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1. Introduction
The Lorentz-cone in R" is defined by
Kt:={z=(z1, -, 2,)T €R":21 >0, 22 >3 +-- -+ 22}

We will fix n > 2. For brevity, we write K instead of K". Further, we will always write if
z € R”, then x = [‘? ] Given an n X n matrix M and a vector ¢ € R™, the Lorentz-cone
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linear complementarity problem LCLCP(M,q) is to find an z € R™ such that:
reK, y:=Mz+qek and ylz=0.

Complementarity problems appear in various areas that include game theory, optimiza-
tion, and economics. LCLCP is a classical example of a linear complementarity problem
defined on a non-polyhedral cone. Complementarity problems are special cases of varia-
tional inequality problems that have an extensive literature and wide applications (see,
for example, Facchinei and Pang [2]). There is a particular algebra associated with the
second order cone. This algebra is well-known and is a special case of a so-called Eu-
clidean Jordan algebra. We refer to Faraut and Kordnyi [3] for a comprehensive study.
The rank of Euclidean Jordan algebra associated with the second order cone is 2 and
has extra topological structure which allows us to go beyond the general study of vari-
ational inequalities. For further discussion, it is convenient to introduce the following
definition.

Definition 1. Let M be an n x n real matrix. Then
1. M is called a Z-matrix on K if the following condition is satisfied:
rek, yek and zfy=0 = yTMz<o.

In this case, we will write M € Z.

2. M is called a Q-matrix if LCLCP(M, q) has a solution for all ¢ € R™. In this case,
we write M € Q.

3. MeZnQ,if M eZand M € Q.

The class of Z-matrices is very broad. If S is an n x n matrix such that S(K) C K,
then S is said to be positive on K. Characterization of matrices that are positive on K
appears in Loewy and Schneider [4]. If S is positive on I, then I — S is a Z-matrix
on K. The most interesting theorem about Z-matrices in connection with LCLCP is the
following:

Theorem 1. If M € Z, then the following are equivalent.

(Al) M € Q.
(A2) Let e = (1,0,---,0)T. Then zero is the only solution to LCLCP(M,0) and
LCLCP(M,e).

(A3) M is positive stable (i.e. every eigenvalue of M has a positive real part).
(A4) There exists v € 1nt(lC) such that Mv € int(K).

(A5) M1 exists and M~1(K) C K.

(A6) MT €
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(Here, we have specialized the above result to . More equivalent conditions in a
general setting are found in Theorem 6 of Gowda and Tao [6].) It is natural to ask the
following question now: Does M € Z N Q imply LCLCP(M, q) has only finitely many
solutions for any vector ¢? Our main result answers the above question precisely. We
show that if M € Z N Q, then LCLCP(M, ¢) has finitely many solutions for all ¢ € R™.
For an introduction to Z-matrices with respect to the cone R’} and for an analog of
Theorem 1, we refer to Bapat and Raghavan [1].

2. Preliminaries
We use the following notations.
2.1. Notations

(i) To denote the interior and the boundary of IC, we use int(K) and 0K respectively.
(ii) Let J denote the n x n diagonal matrix diag(1,—-1,—1,---,—1).
(iii) Let M be an n x n matrix.
(a) Columns of M are denoted by m!, m?2, .-, m™ respectively.
(b) We write M by [[m!, m?,--- m"]].
(¢) Let b € R™. Then, M@ (b) := [[m',--- m*~ 1 b,m* ! ... mm]].
(d) For each 7 € R, we define M, := M — 7J.

(iv) I will stand for the identity matrix.

(v) SOL(M, q) will represent the set of all solutions to LCLCP (M, q).

(vi) e will denote the vector (1,0,---,0)T in R™.

(vii) Let F' be a non-empty subset of R™. Then, —F := {—x:z € F}.

2.2. An elementary lemma

In the following elementary lemma, we summarize some basic properties of the second
order cone. We refer to Tao [7] for details.

Lemma 1. The following are true:

(1) Let x € OK and y € OK. Then the following are equivalent:
(a) 2Ty =0.
(b) There exists p > 0 such that y = pJx.

(2) x € K if and only if xTy >0 for ally € K.

(3) x € int(K) if and only if 7y > 0 for all non-zero y € K.

(4) Let M be an n x n matriz and q € R™. Suppose x € SOL(M, q) N OK. Then there
exists a 1 > 0 such that Mx + q = puJx. Conversely, if there exist u > 0 and x € OK
such that Mx + q = pJz, then x € SOL(M, q).

(5) If v € int(K), y € K and 2Ty =0, then y = 0.
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(6) Letx € K. Then x € int(K) if and only if Jx € int(K). Similarly x € OK if and only
if Jxr € oK.

3. Some preliminary results

The following lemma will be very useful and will be invoked often in the proofs of our
main results.

Lemma 2. Let x,y € OK. If x and y are linearly independent, then x —y ¢ K.

Proof. Let z = 2 — y. Suppose z € K. If z € int(K), then note that € int(K) which is
not possible. So, z € OK. Let

T = [x_o], y = [y_o} and z = [Z_O]
T y z
Since z, y and z belong to K, we have

17+ 2l = yo + 20 = 1]l + [IZ]I-

The above equality is true if and only if span{y} = span{z}. Because y and z lie in
0K, it now follows that y and z are linearly dependent. But = y + z. So, « and y are
linearly dependent. This contradicts our assumption. Therefore, z ¢ K. O

Lemma 3. Let M and q satisfy the following conditions:

1. MeZnQ.
2. 0# x € SOL(M,q) and 0 # y € SOL(M, q).

If x # y, then x and y are linearly independent.

Proof. If x and y belong to int(K), then by Lemma 1(5), it follows that Mz + ¢ = 0 and
My + q = 0. Since M is non-singular, x = y. Thus both z and y cannot be in int(K).

Assume that x € OK. If x and y are linearly dependent, then for some a > 0, y = az.
Thus, y € OK. By Lemma 1(2), there exist x> 0 and ' > 0 such that

Mz +q=pJzx, (1)
M(azx) +q = p'J(az). (2)

Multiplying (1) by « and subtracting from (2), we get
(a=1)g = (po — p'a) Jz.

Since x and y are distinct, o # 1. Thus, ¢ = O‘(S—:{J/)Jaj. Hence by (1), there exists k € R
such that Mz = kJz. If k > 0, then € SOL(M, 0) and by (A2) in Theorem 1, z = 0. If
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k < 0 then, by (A5) in Theorem 1, x € —K and therefore x = 0. This is a contradiction.
Therefore x and y are linearly independent. O

Lemma 4. Let M € ZN Q. Then the following are true:

(i) IfLCLCP(M,q’) has a solution in int(K), then LCLCP(M, ¢') has a unique solution.
(i) LCLCP(M,q) has a unique solution for all g € —K.

Proof. We first prove (i). Let € SOL(M, ¢') Nint(K). If y € SOL(M, ¢') € int(K), then
by Lemma 1(5), we have Mz + ¢’ =0 and My + ¢’ = 0. As M is non-singular, z = y.
Suppose y € K. Then by Lemma 1(4), there exists a g > 0 such that My+¢ = uJy
and thus we have M (y—x) = pJy. Now Theorem 1(A5) implies, y—x € K. As z € int(K),
we deduce that y € int(K) which is a contradiction. This proves (i).
We now prove (ii). Note that if x = —M~1q then x € K. Let y € SOL(M, q). Then,
v:=My+q € K and y"v = 0 implies (My)Tv = 0. So,

0> q"v=|v|? - v My >0.

Thus, v = 0. Hence, ¢ = —My which shows that y = x as M is invertible. This proves
(ii). O
4. Main result

We will prove our main result: If M € Z N Q, then LCLCP(M, ¢) has finitely many
solutions for all ¢ € R™. Recall that € SOL(M,q) N 9K if and only if there exists a
p > 0 such that (JM — ul)z = —Jq. We will make use of this fact in the sequel. The
proof of the main theorem will follow from the next lemma.

Lemma 5. Let M € ZNQ and 0 # b € R™. Then
Q:={peR:(JM —plz="b, x € 0K}
is a finite set.
Proof. Let M, := JM — pul. Define
U:={peQ:det(M,) =0} and V :={p € Q:det(M,) #0}.

Then Q = U UV and U is finite. We claim that V is finite. Suppose V' contains infinitely
many elements. For each p € R, we define

n

Fi(p) = det(M{D(b))* and P(p) == f'(n) = Y _ f'(w).

2
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We now claim that if 4 € V, then P(u) = 0. Let 8 € V. Since Mg is non-singular,
there exists a unique x € K such that Mgz = b. By Cramer’s rule,

det(M (b))
Ti= det (MB)

As z € K, we have 23 = 2% + - - - + 22 and hence we see that

Thus, P(8) = 0 and this proves our claim.

Since P is a polynomial and V has infinitely many elements, we deduce that P(u) =0
for every p € R. We now claim that if ¢ € V, M, is invertible, and M,p = b, then
p € OKU—0K. Let a € V. Define

4ot (1)
Pi= et (M)
By Cramer’s rule, p := (p1,--+,pn)T
As P(a) =0, we get

is the unique solution for the system M, (z) = b.

pi =) p.

2

The above equation implies that p € 9K U —9K. This proves our claim.

Let {pr} be a decreasing sequence of positive numbers converging to 0 such that each
M, is non-singular. Let M, () = b. Then, x, € 0K U —0K. We now claim that the
sequence {zj} is bounded. Suppose {z\} is unbounded. Because b is non-zero, each xy,
is non-zero. We now have

T b

Toel) = Tl

Without loss of generality assume that m — y. Applying limits, we find that JMy = 0.
This contradicts that JM is non-singular. Thus {z)} is bounded.

Let, without loss of generality, 2 — u. Since M, (zx) = b, by applying limits we
get JMu =b. As b # 0, we see that u # 0. Thus, JM (xr — u) = prxy for all k and
s0 o, — u = M ~(Jxy) for all k. Since z € K U —OK for each k, we may assume,
without loss of generality, that, (i) zp € IK for all k or (ii) z, € —OK for all k. In the
first case u € OK, x, —u € K and so by Lemma 2, xj, € span{u} for all k. In the second
case, u € —0K and —x — (—u) = M~ (—Jx;) € K. By Lemma 2, it now follows that
xy, € span{u}.
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As xp is a multiple of u, we see that z; — v = 6ru and so JM (z — u) = ppTs.
This implies M (0xu) = pg(1 + 0;)Ju. By (A2) and (A5) in Theorem 1, either 6, = 0
or u = 0. But u is non-zero. So, zy = u for all k. Since x, — u = uprM 1 (Jxy), we get
M~1(Jzy) = 0 and hence z = 0 which is a contradiction. O

The main result follows now.

Theorem 2. Let M € Z N Q. Then, LCLCP(M,q) has finitely many solutions for all
q € R".

Proof. Since M € ZNQ, we see that zero is the only solution to LCLCP(M,0). Let ¢ €
R™ be a non-zero vector. In view of Lemma 4, it is enough to show that SOL(M, ¢) NOK
is finite. Let Q := {u > 0 : M,(x) = —¢, € OK}. Then by the previous lemma, € is
finite. For any p € Q, let * € OK such that M,z = —g. We claim that z is the only
solution to LCLCP(M, q). If y € SOL(M, q) Nint(KC), then by Lemma 4, y = .

Suppose there exists y € OK such that y # x and My + ¢ = pJy. Then, M(z —y) =
ud(x —y). If w =0, then M(x —y) = 0. As M is non-singular and = # y, this is not
possible. So, i > 0. Put z = x — y. We claim that z € K. Suppose z ¢ K U —K. Then
by Moreau decomposition, there exist u,v € 9K such that z = u — v where u and v are
orthogonal. Then J(u—v) = av — fu for some o > 0 and 5 > 0. Now (M +nl)z = ku for
some k € R and > 0. By an easy verification, M +nl € ZN Q. By (A5) in Theorem 1,
+2z € K. By Lemma 2, x and y are linearly dependent. But this contradicts Lemma 3.
This completes the proof. O

5. A note on semidefinite linear complementarity problems

Let ™*™ be the space of all real symmetric n X n matrices. Given a linear trans-
formation L : X" — "*™ and Q € .¥"*" the semidefinite linear complementarity
problem SDLCP(L, Q) is to find an X € .#"*™ such that

X>0, V:=L(X)+Q>0 and (Y, X) = trace(XY) =0.

Here X = 0 means that X € ."*™ and X is positive semidefinite. For motivation and
importance of SDLCP, we refer to [5]. The following problem is posed in Gowda and
Song [5]. For an n x n matrix A, the Lyapunov transformation is defined by L4(X) :=
AX + X AT If A is positive stable then show that SDLCP(L 4, Q) has only finitely many
solutions for all @ € ™*™. Since L4 is a Z-transformation with respect to the positive
semidefinite cone and .#2%? is isomorphic to K2, we have the following result:

Theorem 3. Let A be a 2 x 2 matriz. If A is positive stable then SDLCP(L 4, Q) has only
finitely many solutions for all Q € #*2.
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6. An example

It is natural to ask if an n x n matrix A € ZNQ, then is it true that LCLCP(A, ¢) has
a unique solution for all ¢ € R™. If this is true then by the previous note A is positive
stable if and only if SDLCP(L 4, Q) has a unique solution for all Q € .#?*2. But this
will contradict the following well-known theorem.

Theorem 4. (See Gowda and Song [5].) Let A be an n x n matriz. Then the following
are equivalent for the Lyapunov transformation La(X) := AX + X AT.

(i) A is positive stable and positive semidefinite.
(i) SDLCP(L 4, Q) has a unique solution for all Q € /™™,
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