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Abstract 
 

Unexpected failures of complex equipment such as trains 

or aircraft introduce superfluous costs, disrupt operation, 

have an effect on consumer’s satisfaction, and potentially 

decrease safety in practice.  One of the objectives of 

Prognostics and Health Management (PHM) systems is to 

help reduce the number of unexpected failures by 

continuously monitoring the components of interest and 

predicting their failures sufficiently in advance to allow 

for proper planning.  In other words, PHM systems may 

help turn unexpected failures into expected ones.  Recent 

research has demonstrated the usefulness of data mining 

to help build prognostic models for PHM but also has 

identified the need for new model evaluation methods that 

take into account the specificities of prognostic 

applications. This paper investigates this problem. First, 

it reviews classical and recent methods to evaluate data 

mining models and it explains their deficiencies with 

respect to prognostic applications.  The paper then 

proposes a novel approach that overcomes these 

deficiencies.  This approach integrates the various costs 

and benefits involved in prognostics to quantify the cost 

saving expected from a given prognostic model.  From the 

end user’s perspective, the formula is practical as it is 

easy to understand and requires realistic inputs.  The 

paper illustrates the usefulness of the methods through a 

real-world case study involving data-mining prognostic 

models and realistic costs/benefits information.  The 

results show the feasibility of the approach and its 

applicability to various prognostic applications.  

 

Keywords: Model Evaluation, Data Mining, Machine 

Learning, ROC, ROCCH, AUC, Business Gains, 

Prognostics. 

 

1. Introduction 
 
The need for higher equipment availability and lower 
maintenance cost is driving the development and 
integration of prognostic and health management (PHM) 
systems.  Taking advantage of advances in sensor 
technologies, PHM systems favor a pro-active 
maintenance strategy by continuously monitoring the 
health of selected components and warning the 

maintenance staff whenever there is a risk for a 
component failure.  These early warnings allow the 
maintenance staff to devise an optimal repair plan that 
minimizes both disruption and cost.  When sufficient data 
is available, one may rely on data mining to help build the 
required predictive models.  As an example, we propose 
in [13] a complete methodology that makes use of 
classification techniques and existing equipment data to 
build predictive component failure models.  Although this 
methodology turns out to be highly promising, the 
problem of model evaluation remains a key practical 
difficulty limiting the applicability of data mining for 
prognostics. 
     Model evaluation is a core topic in data mining and a 
wealth of approaches and metrics have been proposed. A 
few examples of traditional approaches include hold-out 
validation, cross-validation, and bootstrapping. Over the 
last decade, ROC (Receiver Operating Characteristics) 
analysis and ROC-based approaches [3, 4, 5 6, 7, 8], 
including ROCCH (ROC Convex Hull), AUC (Area 
Under the ROC Curve), and ROC cost curve, have 
gradually replaced the use of the error-rate measure.  The 
DEA (Data Envelopment Analysis) [9, 10, 11] approach is 
also gaining popularity in the multi-class problem. 
Unfortunately, none of these are directly applicable to 
prognostic applications.  There are two reasons. First, 
these approaches rely on random sampling to select 
instances during the evaluation process, which is not 
appropriate whenever there are dependencies between the 
instances as it is the case in prognostic applications.  For 
example, in prognostic applications one would expect 
strong dependencies between instances from a given 
system and between instances with temporal proximity.  
Ignoring these dependencies during the sampling or the 
data partitioning process is likely to lead to unrealistic 
results.  Second, these approaches do not take into 
account the timeliness of the alerts generated by the 
predictive models and their overall failure detection rate.  
    We proposed a score-based model evaluation approach 
for prognostics that overcomes some of the limitations 
discussed above and applied it in various application 
domains [12, 13].  Although this approach is appropriate 
for ranking prognostic models, the scores computed do 
not allow the end user to understand the actual business 
value of the models built.  This paper addresses this 



problem by proposing a complementary cost-based 
method that integrates the various operational costs and 
benefits involved when making decisions based on 
prognostic models.  From the end user perspective, the 
formula is practical since it is easy to understand and 
requires inputs that are usually readily available.  The 
paper illustrates the usefulness of the methods through a 
real-world case study involving data-mining prognostic 
models and realistic costs/benefits information.   
    The following sections of the paper are as follows.  
Section 2 briefly reviews popular model evaluation 
approaches for classification tasks and the score-based 
approach previously proposed for prognostic applications. 
Section 3 presents the new cost-based model evaluation 
approach for prognostic applications.  Section 4 applies 
the proposed metric to evaluate data mining-based 
prognostic models in a real-world application.  Section 5 
discusses the experimental results, limitations, and future 
work.  Finally, Section 6 concludes the paper. 
 

2. Related Work 
 
In machine learning research, the reliability of a classifier 
or model is often summarized by either error-rate or 
accuracy. The error rate is defined as the expected 
probability of misclassification: the number of 
classification errors over the total number of test 
instances. The accuracy is 1 minus the error-rate. Because 
some errors can be more costly than others, it's sometimes 
desirable to minimize the misclassification cost rather than 
the error-rate. For this purpose, several approaches are 
available, including DEA, ROC analysis, and ROC-based 
methods. This section briefly reviews these approaches.  

 

2.1 ROC Analysis and ROC-Based Approaches for 
Model Evaluation 
The ROC analysis was initially developed to express the 
tradeoff between hit rate and false alert rate in signal 
detection theory [1, 2]. It is now also used to evaluate the 
performance of classifiers or learning algorithms [3, 4, 5, 
6, 7, 8] in machine learning. In particular, ROC is used for 
performance evaluation of binary classifiers. A binary 
classifier classifies each instance as “positive” or 
“negative”. Let us define the true positive (TP) and false 
positive rates (FP) as follow: 
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Using TP and FP as the Y-axis and X-axis respectively, 
we can plot a ROC space. In this space, each point (FP, 

TP) represents a classifier or a model. Given different 
class distributions and cost-error rates, we plot a curve for 
a given classifier on the ROC space. This curve is used to 
determine the performance of a classifier across the entire 
range of class distributions and error costs. On the other 
hand, ROC curves alone have limited use for classifier 
comparison and selection.  Several extensions globally 
referred to as ROC-based analysis have been proposed to 
address this limitation. 

 First, let us consider the ROCCH approach [3, 4]. This 
model selection approach starts by computing a convex 
hull that encloses the ROC curves for the set of classifiers 
to be compared. This convex hull represents the best 
performance that can be achieved from this set of models. 
Model selection is simply performed by choosing the 
model(s) that matches the performance of the convex hull 
for a given class distribution and error cost. 
      A second approach is the AUC [5, 6, 7], which is 
more appropriate whenever the class distribution and error 
cost are unknown. AUC has been shown to be more 
powerful than accuracy in experimental comparisons of 
several popular learning algorithms [5]. Precise and 
objective criteria have also been proposed to demonstrate 
the superiority of AUC over accuracy [6, 7], in particular 
with respect to consistency.     
      A third ROC-based analysis method has been 
proposed to integrate cost information [8].  This approach 
relies on cost and normalized cost probability instead of 
the usual TP and FP rates.  Using this approach, the user 
can assess the expected performance of a model under 
various costs and event probabilities.  Unfortunately, the 
notion of normalized cost probability, which encapsulates 
cost and probability information, is often difficult to 
interpret.  
     ROC-based approaches are very convenient for the 
evaluation of models in binary classification tasks but they 
do not generalize well to multi-class problems. The 
visualization is specially problematic since the ROC space 
for a k-class problem has k(k-1) dimensions.  And without 
simultaneous visualization of all the dimensions, the 
benefits of the ROC approaches are greatly reduced. 

 
2.2 Data Envelopment Analysis   
The Data Envelopment Analysis (DEA) method is more 
effective for multi-class problems. DEA is widely used in 
decision-making support and management science. It 
addresses the key issues in determining the efficiencies of 
various producers or DMUs (Decision Making Units) by 
converting a set of inputs into a set of outputs [9, 10]. 
DEA is a linear-programming-based approach, which 
constructs an efficient frontier (envelopment) over the 
data and computes each data point’s efficiency related to 
this frontier. Each data point corresponds to a DMU or a 



producer in applications. The task of DEA is to identify 
the efficiency of the DMUs from the inputs. Z. Zheng, et 
al.  have attempted to apply DEA to model evaluation and 
combination [11]. They have proved that DEA and 
ROCCH have the same convex hull for binary 
classifications. In other words, DEA is equivalent to 
ROCCH for binary classification tasks. However, DEA 
can also be used to evaluate models in k-class problems.   
 

2.3 Score-Based Approach for Model Evaluation 
The existing ROC-based or DEA-based metrics fail to 
capture two important aspects for prognostic applications. 
The first aspect is the timeliness of the predictions. A 
model that predicts a failure too early leads to non-optimal 
component use.  On the other hand, if the failure 
prediction is too close to the actual failure then it becomes 
difficult to optimize the maintenance operation.  To take 
timeliness of the predictions into account, the evaluation 
method needs to consider the delta time between the 
prediction of a failure and its actual failure (time-to-
failure). The second aspect relates to coverage of potential 
failures. Because the learned model classifies each report 
into one of two categories (replace component; do not 
replace component), a model might generate several alerts 
before the component is actually replaced. More alerts 
suggest a higher confidence in the prediction. However, 
we clearly prefer a model that generates at least one alert 
for most component failures over one that generates many 
alerts for just a few failures. That is, the model's coverage 
is very important to minimizing unexpected failures. 
Given this, we need an overall scoring metric that 
considers alert distribution over the various failure cases. 
We shall now introduce a reward function to take 
timeliness of predictions into account and then we will 
present a new scoring metric that addresses the problem 
detection coverage.   
      We define a reward function for predicting the correct 
instance outcome. The reward for predicting a positive 
instance is based on the number of days between instance 
generation and the actual failure. Figure 1 shows a graph 

of this function. The maximum gain is obtained when the 
model predicts the failure between five to twenty days 
prior to a component failure. Outside this target period, 
predicting a failure can lead to a negative reward 
threshold, as such a prediction corresponds to a 
misleading advice. Accordingly, false-positive predictions 
(predictions of a failure when there is no failure) are 
penalized by a reward of -1.5 in comparison to a 1.0 
reward for true-positive predictions (predictions of failure 
when there is a failure). 
    The reward function accounts for time-to-failure 
prediction for each alert; to evaluate model coverage we 
must look at alert distribution over the different failure 
cases. This is taken into account by the following formula 
to evaluate the overall performance: 

 

       
where: 

• p is the number of positive predictions in the test 
dataset; 

• NbrDetected is the number of failures, which 
contain at least one alert in the target interval; 

• NbrofCase is total number of failures in a given 
testing dataset; 

• Sign is the sign of �
=

p

i
isc

1

. When Sign <0 and 

NbrDetected=0, score is set to zero; and 

• sci is calculated with the reward function above 
for each alert. 

 
In terms of process, we first adapt the thresholds of the 

reward function based on the requirements of the 
prognostic application at hand (rewards, target period for 
predictions). Then, we run all models developed on the 
test dataset(s) and compute their score (using Equation 1).  
The model with the highest score is considered the best 
model for the application. 

 

3. Evaluating Cost Saving 
 
Although the score-based approach proposed above takes 
the time-to-failure prediction and problem detection 
coverage into account for evaluating models, the scores 
computed do not inform the end users on the expected 
cost savings of the models.  In this section, we propose a 
new approach that addresses this problem by trying to 
quantify how much an organization could save by 
deploying a given prognostic model. 
      The proposed method is based on the following 
scenario.  The prognostic model is to be implemented in a 
monitoring system that receives and processes the data 
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from the equipment in a near real-time manner.  Whenever 
the prognostic model predicts a component failure, an 
alert is transmitted to the appropriate maintenance staff.  
After receiving an alert, the maintenance staff will inspect 
the given component as soon as possible.  If the 
component is found faulty, it would be replaced 
immediately.  Otherwise, the prediction would be 
considered as a false alert (false positive) and the 
component will stay in operation.   
      As with the approach discussed in Section 2.3, the 
user specifies an optimal target window for the alerts as 

shown in Figure 2.  We use Tt and 0t to denote the 

beginning and then end of this target window.  We note 

that 0t also represents the actual failure time.  The time at 

witch the prognostic model predicts a failure (and alert is 

raised) is noted p.  When p < Tt there is a potential for 

replacing a component before the end of its useful life and 
therefore losing some component usage.  Our approach 
accounts for this lost of usage by penalizing early alerts 

proportionally to the difference between p and Tt .  By 

convention, we set 00 =t   and use negative values for 

times prior to 0t and positive numbers after 0t .  

Accordingly, we use || Ttp −  for the difference between 

p and Tt . In practice, we use week, day, or hour as time 

unit.   

      The approach also assumes that the user provides 
some cost information including the cost of a false alert 
(an inspection without component replacement), a pro rata 
cost for early replacement, the cost for fixing a faulty 
component, and the cost of an undetected failure (i.e., a 
functional failure during operation without any prior 
prediction from the prognostic model).  The first three 
costs are generally easy to obtain while the last one is 
difficult to approximate accurately.  This is because 
failures during operation may incur various other costs 
that are themselves difficult to estimate.  For instance, an 
operational failure may cause a secondary component to 

fail prematurely, it may incur delays in the scheduled 
operations with potential negative consequences on user’s 
satisfaction and reputation of the organization, or it may 
cause a safety hazard and turns into a catastrophe.  
Although these secondary effects could greatly influence 
decision regarding the adoption of a prognostic model, the 
lack of accurate information prevented us from integrating 
them into the proposed approach.  Hence, we adopt a 
conservative approach and only consider direct costs 
involved in a functional failure. 

To evaluate the cost saving (CS) due to a model, we 
compute the difference between the cost of operation 

without the model ( nmC ) and the cost with the prognostic 

model ( pmC ).  These costs are computed using the 

following equations:   
  

    )()( NMdMNcCnm +⋅++⋅=               (2)                           

       

   )( NMdNcFbTaC epm +⋅+⋅+⋅+⋅=             (3) 

 
 where: 

• a  is a pro rata cost for early replacement. For 
example, $10 for each lost day of usage; 

• b   is  the cost for a false alert; 

• c   is the cost for an undetected failure (direct 
cost for a failure during operation); 

• d  is the cost for replacing the component 
(either after a failure or following an alert); 

• N  is the number of undetected failures; 

• M is the number of detected failures;  

• eT  is the sum of  || Ttp −  for all predicted 

failures, i.e., �
=

−=

M

i
Tie tpT

1

||  where pi is the 

time of the ith  prediction; and 

•  F is the number of false alerts. 
    
   As discussed above, the constants cba ,, and d are 

provided by the end user. MFTe ,, and N are computed 

after applying the given model to an independent testing 
dataset.  The following section presents a real world case 
study that illustrates the process. 
 

4.  A Case Study 
 
The WILDMiner project1 targets the development of data-
mining-based models for prognostic of train wheel failures 
[12].  The objective is to reduce train wheel failures 
during operation which disrupt operation and could lead 

                                                 
1 More information on the WILDMiner project is available at http://iit-
iti.nrc-cnrc.gc.ca/projects-projets/wildminer_e.html 
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to catastrophes such as train derailments. The data used to 
build the predictive models come from the WILD (Wheel 
Impact Load Detectors) data acquisition system. This 
system measures the dynamic impact of each wheel at 
strategic locations on the rail network.  When the 
measured impact exceeds a pre-determined threshold, the 
wheels on the corresponding axle are considered faulty.  A 
train with faulty wheels needs to immediately reduce 
speed and then stop at the nearest siding so that the car 
with faulty wheels can be decoupled and repaired.  A 
successful prognostic model would be able to predict high 
impacts ahead of time so that problematic wheels are 
replaced before they disrupt operation. 
      For this study, we used WILD data collected over a 
period of 17 months from a fleet of 804 large cars with 12 
axles each. After data pre-processing, we ended up with a 
dataset containing 2,409,696 instances grouped in 9906 
time-series (one time-series for each axle used in 
operation during the study).  We used 6400 time-series for 
training (roughly the equivalent of the first 11 months) 
and kept the remaining 3506 time-series for testing 
(roughly the equivalent of the last 6 months).  Since there 
are only 129 occurrences of wheel failures in the training 
dataset, we selected the corresponding 129 time-series out 
of the initial 6400 time-series in the training dataset. We 
created a relevant dataset for modeling which   contains 
214364 instances from the selected 129 time-series. 
      Using the obtained dataset and the WEKA package, 
we built the prognostic models. The model-building 
process consists of three steps [12,13]. First, we labeled 
all instances in the dataset by configuring the automated 
labeling step. Second, we augmented the representation 
with new features such as the moving average for a key 
attribute. Finally, we used WEKA’s implementation of 
decision trees (J48) and naïve Bayes (SimpleNaiveBayes) 
to build four prognostic models referred to as A, B, C and 
D.  Model A and B were obtained with default parameters 
from J48 and SimpleNaiveBayes, respectively.  In a 
second experiment, we modified the misclassification 
costs to compensate for the imbalanced between positive 
and negative instances and then re-run J48 and 
SimpleNaiveBayes to generate model C and D. 
     For evaluation purpose, we ran these four models on 
the test dataset.  The test dataset has 1,609,215 instances.  
Out of the 3506 time-series contained in the test dataset, 
81 comprise a validated wheel failure.  We applied the 
proposed evaluation method to estimate the cost saving 
from these four models.  Since we assumed that the 
operators will act as soon as they receive an alert (Section 
3), we only kept the first alert (prediction of failure) from 
each time-series.  We then extracted the performance 
parameters N, M, and F by counting the number of time-
series for which we did not get any predictions, the 
number of series for which we did get a prediction 
followed by an actual failure (true positive), and the 

number of time-series for which we got a false alert, 

respectively.  To compute eT , we added the differences 

between the time of the prediction and the beginning of 

the target window (i.e., || Ttp − ) for each of the M time-

series for which the model correctly predicted a failure. In 

this application, the time unit for the difference || Ttp −  

is “day” and  tT is set as 20 days prior to failure failure. 
For example, when the time-to-failure prediction (p) of an 
alert is 40 days to an actual failure, its difference, 

|| Ttp − ,  is 20 days ( || Ttp − = |-40 – (- 20)| = 20) 

      The cost information (noted ,,, cba and d in Equations 

(2) and (3)) was provided by an independent expert in the 
railway industry. These are as follows: a= $2/per day for 
lost of usage, b=$500/per false alert, c=$5000/per 
undetected failure and d=$2100/per component 
replacement.  All costs are in US dollars.  Using these 
values and the results for the performance parameters, we 
obtained the results shown in Table 1.   
 

Table 1, The results of 4 prognostic models on test data.  

Model Name eT   M+N  N F
 Cost Saving 

(US$) 

Model A 357 81 40 245 81,750.0 

Model B 812 81 30 178 164,376.0 

Model C 647 81 6 161 293,206.0 

Model D 1339 81 21 260 167,322.0 

 
 
5.  Discussions and Limitations 
 
The case study illustrates the simplicity and usefulness of 
the evaluation approach.  With this approach, the end user 
gets a quick understanding of the potential cost savings to 
be expected from each of the model.  Key factors such as 
timeliness of the alerts and coverage of failures are taken 
into account, which is not the case with other methods 
typically used in data mining research. It is worth pointing 
out that the proposed approach focuses on cost saving and 
does not tackle the safety issues.   It is also interesting to 
note that, for the case study considered, the results 
obtained from the proposed method is consistent with the 
score-based approach described in Section 2.3.  It would 
be interesting to confirm this consistency with additional 
applications. 
      The accuracy and applicability of the proposed 
method is directly linked to the availability and quality of 
the cost information provided.  In the case study 



presented, lack of information forced us to adopt a 
conservative approach by ignoring potential secondary 
effects of component failures during operation (e.g., cost 
of derailments, secondary failures, delays in delivery of 
goods, etc.)  Nevertheless, we note from Table 1 that it’s 
possible to obtain highly positive results even with an 
overlay conservative approach.  Such results could indeed 
help managers appreciate the values of data-mining-based 
prognostic models and positively influence their 
acceptation in real-world applications.  We also note that 
the repair cost is not mandatory in our approach.  We 
could have omitted the corresponding terms in Equations 
(2) and (3) without changing the results.  The other two 
costs involved: cost for validating an alert and cost due to 
a false positive prediction should be relatively easy to 
obtain in many applications. 
      Finally, it is essential to note that the cost saving 
analysis proposed fail to capture a number of factors 
involved in the deployment of prognostic models.  For 
instance, one could assume that there would be some 
additional costs for the implementation of the model into 
the existing information system of the organization.  Also, 
accurate prediction of failures may lead to better planning, 
optimized management of inventory, and increased client 
satisfaction.  All of these improvements would necessarily 
increase cost saving.  Our future work will focus on 
extending the proposed approach to include such 
additional factors and therefore improve the precision of 
the estimated cost saving. 
 

6. Conclusions 
 
In this paper, we first reviewed classical and recent model 
evaluation methods for classification tasks and then 
explained their deficiencies for prognostic applications. 
To overcome these deficiencies, we proposed a cost-based 
evaluation approach for prognostic models. This novel 
approach does not only take time-to-failure prediction and 
problem detection coverage into account, but it also 
integrates the various costs and benefits information 
involved in prognostics.  From the end user perspective, 
the formula for computing cost saving is practical as it is 
easy to understand and requires a minimal amount of 
information. The experimental results from the case study 
show that the proposed approach can generate 
understandable and convincing results that help the end 
users assess the benefits of prognostic models. 
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