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Abstract. For a matrix A ∈ Rn×n whose off-diagonal entries are nonposi-
tive, there are several well-known properties that are equivalent to A being an
invertible M -matrix. One of them is the positive stability of A. A generaliza-
tion of this characterization to partially ordered Banach spaces is considered
in this article. Relationships with certain other equivalent conditions are de-
rived. An important result on singular irreducible M -matrices is generalized
using the concept of M -operators and irreducibility. Certain other invertibility
conditions of M -operators are also investigated.
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