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Let K ⊆ R
n be the n-dimensional Lorentz cone. Given 

an n × n matrix M and q ∈ R
n, the Lorentz-cone linear 

complementarity problem LCLCP(M, q) is to find an x ∈ R
n

that satisfies

x ∈ K, y := Mx + q ∈ K and yTx = 0.

We show that if M is a Z-matrix with respect to K, then M is 
positive stable if and only if LCLCP(M, q) has a non-empty 
finite solution set for all q ∈ R

n.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Lorentz-cone in Rn is defined by

Kn := {x = (x1, · · · , xn)T ∈ R
n : x1 ≥ 0, x2

1 ≥ x2
2 + · · · + x2

n}.

We will fix n > 2. For brevity, we write K instead of Kn. Further, we will always write if 
x ∈ R

n, then x =
[ x0

x̄

]
. Given an n ×n matrix M and a vector q ∈ R

n, the Lorentz-cone 
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linear complementarity problem LCLCP(M, q) is to find an x ∈ R
n such that:

x ∈ K, y := Mx + q ∈ K and yTx = 0.

Complementarity problems appear in various areas that include game theory, optimiza-
tion, and economics. LCLCP is a classical example of a linear complementarity problem 
defined on a non-polyhedral cone. Complementarity problems are special cases of varia-
tional inequality problems that have an extensive literature and wide applications (see, 
for example, Facchinei and Pang [2]). There is a particular algebra associated with the 
second order cone. This algebra is well-known and is a special case of a so-called Eu-
clidean Jordan algebra. We refer to Faraut and Korányi [3] for a comprehensive study. 
The rank of Euclidean Jordan algebra associated with the second order cone is 2 and 
has extra topological structure which allows us to go beyond the general study of vari-
ational inequalities. For further discussion, it is convenient to introduce the following 
definition.

Definition 1. Let M be an n × n real matrix. Then

1. M is called a Z-matrix on K if the following condition is satisfied:

x ∈ K, y ∈ K and xT y = 0 =⇒ yTMx ≤ 0.

In this case, we will write M ∈ Z.
2. M is called a Q-matrix if LCLCP(M, q) has a solution for all q ∈ R

n. In this case, 
we write M ∈ Q.

3. M ∈ Z ∩ Q, if M ∈ Z and M ∈ Q.

The class of Z-matrices is very broad. If S is an n × n matrix such that S(K) ⊆ K, 
then S is said to be positive on K. Characterization of matrices that are positive on K
appears in Loewy and Schneider [4]. If S is positive on K, then I − S is a Z-matrix 
on K. The most interesting theorem about Z-matrices in connection with LCLCP is the 
following:

Theorem 1. If M ∈ Z, then the following are equivalent.

(A1) M ∈ Q.
(A2) Let e = (1, 0, · · · , 0)T . Then zero is the only solution to LCLCP(M, 0) and 

LCLCP(M, e).
(A3) M is positive stable (i.e. every eigenvalue of M has a positive real part).
(A4) There exists v ∈ int(K) such that Mv ∈ int(K).
(A5) M−1 exists and M−1(K) ⊆ K.
(A6) MT ∈ Q.
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(Here, we have specialized the above result to K. More equivalent conditions in a 
general setting are found in Theorem 6 of Gowda and Tao [6].) It is natural to ask the 
following question now: Does M ∈ Z ∩ Q imply LCLCP(M, q) has only finitely many 
solutions for any vector q? Our main result answers the above question precisely. We 
show that if M ∈ Z ∩ Q, then LCLCP(M, q) has finitely many solutions for all q ∈ R

n. 
For an introduction to Z-matrices with respect to the cone Rn

+ and for an analog of 
Theorem 1, we refer to Bapat and Raghavan [1].

2. Preliminaries

We use the following notations.

2.1. Notations

(i) To denote the interior and the boundary of K, we use int(K) and ∂K respectively.
(ii) Let J denote the n × n diagonal matrix diag(1, −1, −1, · · · , −1).
(iii) Let M be an n × n matrix.

(a) Columns of M are denoted by m1, m2, · · · , mn respectively.
(b) We write M by [[m1, m2, · · · , mn]].
(c) Let b ∈ R

n. Then, M (i)(b) := [[m1, · · · , mi−1, b, mi+1, · · · , mn]].
(d) For each τ ∈ R, we define Mτ := M − τJ .

(iv) I will stand for the identity matrix.
(v) SOL(M, q) will represent the set of all solutions to LCLCP(M, q).
(vi) e will denote the vector (1, 0, · · · , 0)T in Rn.
(vii) Let F be a non-empty subset of Rn. Then, −F := {−x : x ∈ F}.

2.2. An elementary lemma

In the following elementary lemma, we summarize some basic properties of the second 
order cone. We refer to Tao [7] for details.

Lemma 1. The following are true:

(1) Let x ∈ ∂K and y ∈ ∂K. Then the following are equivalent:
(a) xT y = 0.
(b) There exists μ ≥ 0 such that y = μJx.

(2) x ∈ K if and only if xT y ≥ 0 for all y ∈ K.
(3) x ∈ int(K) if and only if xT y > 0 for all non-zero y ∈ K.
(4) Let M be an n × n matrix and q ∈ R

n. Suppose x ∈ SOL(M, q) ∩ ∂K. Then there 
exists a μ ≥ 0 such that Mx + q = μJx. Conversely, if there exist μ ≥ 0 and x ∈ ∂K
such that Mx + q = μJx, then x ∈ SOL(M, q).

(5) If x ∈ int(K), y ∈ K and xT y = 0, then y = 0.
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(6) Let x ∈ K. Then x ∈ int(K) if and only if Jx ∈ int(K). Similarly x ∈ ∂K if and only 
if Jx ∈ ∂K.

3. Some preliminary results

The following lemma will be very useful and will be invoked often in the proofs of our 
main results.

Lemma 2. Let x, y ∈ ∂K. If x and y are linearly independent, then x − y /∈ K.

Proof. Let z = x − y. Suppose z ∈ K. If z ∈ int(K), then note that x ∈ int(K) which is 
not possible. So, z ∈ ∂K. Let

x =
[
x0
x̄

]
, y =

[
y0
ȳ

]
and z =

[
z0
z̄

]
.

Since x, y and z belong to ∂K, we have

‖ȳ + z̄‖ = y0 + z0 = ‖ȳ‖ + ‖z̄‖.

The above equality is true if and only if span{ȳ} = span{z̄}. Because y and z lie in 
∂K, it now follows that y and z are linearly dependent. But x = y + z. So, x and y are 
linearly dependent. This contradicts our assumption. Therefore, z /∈ K. �
Lemma 3. Let M and q satisfy the following conditions:

1. M ∈ Z ∩ Q.
2. 0 	= x ∈ SOL(M, q) and 0 	= y ∈ SOL(M, q).

If x 	= y, then x and y are linearly independent.

Proof. If x and y belong to int(K), then by Lemma 1(5), it follows that Mx + q = 0 and 
My + q = 0. Since M is non-singular, x = y. Thus both x and y cannot be in int(K).

Assume that x ∈ ∂K. If x and y are linearly dependent, then for some α > 0, y = αx. 
Thus, y ∈ ∂K. By Lemma 1(2), there exist μ ≥ 0 and μ′ ≥ 0 such that

Mx + q = μJx, (1)

M(αx) + q = μ′J(αx). (2)

Multiplying (1) by α and subtracting from (2), we get

(α− 1)q = (μα− μ′α)Jx.

Since x and y are distinct, α 	= 1. Thus, q = α(μ−μ′)
α−1 Jx. Hence by (1), there exists k ∈ R

such that Mx = kJx. If k ≥ 0, then x ∈ SOL(M, 0) and by (A2) in Theorem 1, x = 0. If 
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k < 0 then, by (A5) in Theorem 1, x ∈ −K and therefore x = 0. This is a contradiction. 
Therefore x and y are linearly independent. �
Lemma 4. Let M ∈ Z ∩ Q. Then the following are true:

(i) If LCLCP(M, q′) has a solution in int(K), then LCLCP(M, q′) has a unique solution.
(ii) LCLCP(M, q) has a unique solution for all q ∈ −K.

Proof. We first prove (i). Let x ∈ SOL(M, q′) ∩ int(K). If y ∈ SOL(M, q′) ∈ int(K), then 
by Lemma 1(5), we have Mx + q′ = 0 and My + q′ = 0. As M is non-singular, x = y.

Suppose y ∈ ∂K. Then by Lemma 1(4), there exists a μ ≥ 0 such that My+ q′ = μJy

and thus we have M(y−x) = μJy. Now Theorem 1(A5) implies, y−x ∈ K. As x ∈ int(K), 
we deduce that y ∈ int(K) which is a contradiction. This proves (i).

We now prove (ii). Note that if x = −M−1q then x ∈ K. Let y ∈ SOL(M, q). Then, 
v := My + q ∈ K and yT v = 0 implies (My)T v = 0. So,

0 ≥ qT v = ‖v‖2 − vTMy ≥ 0.

Thus, v = 0. Hence, q = −My which shows that y = x as M is invertible. This proves 
(ii). �
4. Main result

We will prove our main result: If M ∈ Z ∩ Q, then LCLCP(M, q) has finitely many 
solutions for all q ∈ R

n. Recall that x ∈ SOL(M, q) ∩ ∂K if and only if there exists a 
μ ≥ 0 such that (JM − μI)x = −Jq. We will make use of this fact in the sequel. The 
proof of the main theorem will follow from the next lemma.

Lemma 5. Let M ∈ Z ∩ Q and 0 	= b ∈ R
n. Then

Ω := {μ ∈ R : (JM − μI)x = b, x ∈ ∂K}

is a finite set.

Proof. Let Mμ := JM − μI. Define

U := {μ ∈ Ω : det(Mμ) = 0} and V := {μ ∈ Ω : det(Mμ) 	= 0}.

Then Ω = U ∪V and U is finite. We claim that V is finite. Suppose V contains infinitely 
many elements. For each μ ∈ R, we define

f i(μ) := det(M (i)
μ (b))2 and P (μ) := f1(μ) −

n∑
f i(μ).
2
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We now claim that if μ ∈ V , then P (μ) = 0. Let β ∈ V . Since Mβ is non-singular, 
there exists a unique x ∈ ∂K such that Mβx = b. By Cramer’s rule,

xi =
det(M (i)

β (b))
det(Mβ) .

As x ∈ ∂K, we have x2
1 = x2

2 + · · · + x2
n and hence we see that

f1(β) =
n∑
2

f i(β).

Thus, P (β) = 0 and this proves our claim.
Since P is a polynomial and V has infinitely many elements, we deduce that P (μ) = 0

for every μ ∈ R. We now claim that if μ ∈ V , Mμ is invertible, and Mμp = b, then 
p ∈ ∂K ∪−∂K. Let α ∈ V . Define

pi = det(M (i)
α (b))

det(Mα) .

By Cramer’s rule, p := (p1, · · · , pn)T is the unique solution for the system Mα(x) = b. 
As P (α) = 0, we get

p2
1 =

n∑
2

p2
i .

The above equation implies that p ∈ ∂K ∪−∂K. This proves our claim.
Let {μk} be a decreasing sequence of positive numbers converging to 0 such that each 

Mμk
is non-singular. Let Mμk

(xk) = b. Then, xk ∈ ∂K ∪ −∂K. We now claim that the 
sequence {xk} is bounded. Suppose {xk} is unbounded. Because b is non-zero, each xk

is non-zero. We now have

Mμk
( xk

‖xk‖
) = b

‖xk‖
.

Without loss of generality assume that xk

‖xk‖ → y. Applying limits, we find that JMy = 0. 
This contradicts that JM is non-singular. Thus {xk} is bounded.

Let, without loss of generality, xk → u. Since Mμk
(xk) = b, by applying limits we 

get JMu = b. As b 	= 0, we see that u 	= 0. Thus, JM(xk − u) = μkxk for all k and 
so xk − u = μkM

−1(Jxk) for all k. Since xk ∈ ∂K ∪ −∂K for each k, we may assume, 
without loss of generality, that, (i) xk ∈ ∂K for all k or (ii) xk ∈ −∂K for all k. In the 
first case u ∈ ∂K, xk − u ∈ K and so by Lemma 2, xk ∈ span{u} for all k. In the second 
case, u ∈ −∂K and −xk − (−u) = M−1(−Jxk) ∈ K. By Lemma 2, it now follows that 
xk ∈ span{u}.
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As xk is a multiple of u, we see that xk − u = θku and so JM(xk − u) = μkxk. 
This implies M(θku) = μk(1 + θk)Ju. By (A2) and (A5) in Theorem 1, either θk = 0
or u = 0. But u is non-zero. So, xk = u for all k. Since xk − u = μkM

−1(Jxk), we get 
M−1(Jxk) = 0 and hence xk = 0 which is a contradiction. �

The main result follows now.

Theorem 2. Let M ∈ Z ∩ Q. Then, LCLCP(M, q) has finitely many solutions for all 
q ∈ R

n.

Proof. Since M ∈ Z ∩Q, we see that zero is the only solution to LCLCP(M, 0). Let q ∈
R

n be a non-zero vector. In view of Lemma 4, it is enough to show that SOL(M, q) ∩∂K
is finite. Let Ω := {μ ≥ 0 : Mμ(x) = −q, x ∈ ∂K}. Then by the previous lemma, Ω is 
finite. For any μ ∈ Ω, let x ∈ ∂K such that Mμx = −q. We claim that x is the only 
solution to LCLCP(M, q). If y ∈ SOL(M, q) ∩ int(K), then by Lemma 4, y = x.

Suppose there exists y ∈ ∂K such that y 	= x and My + q = μJy. Then, M(x − y) =
μJ(x − y). If μ = 0, then M(x − y) = 0. As M is non-singular and x 	= y, this is not 
possible. So, μ > 0. Put z = x − y. We claim that z ∈ K. Suppose z /∈ K ∪ −K. Then 
by Moreau decomposition, there exist u, v ∈ ∂K such that z = u − v where u and v are 
orthogonal. Then J(u −v) = αv−βu for some α > 0 and β > 0. Now (M+ηI)z = ku for 
some k ∈ R and η > 0. By an easy verification, M + ηI ∈ Z ∩Q. By (A5) in Theorem 1, 
±z ∈ K. By Lemma 2, x and y are linearly dependent. But this contradicts Lemma 3. 
This completes the proof. �
5. A note on semidefinite linear complementarity problems

Let S n×n be the space of all real symmetric n × n matrices. Given a linear trans-
formation L : S n×n → S n×n and Q ∈ S n×n the semidefinite linear complementarity 
problem SDLCP(L, Q) is to find an X ∈ S n×n such that

X � 0, Y := L(X) + Q � 0 and 〈Y,X〉 = trace(XY ) = 0.

Here X � 0 means that X ∈ S n×n and X is positive semidefinite. For motivation and 
importance of SDLCP, we refer to [5]. The following problem is posed in Gowda and 
Song [5]. For an n × n matrix A, the Lyapunov transformation is defined by LA(X) :=
AX+XAT . If A is positive stable then show that SDLCP(LA, Q) has only finitely many 
solutions for all Q ∈ S n×n. Since LA is a Z-transformation with respect to the positive 
semidefinite cone and S 2×2 is isomorphic to K3, we have the following result:

Theorem 3. Let A be a 2 ×2 matrix. If A is positive stable then SDLCP(LA, Q) has only 
finitely many solutions for all Q ∈ S 2×2.
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6. An example

It is natural to ask if an n ×n matrix A ∈ Z ∩Q, then is it true that LCLCP(A, q) has 
a unique solution for all q ∈ R

n. If this is true then by the previous note A is positive 
stable if and only if SDLCP(LA, Q) has a unique solution for all Q ∈ S 2×2. But this 
will contradict the following well-known theorem.

Theorem 4. (See Gowda and Song [5].) Let A be an n × n matrix. Then the following 
are equivalent for the Lyapunov transformation LA(X) := AX + XAT .

(i) A is positive stable and positive semidefinite.
(ii) SDLCP(LA, Q) has a unique solution for all Q ∈ S n×n.
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