, data normalization,

and imputation. We continue to examine data to knowledge processes, including biomarker detection

and classification, metabolomics–ML pathway analysis, interactions with mechanistic models, and

multi-omics integration. We conclude by highlighting the need for standardization and benchmarking

of ML applications for their efficient dissemination.

Table 1. Description of important supervised statistical models.

Supervised ML Model Advantage Disadvantage

PLS—Projection to Latent Structure/Partial Linear Regression [2]

 

PLS is a supervised method to construct
predictive models when the factors are
collinear. PLS-DA is an extension of
PLS that can maximize the covariance
between classes. Orthogonal PLS
(OPLS) is an extension to increase latent
feature interpretability.

Overfitting risk:
Low
Interpretation:
High
Features/sample:
High
Implementation:
Easy

Collinear data

RF—Random Forest [3]

 

 

Composed of several decision trees.
Each decision tree separates the samples
according to the measured feature
properties. Different trees use a random
subset of samples and features for
classification.

Overfitting risk:
Medium
Interpretation:
High
Implementation:
Easy

Features/sample:
Low

SVM—Support Vector Machine [4]

 

A boundary is determined that
separates the classes. For nonlinear
separation, the data is augmented by
additional dimensions using a kernel
function (Φ), often the Radial Basis
Function (RBF).

Features/sample:
High
Implementation:
Easy

Overfitting risk:
High
Interpretation:
low

ANN—Artificial Neural Network [5]

 

 
 

The features are transformed by hidden
nodes with a linear equation ‘z’ and a
nonlinear function ‘g.’ Several layers
may follow, each with nodes containing
transformations by functions ‘z’ and ‘g.’
The output is generated by a ‘softmax’
function.

Features/sample:
Medium

Overfitting risk:
High
Interpretation:
Medium
Implementation:
Complex

GA—Genetic Algorithm [6]

 

 

Solution space is searched by operations
similar to natural genetic processes to
identify suitable solutions. Fitness
function is defined to find the fittest
solutions. The fittest solutions are
subject to cross-over and mutations to
evolve towards the best solution.

Interpretation:
High

Overfitting risk:
High
Features/sample:
Medium
Implementation:
Complex
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Figure 1. History of machine learning (ML) in metabolomics. The graph shows the frequency of

articles mentioning ‘metabolomics’ (green bars) or ‘metabolomics’ and ‘multivariate’ (orange bars)

in the Web of Science for five-year intervals from 2000 to 2020. The pie charts represent different

statistical analysis approaches, and the absolute number represented by the pie charts is equal to the

‘multivariate’ bar (orange bars). We searched: RF: random forest (blue, ‘random forest’ and ‘decision

forest’), SVM: support vector machine (pink, ‘support vector machine’), ANN: artificial neural networks

(green, ‘neural network’ and ‘deep learning’), GA: genetic algorithm (yellow, ‘genetic algorithm’ and

‘evolutionary computation’), PLS: partial least squares (brown, ‘partial least squares’ and ‘projection to

latent’), and missing (grey). The missing fraction decreases continuously, indicating the adaptation of

nomenclature or the conformance of statistical analyses. We searched for ‘multivariate’ to assess the

overall number of metabolomics papers with a statistical analysis and obtained similar results for the

term ‘statistical’.

 

 

Figure 2. Mass spectrometry workflow with technical and analytical techniques. The MS investigation

begins with the definition of the design of the experiment, whether a comprehensive metabolic

overview is required, metabolite class identifications are sufficient or targeted metabolites are quantified.

The design determines the analytical methods that are distinguished by their metabolite separation.

The data processing includes peak processing, normalization and imputation and the contribution

of machine learning is discussed in Section 2. The data interpretation is covered in Section 3 and

deals with classification and regression, pathway analysis and multi-omics integration. Abbreviations:

GC: gas chromatography; LC: liquid chromatography; CE: capillary electrophoresis; IM: ion mobility;

DI: direct infusion; MALDI: matrix-assisted laser desorption ionization; MSI: mass spectrometry

imaging; DART: direct analysis in real time.
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2. Machine Learning for Data Processing

Data processing, including baseline correction, noise filtering, peak detection, and alignment,

is used for precise metabolite annotation and quantification [19]. There are more than 120 million

compounds available in the universal compounds databases such as PubChem [20], ChemSpider [21],

or the Chemical Abstracts Database with approximately 1–2 million compounds with biological

relevance [22]. Peak annotation is among the biggest obstacles in metabolomics because less than 20%

of the detected peaks were annotated in non-targeted metabolomics [23]. For the metabolites cataloged

in databases (Table 2), annotation is accurate and efficient (reviewed by [24]). Since the mass spectra

from structural isomers could be very hard to distinguish, it is crucial to verify the library search

results with a reference chromatographic retention and spectrum of the authentic standard [25]. On the

other hand, the identification of ‘unknown’ metabolites is challenging due to the lack of commercial

standard compounds. Nowadays, many steps of data processing are provided by vendors of analytical

equipment. In addition, there are several software tools for manual data processing, as reviewed by

O’Shea and Misra (2020) [26].

Prior to statistical analyses, all data should be normalized to exclude sample-to-sample variations,

especially when integrating results from different batches or different analytical instruments.

In the following, we discuss the different data processing steps, including (i) peak picking

and integration, (ii) metabolite annotation, (iii) normalization (incl. scaling), and (iv) missing

data imputation. Data scaling or transformation are frequently used to adjust biases among

various metabolites and to reduce heteroscedasticity in high-dimensional metabolomics data [27].

Afterwards, multivariate analysis methods are frequently used to get a general view of the dataset and

to reveal the relevant metabolites. During model development, overfitting can limit the predictive

capacity, and cross-validation is always required [2,28]. After data processing, the final data can be

used to get new insights into biological processes.

Table 2. Available spectral database for metabolite annotation *.

Database Description URL

HMDB [29]
114,193 metabolite entries including both

polar and non-polar metabolites
https://hmdb.ca

LMSD [30] 43,665 lipid structures with MS/MS spectra www.lipidmaps.org/data/structure

METLIN [31]

961,829 molecules (lipids, steroids, plant and
bacteria metabolites, small peptides,

carbohydrates, exogenous drugs/metabolites,
central carbon metabolites and toxicants).

Over 14,000 metabolites have been
individually analyzed and another 200,000

have in silico MS/MS data

http://metlin.scripps.edu

isoMETLIN [32]
All computed isotopologues derived from
METLIN based on m/z values and specified

isotopes of interest (13C or 15N)
http://isometlin.scripps.edu

NIST [33,34]
Reference mass spectra for GC/MS,

LC–MS/MS, NMR and gas-phase retention
indices for GC

https://chemdata.nist.gov

MassBank [35]
Shared public repository of mass spectral data

with 41,092 spectra
https://massbank.eu/MassBank

MoNA
200,000+mass spectral records from

experimental, in silico libraries and user
contributions

https://mona.fiehnlab.ucdavis.edu



Metabolites 2020, 10, 243 6 of 25

Table 2. Cont.

Database Description URL

mzCloud
More than 6 million multi-stage MSn spectra

for more than 17,670 compounds
https://www.mzcloud.org

PRIME [36,37]
Standard spectrum of standard compounds
generated by GC/MS, LC–MS, CE/MS and

NMR
http://prime.psc.riken.jp/

Golm metabolome [38]
2019 metabolites with GC-MS spectra and

retention time indices
http://gmd.mpimp-golm.mpg.de

GNPS [39] Community database for natural products https://gnps.ucsd.edu

ReSpect [40]
Over 9000 MS/MS spectrum of

phytochemicals
http://spectra.psc.riken.jp

* Adapted and updated from An PNT et al. [41].

2.1. Peak Picking, Integration and Annotation

Several ML-based approaches were developed to process and select chromatogram peaks (Table 3).

Peaks have a strong local correlation, and convolutional neural networks (CNNs) are popular to

process, select and integrate peaks [42,43]. Peak picking can be improved if the retention time is

known. The ab initio prediction of metabolite retention time is a complex problem because unknown

subsets of metabolite atoms are involved. In the first step of retention time prediction, the structural

information is encoded in a vector format, e.g., with a quantitative structure–retention relationship

(QSRR) [44,45] or molecular fingerprints [46]. Bouwmeester et al. (2019) [47] conducted an illustrative

comparison of different ML approaches for LC retention time prediction. The authors extracted

151 features from the SMILES notation to train seven linear and nonlinear models and found best

performance for ensemble approaches of combinations of multiple ML tools, while ANN and SVM also

performed well alone [47]. Surprisingly, for retention time prediction based on molecular fingerprints,

ANNs were only marginal better compared to selecting a retention from the most similar known

fingerprint [48]. While data preprocessing increases the information content of the raw data and allows

for more complex analysis, methods were developed to bridge from raw spectral data directly to

phenotype characterization. Zhang et al. [49] used unprocessed m/z spectra and trained a CNN model

called ‘DeepSpectra’ for single-value regression outputs like biomass or protein content from targeted

metabolomics of environmental samples.

We give a brief update adding to recent illustrative reviews on ML-assisted metabolite annotation,

including fragmentation prediction [23,50]. A prerequisite for molecular structure-based analysis

methods is the conversion of the chemical structure into a molecular fingerprint in the form of

a standardized vector with binary elements and defined length. The mutual conversion of spectrum

and fingerprint started with SVM [51] and eventually developed as the ‘SIRIUS’ annotation tool [52].

We illustrate the benefit of recently published neuron-based ML tools with two examples: (i) the

prediction of MS spectrum from fingerprints by ‘NEIMS’ and (ii) the prediction of fingerprints from

MS spectrum by ‘DeepEI’. Starting from the fingerprint of the 2017 NIST Mass Spectral Main Library,

‘NEIMS’ predicts the MS spectrum for pure metabolites [53]. The fingerprint vector is non-local:

neighboring vector elements code for different chemical properties while distant elements can encode

similar properties with respect to MS fragmentation. On non-local feature vectors, ANNs perform well

because the hidden nodes connect all vector elements to identify predictive combinations. In contrast,

the spectral information is local and CNNs excel in the analysis. Thus, the CNN approach in ‘DeepEI’

tackles the reverse challenge, to predict fingerprints from spectrum, and indeed both strategies

can be combined [54]. A new approach used text mining to associate fragmentation groups with

metabolite candidates. The underlying assumption is that re-occurring peak patterns represent coherent

substructures and can be associated to published metabolite spectra [55,56].
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Table 3. ML tools for data processing since 2019.

Step ML Tool Example Ref.

Peak
picking/integration

SVM
WIPP software: optimization of peak detection,

instrument and sample specific
[57]

ANN Peak quality selection for downstream analysis [58]

CNN
Trace: two-dimensional peak picking over retention time

and m/z
[59]

CNN peakonly software: peak picking and integration [60]
CNN Peak classification for subsequent PARAFAC analysis [43]

CNN
DeepSWATH software: correlation between parent
metabolites and fragment ions in MS/MS spectra

[61]

CNN
Representational learning from different tissues,
organisms, ionization, instruments for improved

classification on small datasets
[62]

CNN
‘DeepSpectra’: targeted metabolomics on environmental

samples, raw spectra analysis
[49]

CNN
Compound recognition in complex tandem MS data tested

with several ML tools
[63]

Retention time
prediction

ANN
Metlin-integrated prediction of metabolite retention time

extrapolation to different chromatographic methods
[48]

Ensemble
Performance test of multiple ML algorithms for retention
time prediction based on physical properties, ANN and

SVM perform well, ensemble training is optimal
[47]

Metabolite
annotation

SVM
Input–output kernel regression (IOKR) to predict

fingerprint vectors from m/z spectra, mapping molecular
structures to spectra

[64]

SVM CSI:Fingerprint:Structure mapping [52]
Text mining MS2LDA software: detection of peak co-occurrence [56]

Text mining
MESSAR software: automated substructure

recommendation for co-occurring peaks
[55]

ANN
NEIMS software: ‘neural electron-ionization MS’ spectrum

prediction
[54]

ANN
DeepMASS software: substructure detection by
comparing unknown spectra to known spectra

[65]

CNN DeepEI software: fingerprint prediction from MS spectrum [54]

Normalization RF
SERRF software: Systematic error removal based on

quality control pool samples
[66]

RF
pseudoQC software: simulated quality control sample

generation, preferably with RF
[67]

SVM Improvement of statistical analysis by SVM normalization [68]

Imputation RF
Best overall performance of RF for unknown missing

value type
[69]

Bayesian Model
BayesMetab: classification of missing value type, Markov

chain Monte Carlo approach with data augmentation
[70]

2.2. Normalization Procedures

For high-quantity samples, metabolite-specific degradation dynamics and instrument sensitivity

declines lead to nonlinear signal variations. Quality control/quality assurance (QC/QA) samples

measured throughout the analysis are used to exclude inter- and intra-batch variations while preserving

biological information. ML-assisted normalization methods mainly employ SVM- and RF-based

regression. Normalization based on SVM has shown mixed performance. SVM outperformed

linear and polynomial regression for PCA; however, OPLS-DA showed clear signs of overfitting [68].

The limitation of most existing QC-based normalization methods, including polynomial regression and

SVM, is the underlying assumption that the systematic error in each variable is only associated with

the batch effect, the injection order, and/or processing sequence. Fiehn and co-workers additionally

accounted for error correlations between compounds using the normalization procedure: systematic

error removal using random forest (‘SERRF’) [66]. This method assumed that the intensity drift
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of a metabolite can be summarized and predicted by batch effects, injection orders, and intensity

drifts of other compounds. During a comprehensive comparison of normalization methods, ‘SERRF’

outperformed all other existing methods, including SVM and polynomial regression, and significantly

reduced the average technical errors to 5% relative standard deviation. Subsequent multivariate

analysis, including PCA and PLS-DA, revealed a biological variance of interest without overfitting.

Yet, the authors also suggested that ‘SERRF’ performance may vary or not be necessary for small

datasets (fewer than 500 samples).

If quality control samples are absent, they can even be simulated from the data. The procedure is

performed by ‘pseudoQC’ with the goal to reduce data variation [67]. SVM, RF and linear models were

trained on data with low variation but only the nonlinear methods decreased the variation in the test

data. A subsequent PCA indicated optimal separation by the RF normalization and was recommended

by the authors as the first-choice method for metabolomics data by ‘pseudoQC.’ Together, all reports

reached the same agreement that nonlinear regression methods are more appropriate than linear

methods for quality-control based normalization to remove batch effects of large-scale metabolomics

data. Although SVM and RF have been examined only in a few applications, RF seemed to perform

better while dealing with overfitting. Nevertheless, sample size and the number of quality control

samples influenced the performance of the normalization process, and further investigations are

needed. In summary, for normalization several methods should be tested, while choosing for the

best trade-off for local peak properties, like standard deviation, and the performance of subsequent

multivariate analyses.

2.3. Missing Data Imputation

MS-based analytical methods have a significant advantage in metabolite coverage, but a significant

proportion of data are missing values. Notably, LC–MS missing data could be even in the range of

30–50% [71,72]. Different types of missing data are classified. In most cases, data are missing not at

random (MNAR) owing to real absence of the compound in the samples or peak detection failure

of low-concentration metabolites. There are two other types of missing data, including missing at

random (MAR) and missing completely at random (MCAR). While MAR is usually caused by a failure

in data preprocessing, such as inaccurate peak detection and deconvolution of co-eluting compounds,

MCAR is mainly due to the data acquisition process like incomplete derivatization or ionization [73].

Data imputation is the procedure using the information of existing data to substitute the missing values

without changing the whole data structure.

The imputation of missing values is necessary because most statistical data analysis approaches

cannot process null information and a reasonable imputation strategy introduces less bias compared to

feature removal. Various strategies exist to replace missing values with realistic estimates; however,

the optimal strategy depends on the missing value type and also on the subsequent statistical analysis.

Thus, the ability to discriminate between the missing value origins is advantageous, although often

not known a priori. Shah et al. [70] used a Bayesian model to first discriminate between random

and not random missing data, and to sample an imputed distribution using a Markov chain Monte

Carlo procedure. Independent of the Bayesian model approach, the best performing procedure was

achieved with random forests [69]. Random forest performs best for MAR and MCAR, in combination

with subsequent multivariate statistics, like PCA [74]. ANN was inferior to RF, the computation time

was inadequately high, and each imputed data needed training of a dedicated ANN estimator with

limited data [75]. Imputation is fundamentally a statistical problem; an appropriate sample is taken

from the statistical distribution of a metabolite; hence, ML methods are unlikely to replace linear

statistical approaches.
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3. Biological Insights with Metabolomics

In this section, we will discuss various topics for data analysis such as biomarker detection,

classification and regression, pathway inference, the combination with mechanistic models, and

multi-omics integration. The results will testify to the impressive predictive capacities of ML approaches,

but will also reiterate that there is no predefined route to data analysis. Our examples provide broad

coverage of the field; for more clinically oriented ML-assisted metabolomics analysis; see the review by

Lee and Hu [76]. The ML approaches are statistical methods and thus extract statistical information

from the data: their underlying question is: ‘who correlates with whom?’ In the following sections,

we will explore the extent to which ML models were used to gain knowledge.

Given the multitude of ML approaches, we are provoked to ask: ‘are there guidelines to

select appropriate ML approaches?’ The following sections will reveal the complexity of the question,

and it is instructive to clarify the relations among the different ML approaches to judge their performance

and requirements. The PLS approach is fundamentally an ANN with one hidden node and linear

activation functions [77]. The nonlinear SVM (e.g., with RBF) is similar to an ANN with a single

hidden node and nonlinear activation function (e.g., with ReLU). The SVM applies the nonlinearity

directly on the variables, whereas the ANN acts on linear variable interactions (the latent variables) [78].

The GA resembles a sparse ANN with more complex and diverse activation functions and the use

of evolutionary strategies to improve. By contrast, the ANN uses appointed functions for smooth

analytical, gradient-based optimization (backpropagation). The RF is conceptually different and

cannot be interpreted in a formulaic way; see Table 1 for a brief description. An overview of articles

with ML-assisted metabolomics analysis published since 2019 is given in Table 4. The majority of

articles use multiple ML methods for data analysis and usually recommend the optimal algorithm.

Overall, however, each ML approach is recommended eventually, even for comparative studies with

diverse datasets no definite front-runner can be nominated.

Table 4. Data to knowledge procedures with ML support published from 2019. In some cases, different

datasets (DS) are used for samples. Spec-Type—spectrometry type; Ens.—ensemble ML approach;

Tar.—targeted; SCMS—single-cell MS; Bench. data—benchmark datasets; Sim.—simulated.

Biological
Insight

Optimal
ML

Other
Models

Samples
Dimension
Reduction

Spec-Type Comment Ref.

Class +
biomarker

SVM
LDA,
QDA

4 DS:
30, 280, 240,

183
PCA IR

Effect of variance and
covariance on

classification of
infrared spectra.

[79]

SVM
RF,

PLS-DA
80 RFE LC–MS

Serum identification
of lipids, glycans,

fatty acids.
[80]

RF N.A. <100 N.A. SCMS
Single-cell MS on

drug response,
pathway inference.

[81]

RF
SVM,
ANN,
CNN

703 LASSO LC–MS
Serum metabolomics

related to chronic
kidney disease.

[82]

RF N.A.
3 DS:

39, 160, 79
Peak-binning GCMS

Chromatogram peak
ranking for sample

discrimination.
[83]

RF N.A. 217
Human
selection

LC–MS

Metabolite selection
based on expert

classification with
tinderest Shiny-App.

[84]
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Table 4. Cont.

Biological
Insight

Optimal
ML

Other
Models

Samples
Dimension
Reduction

Spec-Type Comment Ref.

ANN
PLS-DA,

RF
SVM

10 DS:
968, 253, 668,
59, 184, 97,
80, 100, 121,

83

N.A.
Bench.
data

Thorough comparison
of ML approaches on
different published

targeted MS datasets.

[78]

GA RF 60 N.A. LC–MS
Wine origin

classification.
[85]

Ens. RF, SVM 111
Correlation,
information

filter
N.A.

Use of symbolic
methods, analysis of

spectrogram.
[86]

Regression Ens. RF, ANN
2 DS:
36, 60

N.A. Assay

Optimization of gene
expression for

metabolite
overproduction.

[87]

Pathway
inference

RF Bayes 500 N.A. Sim.
Metabolite correlation
network on simulated

data.
[88]

RF
PLS,

Bayes
339

Information
filter

GCMS

Mapping of metabolic
correlation networks

to metabolic
pathways.

[89]

Bayes N.A.
2 DS:

8711, 384
N.A. Sim.

‘PUMA’: Probabilistic
modeling for
Untargeted

Metabolomics
Analysis. Simulation
of pathway activity,

metabolite
association, and

spectra.

[90]

Multi-omics
integration

ANN SVM
2 DS:

600, >10,000
Encoder-decoder LC–MS/MS

Multi-omics
projection to 20–70

latent variables.
Classification of latent

variables.

[91]

ANN N.A.

2 DS:
191 in: 1692

out, 51 in:
143 out

Encoder-decoder LC–MS

Correlation of gut
bacteria level to
metabolite level,

unsupervised
clustering of latent

variables.

[92]

Text
Mining

N.A.

4 DS:
138 in: 462
out, 466 in:
85 out, 902

in: >10k out,
562 in: > 10k

out

N.A.
Bench.
data

‘mmvec’: microbial
sequence to

metabolite occurrence
mapping with as little

as 166 microbes
mapped to 85
metabolites

[93]

Bayes N.A. 25 N.A Sim.

Estimation of
metabolic kinetics

based on multi-omics
data for lysine

synthesis.

[94]

Bayes N.A. 22 N.A.

Estimation of
metabolic kinetics

based on multi-omics
data

[95]
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3.1. Biomarker Detection, Classification, and Regression

We start by introducing the concepts of this section with an illustrative example of the microbes

and metabolites in the digestive system. Two studies on the relation of gut microbes and ambient

metabolome reveal how microbes predict metabolite concentrations, and how the latent variables

of an ANN provide interpretable biological information. The data sources combined are metabolite

feature concentrations and microorganism abundance. Le et al. [92] trained the microbe–metabolite

relation into an ANN with an encoder–decoder network. The microbe abundance was used as the

input and was mapped to a hidden layer, the latent variables, with a lower number of nodes to

represent microbial interactions. The latent variables generated the metabolite levels on the output,

and, interestingly, the latent variables contained clinically relevant information to discriminate bowel

disease conditions [92]. Morton et al. [93] used a neural network called ‘mmvec’ for analyzing the

co-occurrence of microbe–metabolite pairs. The approach can deal with compositional data, i.e., relative

concentration level, and data of different magnitudes in general. The method is broadly applicable and

was tested over a diverse set of microbiome benchmark datasets including soil biocrust, lung mucus and

digestive tract. The importance of the transformation method for scale invariance during preprocessing

of microbe–metabolite data was pointed out by Quinn and Erb [96]. The selection between joint and

independent probabilities of the bacteria determines the normalization parameter, which biases the

performance of the linear estimators in the comparison [97]. The examples testify to the capacity of ML

tools to serve biomarker detection, classification, and regression, and furthermore remind us about the

complexity of the data for which we need to find suitable preprocessing strategies.

While metabolomics data are dense, the information-rich features are only a small subset of all

detected features; moreover, the features frequently outnumber the sample size greatly. With too

many features, training of the ML algorithm takes longer, the risk of overfitting increases, and model

interpretability is compromised. Feature selection or feature extraction are dimensionality reduction

strategies to alleviate the dense data problem (Table 5). Feature selection describes methods that pick

features with the highest information and is generally useful for biomarker detection. Feature extraction

transforms the features into lower-dimensional latent variables. While retaining most of the information,

however, the latent variables generated by feature extraction are difficult to interpret because they have

no direct biological counterparts [98]. Feature extraction is useful when the features are not correlated,

and each feature is informative. When doing nonlinear data analysis, it is advisable to refrain from

overusing linear-based feature selection methods, like regularization, or Linear discriminant analysis

(LDA), because they remove the nonlinear features of complex interactions [98]. Particularly useful

dimensionality reductions for ML are Recursive Feature Elimination (RFE) for SVM, or encoder–decoder

systems for ANN. A related problem to dimensionality reduction is the identification of the most

predictive features for classification, ultimately resulting in biomarker detection, a topic excellently

reviewed by Xia et al. [99].

Table 5. Dimensionality reduction strategies. FS—feature selection; FE—feature extraction.

Type Method Description Advantages Disadvantages

Unsupervised method

FE
Principal Component

Analysis (PCA)

Unsupervised method to
transform data into axes that
explain maximum variability.
Returns orthogonal features.

Prior
Information:

None

Interpretation:
Low

FE Kernel PCA (k-PCA)
Transforms the data into a lower

dimension that is linearly
separable.

Correlation type:
Nonlinear data

Interpretation:
Low
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Table 5. Cont.

Type Method Description Advantages Disadvantages

FE Encoder–Decoder

ANN-based, the encoder maps
input to lower-dimensional latent
variables. The decoder uses latent

variables to generate output.

Correlation type:
Nonlinear data

Prior
Information:

None

Correlation
type:

Fails on
independent

data

Regularization

FS LASSO or L1

Supervised method to select
sparse features. Regularization
parameter (L1 penalty) can be

used for regression and
classification problems. The

coefficients (w) of the features (m)
are directly multiplied with the

regularization parameter (λ).

L1: λ
m
∑

k=0
wk

Interpretation:
High

Correlation
type:

Linear data
Note:

Minimum
selection of

features equal
to sample size

FS Ridge or L2

Supervised method to penalize
(L2 penalty) large individual

weights. The coefficients (w) of
the features (m) are squared and

multiplied with the regularization
parameter (λ).

L2: λ
m
∑

k=0
w2

k

Note:
Avoids

overfitting

Note:
Features are not

removed,
weights

indicate feature
importance

FS Elastic Net

Regularization method to retain
advantages of both L1 and L2

penalty.

EN: λ1

m
∑

k=0
wk+ λ2

m
∑

k=0
w2

k

Note:
Removes features

without
overfitting

Correlation
type:

Linear data

Discriminant Analysis

FE
Linear Discriminant

Analysis (LDA)

Supervised method to transform
data into axes, which maximizes
class separation. Assumes that

data is normal with common class
covariance.

Prior information:
Class labels

Correlation
type:

Linear data
Interpretation:

Low

Quadratic
Discriminant Analysis

(QDA)

Supervised classification similar
to LDA. Assumes that data is

normal but allows for differing
class covariance.

Correlation type:
Squared

nonlinear data

Not useful for
dimensionality

reduction

Sequential Feature Selection

FS
Recursive Feature

Elimination/Sequential
Backward Selection

At each step, the feature with
minimal contribution to the model
is dropped until required number

of features remain.

Interpretation:
High

Note:
Optimum not

guaranteed

The sample size is an important parameter that determines how well statistical interactions

can be resolved, and detailed guidelines are available for spectrographic experiments [100].

Typical metabolomics sample sizes are in the range of hundreds, with some below fifty and some

over one thousand (Table 4). On the lower limit, one study reported robust binary classification with

as little as three samples in each class for linear SVM with untargeted data derived from archaeal

cultivation and pig urine after traumatization [101]. ANN performed surprisingly well in a comparative

analysis, even with 46 case and 56 control samples in a targeted LC–MS analysis with 42 metabolic



Metabolites 2020, 10, 243 13 of 25

features [78]. Similarly, GAs were used for three-class classification with just 20 samples per class and

2700 metabolomics features detected in a high-resolution fingerprint analysis [85]. In this study, the GA

approach outperformed RF, probably due to the large potential feature number over the small sample

set. The problem of RF to deal with dense data with few informative features was also documented

by Mendes et al., 2019 [78], and the data hunger of RF compared to SVM and ANN was previously

identified [102]. Note that in Table 4, RF is only competitive in a study with Lasso-regularization of

the data, resulting in a rather linear problem with 703 samples [82]. Overall, Table 4 demonstrates

the practicality of ML approaches even for small sample sizes. However, not only the sample size is

important, but also data quality.

Binary classification problems are often simple enough that conventional statistical approaches

outperform machine learning. Mendez et al. (2019) [78] tested eight different linear and ML

approaches for their performance in binary classification on ten clinical datasets from targeted

metabolomics. Unsurprisingly, the classification results depend more on the data than the applied

algorithm. However, crucially, linear classifiers performed similar to SVM or ANN in the majority

of datasets. While overall SVM performed best and ANN nearly equally well, RF performed overall

poorly—apparently the problem was linearly separable, and only a small fraction of features contained

relevant information. Not all binary classifications are linearly separable, as Morais et al. [79] tested on

datasets from untargeted infrared spectroscopy with differing covariance using LDA, QDA, and SVM.

Only for an evenly distributed variance and correlating covariance was LDA competitive to QDA

and SVM.

Each ML tool applies a distinct strategy for statistical analysis and yields best performance when

fit to appropriate data structures. These data structures include frequency distributions or data types

like canonical or linear data, connected or independent data, which are often not known in advance.

Because each dataset is unique, and any data property can affect the performance of the different

statistical approaches, it is advisable to test multiple ML tools on the data. Notably, linear multivariate

analysis approaches like PLS need to be included as many reports showed their competitiveness.

The crucial consequence is that any model is just as good as the data, and careful experimental design

remains the strongest indicator for a good model [103].

3.2. Metabolomics to Pathways

ML is excellently positioned to analyze metabolomics data and has provided impressive

predictive competencies, but the knowledge gain, in general, is limited. The biological and chemical

disciplines preferably use mechanistic models to enable the testing of hypotheses and extrapolation

to experimentally inaccessible regimes. The most popular mechanistic models for metabolomics

data analysis are kinetic models and stoichiometric constraint-based models. The integration of ML

with constraint-based models was recently discussed [104,105]. Kinetic models can directly represent

metabolite concentration data to predict general properties like metabolic stability, sensitivities as well

as dynamic concentration changes. The most considerable disadvantage of kinetic models is the need for

substantial knowledge about enzymatic kinetic parameters, restricting their application to small systems,

particularly for signaling and regulation [106]. However, ML-based approaches are being developed

to alleviate the parametric bottleneck and to support mechanistic model formulation [107,108].

The ability of ML to predict pathway properties based on targeted metabolite information has

contributed to improving strains in metabolic engineering. Costello and Martin [109] simulated

metabolite dynamics by using metabolite and enzyme concentrations as input to predict the

concentration change to the next time-step to identify enzyme contributions to enhance limonene

and isopentenol production. They showed that with as few as two strains, the model was capable of

extrapolating reasonable dynamics. The procedure is based on the automated ML-pipeline ‘TPOT’ with

various data processing steps, linear statistics- and tree-based methods [15]. Other studies use ANN to

estimate the effect of gene expression factors when a complete characterization is combinatorically

infeasible. For example, finding the optimal ribosome binding site sequence for multiple recombinantly
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expressed enzymes is experimentally demanding because a large sequence space needs to be tested.

However, testing less than a hundred combinations allowed the ANN to derive a sequence that

significantly increased production of industrial relevant metabolites [87,110]. An alternative target is

promoter activity that was screened for increased productivity [111].

During pathway enrichment, metabolomics data are interpreted in the biological context to identify

active pathways. Pathway reconstruction is typically performed with genomic information of cataloged

enzyme activities and represents the general metabolic capabilities of an organism. With metabolomics,

pathway activities represent conditions after post-translational effects, like enzyme modifications or

allosteric regulation, thus providing much more representative information compared to genomics

or proteomics approaches. Current statistical approaches include MetScape or Mummichog [112].

A comparison of several tools for metabolite correlation network construction was performed by

Jahagirdar et al. [88]. The test data were simulated with a kinetic model of the arachidonic acid

degradation pathway and comprised 500 samples with 83 metabolites. The results showed an advantage

of RF methods and Bayes models over linear statistical approaches.

Toubiana et al. [89] used an RF to predict active pathways from metabolite correlation networks.

The authors associated metabolites and pathways and used the measured metabolite correlations

to calculate feature vectors based on metabolites for each pathway using statistical, graph- and

correlation network-related metrics. The RF was trained to classify activity from the feature vectors

of 169 organism-related active pathways from the MetaCyc databases, 85 non-active pathways,

and 85 random metabolite combinations. The approach is limited to the identified metabolites and

the predefined pathways for which the training was performed [89]. Hosseini et al. [90] weighted the

activity of a pathway by the likelihood that the metabolites are connected to the pathway. The authors

constructed a generative model that links pathway activity probabilities to metabolites and eventually

to measured spectral masses. Because the tool emphasizes metabolites that are unique for a pathway,

the predictions differ from standard enrichment analysis.

Metabolic flux analysis (MFA) based on targeted metabolomics of labeling experiments allows an

understanding of metabolic network properties. In MFA, the accumulation of 13C isotopically labeled

substrates within the metabolites, in combination with cellular physiology, allows for computing

intracellular metabolic rates and global flux distributions [113]. Machine learning has so far supported

MFA in two directions: (i) an analytic-based surrogate model and (ii) similarity-based flux identification.

The analytic-based surrogate model by Kogadeeva and Zamboni [114] is based on flux ratio analysis,

and a stoichiometric metabolic model with flux constraints is used to simulate thousands of surrogate

labeling distributions. Regression with a random forest procedure associates the surrogate labeling

data as input to the associated flux ratios. The approach is context specific to the network used to

generate the flux ratios, and the concept can be regarded to accelerate the identification of realistic

cellular flux distributions. While the ‘SUMOFLUX’ approach directly supports the flux prediction

from label information, the similarity-based flux identification by Wu et al. [115] is an alternative to

flux identification with constraint-based linear optimization. ‘mflux’ is an SVM-based regressor and

combines one-hundred measured flux distributions of different organisms. A web interface can be used

to generate likely central carbon flux distributions based on just ten features like species, reactor type,

and nutrient conditions. Metabolic flux analysis requires detailed mechanistic models to understand

labeling patterns, and therefore ML approaches with their un-mechanistic functions will instead take

a supporting role.

3.3. Multi-Omics Integration

Studies are no longer limited to a single omics level with the advent of increasingly faster and

cheaper high-throughput technologies. The integration of multiple omics levels will enhance our

understanding of the interactions among the different biological layers. The review by Noor et al. [116]

gives an overview of the different data-based and knowledge-based methods available for multi-omics

integration. In this section, we review the contributions of ML to the integration of multi-omics datasets
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and the tools available for metabolomics analysis along with the insights obtained. We conducted

a general morphological analysis and defined various categories relevant to the research of multi-omics

data integration [117]. The categories were used to construct the cross-consistency matrix (CCM)

(Table 6), where each cell contains references to studies exploring the categorical research space and

blanks reveal potential areas to explore and analyze in the future.

We defined five categories, namely, ‘data,’ ‘model,’ ‘integration method,’ ‘dimensionality

reduction,’ and ‘model organism.’ The ML approaches used for analysis are listed under the category

‘models’ (Table 6). Since metabolic analysis is mostly constrained to model organisms, this category

gives an overview of the published work. The method of integration differed among multi-omics

studies and was classified into three subcategories (Figure 3). The most common method for integration

is ‘post-analysis,’ in which each omics level was individually analyzed, and the results were only

subsequently correlated to understand the mechanism of regulation between each level. An ‘ensemble’

method modeled each omics level separately, and the weighted models are used to make the final

predictions. ‘Concatenation’-type integration simply concatenated the different omics features into

one feature vector and was analyzed by a single model. Integrating data using concatenation and

ensemble methods discovers data correlations across omics layers that are invisible to the post-analysis

approach. The post-analysis, however, is relevant for analyzing data from different experiments when

homogeneous data across omics sets are not available.

 

 

Figure 3. Strategies for multi-omics integration. Omics data can be combined in a single matrix with

all omics features, called ‘concatenation,’ or each omics measurement is separately analyzed, called

‘post-analysis integration,’ or the data is concatenated, but instead of a single ML model, many models

are trained and their results are combined to calculate the optimal response, called ‘ensemble.’.

Multi-omics integration increases the number of features with the addition of each omics level,

stressing the importance of dimensionality reduction. Cellular features are highly correlated, and

models assuming feature independence might perform poorly. Acharjee et al. [118] used RF models to

integrate metabolomics and lipidomics to predict clinical phenotypes and drug dosage. They observed

prediction improvements after dimensionality reduction on the integrated omics dataset. Similarly,

Manor et al. [119] used an RF to predict the plasma level of a disease biomarker with protein, metabolite,

and taxonomic features from the gut microbiome. Features ranked by the RF model built only on clinical

and microbiome data were compared to highly correlated features. The RF model identified highly

correlated features as well other novel features reported in other studiesand including other omics

data enhanced biomarker prediction [119]. Moreover, multi-omics integration improved single-omics

models for biomarker discovery [120] and disease identification [121].

Multi-omics analysis is more potent if mechanistic knowledge is used to connect the biological

layers, a procedure well suited for Bayesian models. The Bayesian model ‘iSchrunk’ samples metabolite
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concentrations based on kinetic parameters and served to generate surrogate samples for training

an RF-like classifier to estimate control coefficients [122,123]. A Bayesian approach with linlog kinetics

was used by St John et al. [94] to integrate metabolomics and enzyme concentration levels. The model

allowed detailed metabolic characterization, including control coefficients to guide rational strain

engineering. A Bayesian-type model was used by Liebermeister [95] to estimate combinations of

enzyme kinetic properties, thermodynamics, metabolite and enzyme concentrations, and intracellular

fluxes based on linear programming. An approach by Heckmann et al. [107] applied an ensemble of

models to elucidate enzyme kinetic parameters. The inputs were enzyme biochemical and structural

properties with network-based features to predict the enzyme turnover rates. The rates were used to

parameterize a genome-scale model with metabolic and gene expression reactions and resulted in an

improved representation of proteome data. The studies show the feasibility of generating large-scale

dynamic models with reasonable kinetic parameter estimates.

Many tools integrating multi-omics datasets have been published and implemented in other

research areas with the potential to be used with metabolomics data. ‘AutoOmics’ finds ANN

for each omics layer and converts the input into the latent variables. The final layers from each

omics technology are concatenated and used to train a final ANN model. ‘MixOmics’ is an

R package with tools for univariate, multivariate, and multi-omics analysis. Other tools use matrix

decomposition [124,125], graph-based methods [126–128], or integrate the omics data into genome-scale

metabolic models [129,130]. Overall, if enough data is available, ANN and RF methods are well suited

to capture nonlinearity and provide interpretability to understand the biological context.

4. Conclusions and Outlook

With an unprecedented accumulation of information, the relevance of machine learning intensifies

and new algorithms and tools mushroom. According to the No Free Lunch Theorem, no general

best-performing optimization algorithm can exist and thus there will always be competing algorithms

streamlined to sets of special problems [138]. While no one ML method is better than the other,

the model selection and performance depends on data properties and the experiment objective.

Thus, standardization and benchmarking are important. The Metabolomics Society proposed the

Metabolomics Standards Initiative (MSI) with community-agreed reporting standards, regularly used as

a publication requirement in peer-reviewed journals [139]. With an accelerating output of new methods,

the development of benchmark datasets becomes urgent. This is challenging because the benchmark

sets need to be widely accepted and representative of the data diversity in the field. However, once

available, benchmarks form the basis for a comparable documentation of statistical advances and

suitable data properties for new methods. These methods, tailored to technological advances boosting

data quality and quantity, will contribute to extract the full potential from metabolomics: to guide

clinical decisions and deepen our knowledge of metabolism.
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Table 6. Cross-consistency matrix with categorical research topics of multi-omics integration. M—metabolomics; T—transcriptomics; P—proteomics; F—fluxomics.

Data Integration Method Dimensionality Reduction Model Organisms

MT MP MTP MPF MTPF Concatenation
Post-Analysis

Integration
Ensemble PCA Regularization LDA SFE

Escherichia
coli

Danio
rerio

Saccharomyces
cerevisiae

Mammalian

Model

Partial least
squares

[131] [109] [132] [131,133] [132] [133] [132] [131]

Random
forest

[120] [119] [132] [122] [119] [118,120] [132] [118] [132] [118–120]

SVM [120,121] [132] [121] [120] [132] [121] [132] [120,121]

Artificial
neural

network
[132] [134] [134] [132,134] [134] [132]

Genetic
algorithms

[109] [109]

Bayesian
models

[94,95,122] [95] [95] [94,122]

Data

MT [121,131,133] [120] [120] [121] [131] [120,121]

MP [119] [135] [135] [109,135] [119]

MTP [132] [132] [136]

MPF [122] [94,122]

MTPF [137] [134] [137] [134] [134]

Integration
Method

Concatenation [121] [131] [119,121]

Post-analysis
integration

[135,137] [120] [118] [135] [118,120]

Ensemble [134] [134]

Dimensionality
reduction

PCA [135] [137]

Regularization [134] [132]

LDA [120]

SFE [118,121]
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Abbreviations and Terms

Activation Function The function that defines whether a neuron in a neural network is active.

Bayesian model Bayes theorem is used with prior probabilities of past events for prediction.

CNN
Convolutional neural networks are a special form of artificial neural networks,

strong when feature geometry is important as in images or spectral data.

Cross validation
Data is divided into folds, where every fold is used as a test set and average

metrics across the folds are used to evaluate model statistics.

Feature Observed variable used as input to the model for prediction.

Hyperparameter Also known as metaparameters and used for tuning of the model training.

Latent variables Features derived by mathematical transformation of features.

Overfitting

The model performs well on the training data but poorly on unknown data.

Overfitting increases with variables and nonlinearity of the statistical model.

Cross validation identifies overfitting.
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