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d Faculté des Sciences, de la Technologie et de la Communication, University of Luxembourg, Luxembourg.
eTheoretical and Applied Mechanics, School of Engineering, Cardiff University, Cardiff CF24 3AA, Wales, UK.

fDepartment of Mechanical Engineering, University of Western Australia, Australia.

SUMMARY

The extended finite element method (XFEM) was introduced in 1999 to treat problems involving
discontinuities with no or minimal remeshing through appropriate enrichment functions. This enables
elements to be split by a discontinuity, strong or weak and hence requires the integration of discontinuous
functions or functions with discontinuous derivatives over elementary volumes. Moreover, in the case of
open surfaces and singularities, special, usually non-polynomial functions must also be integrated.A variety
of approaches have been proposed to facilitate these special types of numerical integration, which have been
shown to have a large impact on the accuracy and convergence of the numerical solution. The smoothed
extended finite element method (SmXFEM) [1], for example, makes numerical integration elegant and
simple by transforming volume integrals into surface integrals. However, it was reported in [1, 2] that
the strain smoothing is inaccurate when non-polynomial functions are in the basis. This is due to the
constant smoothing function used over the smoothing domains which destroys the effect of the singularity.
In this paper, we investigate the benefits of a recently developed Linear smoothing procedure [3] which
provides better approximation to higher order polynomial fields in the basis. Some benchmark problems
in the context of linear elastic fracture mechanics (LEFM) are solved to compare the standard XFEM,
the constant-smoothed XFEM (Sm-XFEM) and the linear-smoothed XFEM (LSm-XFEM). We observe
that the convergence rates of all three methods are the same. The stress intensity factors (SIFs) computed
through the proposed LSm-XFEM are however more accurate than that obtained through Sm-XFEM. To
conclude, compared to the conventional XFEM, the same order of accuracy is achieved at a relatively low
computational effort. Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The major difficulty associated with solving problems involving evolving discontinuities is the

meshing and re-meshing required as the discontinuities evolve in time. This difficulty is exacerbated

when singularities are also present, as is the case in crack growth simulations. These difficulties are

somewhat alleviated by the introduction of enrichment functions to represent the discontinuities and

the singularities at the patch level, in finite elements or meshfree methods. A first approach to treat

discontinuities without an explicit meshing was proposed as early as 1995 in [4]. A much more

versatile approach was presented a few years later in the form of the extended finite element method

(XFEM) [5] [6] by exploiting the partition of unity property identified by Melenk and Babuška
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[7]. Partition of unity enrichment for problems with discontinuous solutions is now widely used

both in academia and in industrial practice [8, 9, 10] and is known under various names, including

the generalized finite element method (GFEM) [11, 12] and the extended finite element method

(XFEM). The approach has also been widely used in the form of enriched meshfree methods [13].

Another problem associated with partition of unity methods involving non-polynomial basis

functions is to integrate the resulting fields accurately. These enriched methods, also carry along the

element mapping involved in building the system matrices. The regularity and positive definiteness

of the isoparametric mapping poses a number of restrictions on the allowable shapes of the finite

elements: for example, the element should be convex. Meshfree methods also have to face such

problems associated with the regularity, distortion and clustering in the point cloud. Under large

distortions, meshfree methods face numerical instabilities and low accuracy [14]. Nodal integration

also leads to instabilities in cases where higher order shape functions are used. This is due to the

fact that in the meshfree methods each node would be associated with a support domain. And

the shape functions derivatives would be integrated in this support domain. This implies that each

integration domain would be associated with only one integration point (i.e the node). Hence when

only one integration is point is considered for higher order functions (other than constant strain) the

integration would be similar to the inadequate reduced integration which in turn causes instabilities.

To alleviate these instabilities, the strain smoothing concept was introduced for meshfree methods

[15]. The basic idea of strain smoothing is to transform numerical integration over volumes to

integration over surfaces, thereby removing instabilities due to the evaluation of the shape function

derivatives at the nodes. This approach was later extended to finite element methods by Liu et al

[16]. The resulting method was coined the Smoothed finite element method (SFEM), was discussed

in a number of papers [17, 2, 18, 19, 20, 21] and applied to a wide variety of problems. The SFEM

reduces the mesh sensitivity to some extent by avoiding the necessity of evaluating the Jacobian.

Since the derivatives are not needed, the iso-parametric mapping is also avoided.

The SFEM involves computation of a smoothed strain from the standard compatible strain field.

The smoothed strain is evaluated as a spatial average of the standard strain field over smoothing

subcells which cover the domain andthat can be chosen independently from the mesh structure.

These smoothing cells are typically constructed from the mesh following different approaches. This

gives rise to a number of methods including cell-based SFEM (CS-FEM) [16, 22, 21, 17], node-

based SFEM (NS-FEM) [19], edge-based SFEM (ESFEM) [18], face-based SFEM (FS-FEM).

The method was later extended to solve problems with field discontinuities, both strong and

weak, by Bordas et al [1]. This was achieved by extending strain smoothing to the partition of unity

framework [23, 7]. Though the smoothed FEM did make the integration procedure more elegant, it

was also reported in [2] that the error levels are higher due to the inaccurate approximation of the

near tip singular fields. Similar errors were also encountered in higher order elements and polygons

[24]. It is noteworthy that similar difficulties are also present in meshfree methods, as addressed

in [25] by employing the Discrete Divergence Consistency (DDC) requirement by establishing a

compatibility relation between the shape function and its derivatives. This was recently extended

for the FEM in [3] and named: Linear smoothing (LS) scheme. It was also reported that the

linear smoothing scheme provides an improved accuracy compared to the standard constant-based

smoothing of the SFEM.

The present paper aims at investigating how the use of higher-order smoothing, in particular

linear smoothing, resolves the lack of accuracy observed when constant smoothing is employed

with non-polynomial bases functions. The paper is organized as follows. After presenting the

governing equations for elasto-statics, a brief overview of the extended finite element method is

given in Section 2. Section 3 presents the linear smoothing technique. A few standard benchmark

problems in linear elastic fracture mechanics, solved by using the developed method are presented

and the accuracy, convergence and the efficiency of the proposed method are discussed in Section

4, followed by concluding remarks in the last section.
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LINEAR SMOOTHED EXTENDED FINITE ELEMENT METHOD 3

2. THEORETICAL FORMULATION

2.1. Governing equations for elastostatics

Consider a linear elastic body as shown in Figure 1, with a discontinuity. Let the domain be Ω ∈ R
d

bounded by Γ . In this case the boundary has three parts namely Γu, where the displacement

boundary conditions are applied, Γt, where the tractive boundary conditions are applied and Γc,

which is the traction free surface representing the discontinuity, such that Γ = Γu ∪ Γt ∪ Γc and

Γu ∩ Γt = ∅. The governing equation to be solved is

Ω
h

Γt

Γc

Γu

Figure 1. General elastic body with an internal discontinuity, Neumann and Dirichlet boundary conditions.

∇ · σ + b = 0 in Ω (1)

The boundary conditions are as follows

σ · n = 0 on Γc (2a)

σ · n = t̂ on Γt (2b)

u = û on Γu (2c)

where, is the gradient operator, σ is the Cauchy stress tensor, b is the body force per unit volume,

n is the unit outward normal and t is the applied tractive stress. For a body undergoing small

displacements and strains, the strain displacement equation reads as

ε = ∇su (3)

where, ∇s is the symmetric part of the gradient operator. By substituting the constitutive relations

and the strain-displacement relations the weak form of the above Equation (1) becomes Equation(4)

in the absence of the body forces: find u ∈ U such that
∫

Ω

ε(u) : C : ε(v) dΩ =

∫

Γt

tv dΓ (4)

where, u and v are the trial and the test function spaces, respectively. For the aforementioned

problem, the function spaces includes functions that are discontinuous across Γc.

U :=
{

u(x) ∈ [C0(Ω)]d : u ∈ [W(Ω)]d ⊆ [H1(Ω)]d, u = û on Γu

}

,

V :=
{

v(x) ∈ [C0(Ω)]d : v ∈ [W(Ω)]d ⊆ [H1(Ω)]d, v = 0 on Γu

}

,

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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where the space W(Ω) includes linear displacement fields. The domain is partitioned into elements

Ωh, and on using shape functions φa that span at least the linear space, we substitute vector-valued

trial and test functions uh =
∑

a Naua and vh =
∑

b Nbvb, respectively, into Equation (4) and

apply a standard Galerkin procedure to obtain the discrete weak form: find uh ∈ U h such that

∀vh ∈ V
h a(uh,vh) = ℓ(vh), (6)

which leads to the following system of linear equations:

Kuh = f , (7a)

K =
∑

h

Kh =
∑

h

∫

Ωh

BTCBdΩ, (7b)

f =
∑

h

f
h =

∑

h

(

∫

Ωh

NTb dΩ +

∫

Γh
t

NTt̂dΓ

)

, (7c)

where K is the assembled stiffness matrix, f the assembled nodal force vector, uh the assembled

vector of nodal displacements, N is the matrix of shape functions, C is the constitutive matrix for an

isotropic linear elastic material, and B = ∇sN is the strain-displacement matrix that is computed

using the derivatives of the shape functions.

2.2. eXtended Finite Element Method

With the regular FEM, the mesh topology has to conform to the discontinuous surface. The

introduction of the XFEM has alleviated these difficulties by allowing the discontinuities to be

independent of the underlying discretization. Within the framework of the eXtended Finite Element

Method (XFEM), the trial functions take the following form:

uh(x) =
∑

I∈N std

NI(x)uI +
∑

J∈N hev

NJ(x)H(x)aJ +
∑

K∈N tip

NK(x)

(

4
∑

m=1

Fm(r, θ)bm
K

)

(8)

where I is the set of all the nodes in the system, J is the set of nodes which are completely cut

by the crack, K is the set of nodes which contain the crack tips as shown in Figure 2. NI(x) are

the standard shape functions associated with the standard DOF uI , H(x) is the Heaviside function

associated with the enriched DOF, aJ and Fm(r, θ) are the tip enrichment functions associated with

the DOF, bm
K that span the near tip asymptotic fields:

Fm(r, θ) =
{√

r sin
θ

2

√
r cos

θ

2

√
r sin θ sin

θ

2

√
r sin θ cos

θ

2

}

(9)

Following the Galerkin procedure, this modification to the trial function space leads to an enlarged

problem to solve:

Kuh = F (10)

where

Ke =





Kuu Kua Kub

Kau Kaa Kab

Kbu Kba Kbb



 (11)

where, the superscript uu refers to standard FEM components, aa refers to the Heaviside enrichment

terms, bb refers to the asymptotic enrichment terms and other terms can be defined similarly.

The augmentation of non-polynomial functions to the trial function space, makes the numerical

integration non-trivial. This has been of particular interest among research community, for example,

equivalent polynomial approach by Ventura [26] and Ventura et al., [27], conformal mapping [28],

Duffy transformation [29], generalized Gaussian quadrature [30], strain smoothing technique [2],

exponentially convergent mapping [31],polar mapping [32] and very recently by using Euler’s

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Nodes enriched with Heaviside function

Nodes enriched with crack tip displacement functions

Crack

Figure 2. XFEM discretisation of cracked domain

homogeneous function theorem and Stoke’s theorem [33]. In [2], the strain smoothing technique

was combined with the XFEM, coined as smoothed XFEM (Sm-XFEM) to integrate over elements

intersected with discontinuous surface. The main advantages of the Sm-XFEM are that no

subdivision of the split elements is required and that the derivatives of the shape functions (including

the enrichment functions) are not required. However, it was observed that the error level was greater

when compared to the conventional XFEM, whilst yielding similar convergence rates.

3. LINEAR SMOOTHING IN THE XFEM

The strain smoothing was introduced in [15] for the meshfree methods, which was later extended

to the FEM by Liu and co-workers [16]. The basic idea is to compute a strain field, referred to

as ‘smoothed’ strain field by evaluating the weighted average of the standard (or compatible) strain

field. The support domain of the associated material point can be chosen based on surrounding cells,

nodes or edges. In this paper, we restrict our discussion only to the cell based strain smoothed FEM.

Within this framework, at a point xc in element Ωh the smoothed strain is given below

ε̃hij(xc) =

∫

Ωh

εhij(x)Φ(x − xc)dΩ (12)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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In terms of the standard element shape function derivatives, Nh
I,i(x), the smoothed derivatives are

given by

Ñh
I,i(x) =

∫

Ωh

Nh
I,i(x)Φ(x)dΩ (13)

where, Φ is the smoothing function and i = x, y, z. By invoking the Divergence theorem Eq. 2 can

be written as
∫

Ωh

Nh
I,i(x)Φ(x)dΩ =

∫

Γh

Nh
I (x)Φ(x)n(x)dΓ (14)

This form of the strain has the following advantages

• Domain integration is reduced to a boundary integration along the smoothing cells

• Does not require the derivatives of the shape functions and hence does not need the Jacobian

• Does not need isoparametric mapping there by giving a leverage on the distortion level of the

mesh

The choice of the smoothing function and the integration order used, decide the accuracy of the

smoothed strain field. If a constant smoothing function is used, the method is termed the SFEM. It

was shown in [2, 24] that the gradient becomes inaccurate for non-polynomials and higher order

polynomial functions. Same issue was also faced with in the context of meshfree approximations

and in [25] this inaccuracy was addressed by introducing an additional domain integral term which

ensures consistency between the shape functions and their derivatives. This modified equation was

termed the Divergence Consistency (DC). It was also shown that such consistency requirement

is implicitly satisfied, if linear field is used. It can be seen that Equation(15) would reduce to

Equation(14), if Φ is a constant.

∫

Ωh

Nh
I,i(x)Φ(x)dΩ =

∫

Γh

Nh
I (x)Φ(x)n(x)dΓ −

∫

Ωh

Nh
I (x)Φ

′(x)dΩ (15)

where, Γ h is the contour of the smoothing cell. Here the domain integral term vanishes as the

smoothing function is constant over the domain. Since we assumed linear displacement functions,

the strain would be a constant and a unique value can be computed using a single equation. Hence

requiring just one interior Gauß points. This can be written as

Ñh
I,i(xc) =

1

Ac

∫

Γh

Nh
I (x)n(x)dΓ (16a)

ε̃h(xc) = B̃c(xc)q (16b)

B̃c =
[

B̃c1 B̃c2 · · · B̃nc

]

(16c)

Ñh
I,i(xc) =

1

Vc

nb
∑

b=1















Nh
I (x

G
b )nx 0 0
0 Nh

I (x
G
b )ny 0

0 0 Nh
I (x

G
b )nz

Nh
I (x

G
b )ny Nh

I (x
G
b )nx 0

0 Nh
I (x

G
b )nz Nh

I (x
G
b )ny

Nh
I (x

G
b )nz 0 Nh

I (x
G
b )nx















Ac
b (16d)

where, nc is the number of sub-cells in an element, Vc is the volume of the sub-cell, nb is the number

of boundary surfaces of the sub-cell, Ac
b and xG

b are the area and Gauß point of the boundary surface

b. The smoothing technique has been very efficient for polyhedral elements since the polyhedrons

can be divided into number of sub-cells (usually tetrahedrons) and the stiffness matrix is summed

up over each sub-cell. It can be seen in Equation(16) that the derivatives of the shape functions are

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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LINEAR SMOOTHED EXTENDED FINITE ELEMENT METHOD 7

not needed in order to evaluate the strains. Hence, the computation of Jacobian is avoided. This

also avoids the associated isoparametric mapping. The stiffness matrix is evaluated as in the regular

finite element method by replacing the terms in the strain gradient matrix with the terms evaluated

above and summing it up over the sub-cells. The constant smoothing technique when applied to

elements other than Constant Strain elements (3-noded triangles and 4-noded tetrahedrons) yields

results which are bounded by the results of reduced integration procedure (smoothing over one sub-

cell) and full integration procedure (smoothing over infinite number of sub-cells). The method is

hence not variationally consistent for any number of sub-cells other than 1 and ∞ [17], whereas the

linear smoothing procedure is variationally consistent. The constant smoothing and linear smoothing

schemes differ in the choice of the smoothing function. In the linear smoothing scheme the basis

function used is f = [1 x y z xy yz zx xyz]T in case of hexahedral subcells and f = [1 x y z]T if

tetrahedral sub-cells are used. Figure 3 shows one possible division of hexahedral elements into

tetrahedral element for the purpose of numerical integration. The number of terms in the basis

function should be consistent with the number of gauss points to obtain a unique solution. Since a

linear basis function is being used the domain integral term which results as a consequence of the

DC does not vanish and hence it has to be computed by using the appropriate order of Gaussian

integration. In the case of tetrahedral sub-cells the system of equations for a linear basis would be

(a) Sub-cell-1 (b) Sub-cell-2 (c) Sub-cell-3

(d) Sub-cell-4 (e) Sub-cell-5 (f) Sub-cell-6

Figure 3. Subdivision of a hexahedral elements into tetrahedral elements. This sub-division is solely for the
purpose of numerical integration. A smoothed strain field is computed over each sub-division depending on

the choice of smoothing function.

∫

Ωh

Nh
I,x(x)dΩ =

∫

Γh

Nh
I (x)nxdΓ (17a)

∫

Ωh

Nh
I,x(x)xdΩ =

∫

Γh

Nh
I (x)xnxdΓ −

∫

Ωh

Nh
I (x)dΩ (17b)

∫

Ωh

Nh
I,x(x)ydΩ =

∫

Γh

Nh
I (x)ynxdΓ (17c)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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∫

Ωh

Nh
I,x(x)zdΩ =

∫

Γh

Nh
I (x)znxdΓ (17d)

for Nh
I,x(x)

∫

Ωh

Nh
I,y(x)dΩ =

∫

Γh

Nh
I (x)nydΓ (18a)

∫

Ωh

Nh
I,y(x)xdΩ =

∫

Γh

Nh
I (x)xnydΓ (18b)

∫

Ωh

Nh
I,y(x)ydΩ =

∫

Γh

Nh
I (x)ynydΓ −

∫

Ωh

Nh
I (x)dΩ (18c)

∫

Ωh

Nh
I,y(x)zdΩ =

∫

Γh

Nh
I (x)znydΓ (18d)

for Nh
I,y(x).

∫

Ωh

Nh
I,z(x)dΩ =

∫

Γh

Nh
I (x)nzdΓ (19a)

∫

Ωh

Nh
I,z(x)xdΩ =

∫

Γh

Nh
I (x)xnzdΓ (19b)

∫

Ωh

Nh
I,z(x)ydΩ =

∫

Γh

Nh
I (x)ynzdΓ (19c)

∫

Ωh

Nh
I,z(x)zdΩ =

∫

Γh

Nh
I (x)znzdΓ −

∫

Ωh

Nh
I (x)dΩ (19d)

for Nh
I,z(x). Here NI represents the shape function associated with the Ith node of the parent

element. It is independent of the sub-cell. The location of the gauss points for the boundary

integration and domain integration in a tetrahedral sub-cell are shown in Figure 4. Let the natural

coordinates of the mth interior gauss point of a sub-cell be pm = (xm, ym, zm) and its associated

gauss weight be wm; coordinates of the kth boundary of the sub-cell be ckg = (xk
g , y

k
g , z

k
g ) and the

associated weights be vkg . The unit outward normal associated with the gth gauss point of the kth

boundary of the sub-cell is denoted by nk = (nk
x, n

k
y , n

k
z). The smoothed derivatives are computed

numerically as follows

Wdi = fi where, i = x, y, z (20)

W =







w1 w2 w3 w4

w1x1 w2x2 w3x3 w4x4

w1y1 w2y2 w3y3 w4y4
w1z1 w2z2 w3z3 w4z4






(21)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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Figure 4. The location of gauss points for boundary integration and domain integration in a Tetrahedron
sub-cell of a hexahedral element

fx =



























4
∑

k=1

3
∑

g=1

NI(c
k
g)n

k
xv

k
g

4
∑

k=1

3
∑

g=1

NI(c
k
g)x

k
gn

k
xv

k
g −

4
∑

m=1

NI(pm)wm

4
∑

k=1

3
∑

g=1

NI(c
k
g)y

k
gn

k
xv

k
g

4
∑

k=1

3
∑

g=1

NI(c
k
g)z

k
gn

k
xv

k
g



























(22)

fy =



























4
∑

k=1

3
∑

g=1

NI(c
k
g)n

k
yv

k
g

4
∑

k=1

3
∑

g=1

NI(c
k
g)x

k
gn

k
yv

k
g

4
∑

k=1

3
∑

g=1

NI(c
k
g)y

k
gn

k
yv

k
g −

4
∑

m=1

NI(pm)wm

4
∑

k=1

3
∑

g=1

NI(c
k
g)z

k
gn

k
yv

k
g



























(23)
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fz =



























4
∑

k=1

3
∑

g=1

NI(c
k
g)n

k
zv

k
g

4
∑

k=1

3
∑

g=1

NI(c
k
g)x

k
gn

k
zv

k
g

4
∑

k=1

3
∑

g=1

NI(c
k
g)y

k
gn

k
zv

k
g

4
∑

k=1

3
∑

g=1

NI(c
k
g)z

k
gn

k
zv

k
g −

4
∑

m=1

NI(pm)wm



























(24)

The smoothed derivative of the Ith shape function evaluated at the four interior gauss points of a

tetrahedral sub-cell is given by

di =
[

d1i d2i d3i d4i
]T

=
[

NI,i(p1) NI,i(p2) NI,i(p3) NI,i(p4)
]T

where, i = x, y, z
(25)

The same procedure is to be repeated for all the shape functions of the parent element. For the

mth interior gauss point of a sub-cell of a n sided polygon the smoothed strain displacement matrix

is given by

B̃c(pm) =
[

B̃c1(pm) B̃c2(pm) · · · B̃c3(pm)
]

where, m = 1, 2, 3, 4 (26)

B̃cI(pm) =















d1x 0 0
0 d1y 0
0 0 d1z
d1y d1x 0
0 d1z d1y
d1z 0 d1x















(27)

For the displacement approximation given by Equation (8), the compatible strain field is given

by:

εh(x) =
[

Bfem Bhev Btip

]

qT (28)

where q = {u a b} is the vector of degrees of freedom, Bfem, Bhev and Btip contains the strain

displacement terms corresponding to the regular finite element part, Heaviside enriched part and the

tip enriched part. The components of the compatible strain field are:

Bfem = LNI

Bhex = LNJ (H(x)−H(xJ ))

Btip = LNK

(

4
∑

m=1

(Fm(x)− Fm(xK))

)

(29)

where,

L =



















∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0
∂

∂z
∂
∂y

∂
∂z

0 ∂
∂x



















The smoothed counterpart of the above compatible strain field can be obtained by following the

procedure outlined earlier. The elements that are intersected by the discontinuous surface is divided

into tetrahedra and a linear smoothing basis, f(x) = {1 x y z} is chosen to evaluate the smoothed

strain.
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Remark 1

In case of two dimensions, the subcell is a triangle and the smoothing procedure can be derived

from the linear basis

f(x) = {1 x y} (30)

with derivative

f,j(x) = {0 δ1j δ2j} (31)

4. NUMERICAL EXAMPLES

In this section, the accuracy and the convergence properties of the proposed formulation is

numerically studied within the framework of linear elastic fracture mechanics (LEFM) in both two

and three dimensions. The domain is discretized with four noded quadrilateral and eight noded

hexahedral elements in two and three dimensions, respectively. The numerical results from the

present formulation is compared with the conventional XFEM and the SmXFEM [2]. The following

convention is adopted to compute the stiffness matrix within the framework of the smoothing

technique:

Table I. Number of sub-cells used to compute the stiffness matrix for the constant smoothed XFEM (Sm-
XFEM) and the linear smoothed XFEM (LSm-XFEM). In case of Sm-XFEM, the smoothing function is
chosen as f(x) = 1, whilst in case of LSm-XFEM, a complete set of polynomials is chosen. For example,

f(x) = {1 x y} for two dimensions and f(x) = {1 x y z} for three dimensions as smoothing function.

Type of element Sm-XFEM LSm-XFEM

two dimensions

Standard elements 4 1

Tip enriched elements 5 5

Split enriched elements 8 8

three dimensions

Standard elements 6 1

Tip enriched elements 24 24

Split enriched elements 12 12

For the conventional XFEM, the elements that are intersected by the discontinuous surface is

triangulated and a higher order triangular quadrature scheme is adopted. And for the standard

elements, 2×2 Gauß quadrature rule is adopted. To estimate the error and to study the convergence

properties, the L2 norm and the H1 semi-norm is used.

4.1. Infinite plate with center crack under far-field tension

Consider an infinite plate with a centre crack subjected to far field tension under plane strain

condition has been considered. Consider an infinite plate as shown in Figure 5 A small section

ABCD has been solved. The effect of the far-field stress has been accounted by prescribing

equivalent displacements as given by following closed form solution Equation (32) in polar

coordinates centered at the crack tip.

ux(r, θ) =
2(1 + ν)√

2π

KI

E

√
r cos

θ

2

(

2− 2ν − cos2
θ

2

)

uy(r, θ) =
2(1 + ν)√

2π

KI

E

√
r sin

θ

2

(

2− 2ν − cos2
θ

2

)

(32)

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
Prepared using nmeauth.cls DOI: 10.1002/nme



12 M. SURENDRAN ET AL.,

σ

a a

D C

BA

σ

Figure 5. An infinite plate with a center crack subject to far-field tensile stress

where KI = σ
√
πa, the mode I stress intensity factor, ν is the Poisson’s ratio, E is the Youngs

modulus. The dimension has been chosen as 10 x 10 mm. a is chosen as 100 mm. The convergence

of the relative error in the displacement (L2 norm) and the stress intensity factor is shown in Figure

6. It can be seen that in general all the three methods yields a rate of convergence of 1 in L2 norm

and 0.5 in H1 semi-norm. For a given dof, the conventional XFEM yields slightly accurate results

than the Sm-XFEM or the LSm-XFEM but the errors are within the same order. Moreover it is noted

that in the XFEM, 13 integration points per triangle (for the tip element) is used when compared to

three integration points in case of LSm-XFEM and one integration point in case of Sm-XFEM. The

sub-optimal rate of convergence is due to the fact that we are employing topological enrichment

scheme as opposed to geometric enrichment.

4.2. Finite Plate with an edge crack subject to tensile and shear stresses

Next, consider a finite element with an edge crack subjected to tensile and shear stresses as shown

in Figure 7. A consistent system of units is used for the analysis.

Plate subjected to tensile stress In this case, the dimension of the plate is 1 x 2 units. The Youngs’

modulus, E and Poissons ratio, ν are taken as 1000 and 0.3 respectively. A state of plane strain

condition is assumed. The crack width is taken as 0.5 units. The obtained SIF are compared with

the reference empirical solution[46]:

Kref = f(α) σ
√
πa (33)

where, f(α) = 1.12− 0.231α+ 10.55α2 − 21.72α3 + 30.39α4, α = a/W is the crack width ratio,

a is the half-crack width and w is the plate width. The convergence of the relative error in the stress

intensity factor is shown in Figure 8. It can be seen that the all the three methods converge at almost

identical rates (≈ 0.5). The results of LS scheme are better than the CS scheme and are almost equal

with the conventional XFEM.
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10-3 10-2 10-1
10-4

10-3

10-2

10-1

LSm-XFEM (m=1.00)
XFEM (m=1.06)
Sm-XFEM (m=0.94)

(a) Relative error in L2 norm

10-3 10-2 10-1
10-2

10-1

100

LSm-XFEM (m=0.55)
XFEM (m=0.54)
Sm-XFEM (m=0.54)

(b) Relative error in SIF

Figure 6. Convergence of the relative error in the displacement and in the stress intensity factor with mesh
refinement for a infinite plate with a center crack subjected to uniform tensile stress. On the boundary,

Westergaard solution is applied.
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τ

a

L

W

a = 3:5
L = 16
W = 7
τ = 1

σ

σ

a

L

W

a = 1
L = 2

W = 1

σ = 1

(a) (b)

Figure 7. Geometry and boundary conditions for a finite plate with an edge crack subject to: (a) uniform
shear stress at the top face and (b) uniform tensile stress.

Plate subjected to shear stresses In this case, the dimensions of the plate are taken as W = 7 units

and L = 16 units. The plate is subjected to shear stress on the top edges, while the displacements

are constrained at the bottom edge. The crack width is taken as 3.5 units. The Youngs’ modulus, E
and Poissons ratio, ν are taken as 3× 107 and 0.25 respectively. Plane strain condition is assumed.

The reference SIF is taken from [46], which is KI = 34 units, KII = 4.55 units. The convergence

of the KI and the KII are presented in Figure 9. It is again seen that all the three methods have

similar convergence rates. The LS scheme is also more accurate than the CS scheme with a very

minor additional computational expense. It is again recalled that the additional integration points

still require only the shape function values which can be obtained by linear interpolation along the

boundary. The error can be attributed to the inadequate approximation space in the local crack tip

region, i.e, the asymptotic fields are approximated by a linear field.

4.3. Plate with an inclined center crack subject to tensile stresses

Next, to illustrate the efficacy of the formulation SIFs in case of mixed-mode loading conditions,

consider an inclined center crack subjected to far field tension (see Figure 10). The dimensions of

the plate are taken as 20 × 20. The crack width, 2a is chosen as 2 units. A far field uniform tensile

stress, 1×104 units is applied with Young’s modulus, E = 1×107 and Poisson’s ratio, ν = 0.3. The

accuracy of the numerically computed SIFs are compared with analytical SIFs given by:

KI = σ
√
πa cos2(β)

KII = σ
√
πa sin(β) cos(β) (34)

where β is the inclination of the crack measured anti-clockwise from the x− axis. Based on a

progressive refinement, it was observed that a structured mesh of 100 × 100 quadrilateral mesh is

Copyright c© 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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10-3 10-2 10-1
10-2

10-1

100

LSm-XFEM (m=0.51)
XFEM (m=0.53)
Sm-XFEM (m=0.54)

Figure 8. Relative error in the mode I SIF for edge cracked plate with tensile loading.

adequate. The influence of the crack angle and different modelling approaches, viz., XFEM, Sm-

XFEM, LSm-XFEM on the SIFs are shown in Figure 11. It can be seen that the results from the

proposed approach are accurate and comparable with the conventional XFEM and slightly more

accurate than the Sm-XFEM.

4.4. Finite plate with a through-thickness edge-crack subject to tensile stresses

As a last example, the linear smoothing technique is extended to three dimensional domain with

a through-the-thickness edge crack subjected to uniform tensile stress as shown in Figure 12 with

dimensions W/a = 1 and H/W = 3. The displacement at the bottom face is constrained in all

directions and a uniform tensile stress σ = 1×104 is applied on the top face. The material properties

are: Young’s modulus E = 1×107 and Poisson’s ratio ν = 0.3. The domain is discretized with

structured eight noded hexahedral elements and the normalised SIF from [47] is taken as the

reference solution.

The smoothed strain field over a standard element is computed without any further sub-

divisions and with f(x) = [1 x y z xy yz zx xyz] as a smoothing function. For the elements that

are intersected by the discontinuous surface, the element is sub-divided into tetrahedra and f(x) =
[1 x y z] is chosen as the smoothing function. In case of the LSm-XFEM a total of 96 Gauß points

are used in case of tip enriched elements where as 300 Gauß points are used in the conventional

XFEM. In the case of Heaviside enriched elements 48 Gauß points are used in case of LSm-XFEM

and 60 Gauß points are used in case of the conventional XFEM. The convergence of the relative

error in the normalised stress intensity factor is shown in Figure 13. It can be seen that the LSm-

XFEM is more accurate than the Sm-XFEM and is in good agreement with the conventional XFEM.
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10-3 10-2 10-1
10-2

10-1

100

LSm-XFEM (m=0.60)
XFEM (m=0.71)
Sm-XFEM (m=0.47)

(a)

10-3 10-2 10-1
10-2

10-1

100

LSm-XFEM (m=0.48)
XFEM (m=0.46)
Sm-XFEM (m=0.44)

(b)

Figure 9. Relative error in the mode I and mode II stress intensity factors for a plate with an edge crack
subjected to shear stress.
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β2a

σ

σ

2W

2W

Figure 10. Plate with an inclined center crack subject to tensile stress: geometry and boundary conditions

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
104

K I, LSm-XFEM

K I, XFEM

K I, Sm-XFEM

K I, Exact

K II, LSm-XFEM

K II, XFEM

K I, Sm-XFEM

K II, Exact

Figure 11. Influence of inclination of the crack on the Mode I and mode II stress intensity factors for a plate
with a center crack subjected to far field tensile stress.

5. CONCLUSIONS

In this paper the Linear smoothing (Second order smoothing) was discussed and a method to couple

it with the extended finite element method was presented. The developed method was used to
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2H

a

x

zy

2W

2W

σ

Figure 12. Finite plate with a through-thickness edge-crack subject to tensile stress

solve problems with discontinuities and singularities in both two and three dimensions. The method

also involves a rational integration procedure employing the Greens theorem. The performance of

the linear smoothing scheme for enriched approximation space was studied. Through numerical

examples it was shown that the Linear smoothing scheme is more accurate than its constant

counterpart. The linear smoothing scheme leads to almost identical results to the standard extended

finite element method, but it requires fewer quadrature points, viz., approximately one-fourth to

what is required with the conventional XFEM.

The constant smoothing and the linear smoothing technique is extended to three dimensions

for the first time. Although the presented example in three dimensions is for straight crack, it

can be easily extended to other crack profiles. The superior accuracy of the linear smoothing

technique is also obtained in the three dimensional case. These results are attributed to the superior

approximation properties of the linear smoothing compared to the constant strain smoothing, which

is immediately apparent for problems involving complex, non-polynomial, enrichment functions.

The remaining, incompressible, error level is attributed to the inadequate approximation space in

the smoothed strain, i.e. to the inability of a linear smoothed strain to approximate the singular

strains provided by the enriched approximations. Future, ongoing work includes the enrichment

of the smoothing space with suitable enrichment functions in order to investigate any additional

accuracy improvements as well as the introduction of the approach in recently developed stable

extended finite element schemes [48, 49].
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10-3 10-2 10-1
10-1

100

LSm-XFEM (m=0.54)
XFEM (m=0.47)
Sm-XFEM (m=0.44)

Figure 13. Relative error in the normalized SIF
KI

σ
√
πa

for a three-dimensional domain with an edge crack

subjected to uniform tensile stress.
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