Kinesin rotates unidirectionally and generates torque while walking on microtubules

Avin Ramaiyaa,1, Basudev Roya,1,2, Michael Bugiela, and Erik Schäffera,3

aCellular Nanoscience, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany

Edited by J. Richard McIntosh, University of Colorado, Boulder, CO, and approved August 22, 2017 (received for review April 26, 2017)

Cytoskeletal motors drive many essential cellular processes. For example, kinesin-1 transports cargo in a step-wise manner along microtubules. To resolve rotations during stepping, we used optical tweezers combined with an optical microprotractor and torsion balance using highly birefringent microspheres to directly and simultaneously measure the translocation, rotation, force, and torque generated by individual kinesin-1 motors. While, at low adenosine 5-triphosphate (ATP) concentrations, motors did not generate torque, we found that motors translocating along microtubules at saturating ATP concentrations rotated unidirectionally, producing significant torque on the probes. Accounting for the rotational work makes kinesin a highly efficient machine. These results imply that the motor’s gait follows a rotary hand-over-hand mechanism. Our method is generally applicable to study rotational and linear motion of molecular machines, and our findings have implications for kinesin-driven cellular processes.

Kinesin-1 is a dimeric, ATP-driven molecular machine transporting vesicular cargo (1–3) while stepping in a hand-over-hand fashion (4–7) along microtubules. Because of the identical subunits, the motor has been proposed to rotate unidirectionally during stepping, implying that the tail of motors and vesicles will tend to wind up and spin (8). However, experiments done at low ATP concentrations only revealed occasional, random motor rotations (9, 10). An asymmetry in the timing of consecutive steps, so-called limping (5, 11), was interpreted as an alternation in the rotation direction of consecutive steps and later attributed to loads perpendicular to the microtubule axis (12, 13). However, direct evidence for any rotational motion, in particular at high, physiological ATP concentrations, is lacking.

Optical tweezers are versatile tools used for either force or torque spectroscopy applied to investigate the translation or rotation of molecular machines, respectively (14, 15). However, methods to simultaneously measure linear and rotational motion with molecular resolution are scarce. Here, we introduce a rotation detector to an optical trap using liquid crystalline microspheres with molecular resolution. We found that the gait followed a rotary stepping mechanism that generates torque and spins cargo. Thus, during walking, the motor “tail (and organelle) will tend to wind up like the rubber band of a toy airplane,” as Joe Howard hypothesized in 1996. To determine the overall motor efficiency, our measurements also point to the importance of accounting for rotational work. Apart from other cytoskeletal motors, the technique may be applied to molecular machines such as DNA motors and rotary engines like the ATP synthase.

Significance

Given the importance of cytoskeletal motor proteins, we asked whether translational motors rotate while walking along their tracks. Using an optical tweezers-based approach, we simultaneously measured translation, force, rotation, and torque of a kinesin motor with molecular resolution. We found that the gait followed a rotary stepping mechanism that generates torque and spins cargo. Thus, during walking, the motor “tail (and organelle) will tend to wind up like the rubber band of a toy airplane,” as Joe Howard hypothesized in 1996. To determine the overall motor efficiency, our measurements also point to the importance of accounting for rotational work. Apart from other cytoskeletal motors, the technique may be applied to molecular machines such as DNA motors and rotary engines like the ATP synthase.

Author contributions: E.S. designed research; A.R., B.R., and M.B. performed research; A.R., B.R., M.B., and E.S. analyzed data; and A.R., B.R., and E.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1 A.R. and B.R. contributed equally to this work.

2 Present address: Department of Physics, Indian Institute of Technology, Madras 600036, India.

3 To whom correspondence should be addressed. Email: Erik.Schaeffer@uni-tuebingen.de.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1706985114-DCSupplemental.
average intensity over a region of interest around the microsphere, increased again (Fig. 1B). This increase is consistent with a rotation back to the initial microsphere orientation. A control measurement confirmed the expected image intensity dependence on the rotation angle (SI Appendix, Fig. S3). For the twisted kinesin, the slow rotation back to the initial state was well described by an exponential function (black line in Fig. 1B) with a relaxation time constant $t_{rot} = \gamma / \kappa_{motor}$, where $\gamma = 8 \pi \eta R^2$ is the rotational drag coefficient, with $\lambda \approx 1.12$ accounting for the surface proximity (ref. 24 and SI Appendix, section 1). Using the known viscosity η and microsphere radius R, we determined the torsional stiffness $\kappa_{motor} = \gamma / t_{rot}$ of the motor to be $4.0 \pm 0.5\ pN\ nm^{-1}$ (SEM unless stated otherwise, $N = 9$), consistent with reported values (10, 17). Thus, motors have a torsional stiffness large enough to support and transfer torque.

Kinesin Generates Torque. To test whether motors could generate torque during translocation, we performed a motility assay with motor-coupled microspheres powered by single motors under high ATP concentrations (1 mM, Fig. 2). Here, we used the optical tweezers only as a helping device to place a microsphere on a microtubule. Then, we turned off the trap and recorded an image sequence using polarization microscopy. During the translocation, the microsphere brightness changed (Fig. 2A). Using pattern matching, we tracked the microsphere and plotted its position and intensity, determined as above, as a function of time (blue and red lines, respectively, Fig. 2B). The intensity change is consistent with a constant rotation rate of the microsphere (black line, Fig. 2B), implying that the motor was able to generate a torque sufficient to continuously and unidirectionally rotate the microsphere. Thus, in the absence of the optical trap, this experiment shows that the motor can generate significant torque at high ATP concentrations.

Kinesin Rotates Unidirectionally. How is torque generated? To achieve a molecular resolution, we used optical tweezers combined with a rotation detector based on the backscattered trapping light—an optical microprotractor and torsion balance (SI Appendix, Fig. S2). Using a force clamp (25) and a high ATP concentration (1 mM), we could independently record both translational and rotational motion (SI Appendix, Fig. S4A). In contrast, at a low ATP concentration (1 µM), we did not measure a significant rotation signal (SI Appendix, Fig. S4B). This absence of rotations is consistent with the notion that the motor is strongly bound only by one head at low ATP concentrations (26, 27) that is not able to sustain torque for extended periods. To quantify the rotation and torque, we calibrated the backscattered laser intensity signal of a birefringent microsphere trapped with an elliptically polarized laser adapting our combined power spectral density–drag force calibration method (28, 29) for rotations (Materials and Methods and SI Appendix, section 1 and Fig. S6). The ellipticity was important for a linear response of the detector (SI Appendix, section 1). After we determined the angle sensitivity and torsional stiffness, we placed the motor-coupled microspheres on microtubules and recorded the position, force, angle, and torque of the microsphere (Fig. 3). Surprisingly, at sufficiently high ATP concentrations ($\geq 50\ \mu M$), single motors simultaneously displaced the birefringent microspheres from the trap center and rotated them in a step-wise fashion (blue and red lines, respectively, in Fig. 3A and B and SI Appendix, Fig. S7). Detected angular steps were small ($\approx 1^\circ$) because the optical trap acts like a torsion balance with a much larger optical

Fig. 1. Kinesin structure and twisting of a motor coupled to a birefringent microsphere. (A) The rat kinesin-1 homodimer consists of two N-terminal motor heads, neck linkers (NL, orange), a hinge domain (black), two coiled-coil domains (CC, blue; the first one is also called neck) truncated after amino acid 430, and C-terminally tagged GFP (green). (B) Polarization microscopy. (Top) Image sequence of a rotating, motor-attached birefringent microsphere with radius $R = 0.65 \pm 0.04\ \mu m$ viewed under crossed polarizers in AMP-PNP (time between frames: 136 ms). (Bottom) Average microsphere image intensity I vs. time t (red line). The relaxation was fitted to $I(t) = I_{0} \sin \left(\frac{\pi t}{\tau_{rel}}\right)$ with an offset t_{0} and $\tau_{rel} = 0.98 \pm 0.05\ s$ (black line). (Inset) Illustration of the twisting experiment. Schematics are not drawn to scale.

Fig. 2. Motility of a single, kinesin-driven, birefringent microsphere imaged using polarization microscopy without the optical trap. (A) Image sequence with 340 ms between displayed frames. The microsphere radius was $2.10 \pm 0.05\ \mu m$. (B) Microsphere position (blue line) and average intensity per pixel (red line) of the images in A as a function of time. A sinusoidal line (black) is drawn as a guide to the eye.
Fig. 3. Motility and rotation of motor-driven, birefringent microspheres in the optical tweezers combined with the optical microprotractor and torsion balance. The displacement (blue line, left-hand axis) and angle (red line, right-hand axis) are plotted as a function of time. Static trap data are recorded with an ATP concentration and microsphere diameter of (A) 200 μM and 0.64 μm, (B) 50 μM and 1.06 μm, and (C) 5 μM and 0.60 μm, respectively. Yellow and blue shaded regions indicate simultaneous rotational and translational steps. Black lines indicate their mean values.

torsional stiffness κ_{trap} compared with that of the motor ($\kappa_{\text{motor}} \ll \kappa_{\text{trap}}$). Thus, for a balanced torque $T_{\text{optical}} = T_{\text{motor}}$ corresponding to $k_{\text{trap}} \theta_{\text{protractor}} = k_{\text{motor}} \theta_{\text{motor}}$, the motor turns by a much larger angle $\theta_{\text{motor}} = (k_{\text{trap}} / k_{\text{motor}}) \theta_{\text{protractor}}$ compared with the change in the microsphere angle. The large optical torsional stiffness together with the small angular steps enabled a fast response time for resolution of motor rotations at high ATP concentrations. For a specific microsphere, rotations were mostly unidirectional. Out of 21 microspheres, 8 showed right-handed and 13 showed left-handed rotations when looking in the translation direction (positive and negative rotation signals, respectively). Based on a binomial distribution, the handedness was not significantly different from an equal probability to either turn leftward or rightward. Displacing the microsphere perpendicular to the microtubule axis did not affect the rotation direction (SI Appendix, Fig. S8 and section 4). Presumably, the directionality for a microsphere is established by how the motor is bound both with respect to its angular orientation and position relative to the extraordinary axis of the microsphere or by the location of the microtubule protofilament, on which the motor walks, relative to the middle of the microtubule. Interestingly, we observed that, for a translational backward step at 2.7 s, in Fig. 3B, the angular step was still positive (see also SI Appendix, Fig. S8). Only for the next forward step, the angular step was negative, indicating a reversal of the motor rotation direction. As in the force-clamp experiments, motors did not generate any torque at low ATP concentrations (5 μM, Fig. 3C). Thus, our data indicate that, at a sufficiently high ATP concentration, torque is incrementally generated in a step-wise manner by a mostly unidirectional rotation of the motor.

Kinesins Perform Rotational Work and Are Highly Efficient. Do the motors perform significant rotational work? Motors generated force up to about 5 pN and torque up to about $\tau_{\text{max}} \approx 1.650$ pN·nm (Fig. 3). When motors approached the stall force, both the displacement and angular traces showed discrete steps. To determine the time points at which positional steps occurred, we used an unbiased step detector (30) (blue and yellow shaded regions in Fig. 3). To quantify the angular steps, we averaged the angular trace over the dwell time of the positional steps and marked, with black lines, the average position and angle during a dwell. Individual angular steps $\theta_{\text{protractor}}$ coincident with displacement steps were, on average, $1.1 \pm 0.2^\circ$ ($N = 20$). Alternate step durations close to stall forces differed significantly, indicating that motors limped (Materials and Methods). In the torsion balance, the motor torque is equal to the optical torque. Thus, the angular steps correspond to an increase in torque per step of $\tau_{\text{step}} = \tau_{\text{optical}} = \kappa_{\text{trap}} \theta_{\text{protractor}} = 170 \pm 20$ pN·nm ($N = 20$). Since the motor must turn by $\theta_{\text{motor}} = 180^\circ$ per step (8), we calculated the torsional stiffness of the motor to be $\kappa_{\text{motor}} = \tau_{\text{step}} / \pi = 54 \pm 7$ pN·nm-rad$^{-1}$ (propagated SEM). This torsional stiffness is significantly larger compared with the one measured for the 45° relaxation in AMP-PNP (Fig. 1B), indicating a torsional stiffening of the motor. Such stiffening may be due to a windup and stretching of the stalk with increasing load. For many traces, we only observed significant rotation signals starting after a microsphere displacement of ~50 nm or approximately six steps corresponding to three full turns (see, e.g., Fig. 3A). This super-twist and windup in the motor stalk may cause the torsional stiffening. Higher torsional motor stiffness states have also been reported previously (figure S3 in ref. 10). The maximum translational work—the maximum force times the translational step size—was 45 ± 5 pN·nm ($N = 6$), and the maximum rotational work—the maximum torque (τ_{max}) times the angular step size (θ_{step})—was 32 ± 15 pN·nm ($N = 6$, SEM of ±3 pN·nm plus ±12 pN·nm for redtance correction; see SI Appendix, section 2). Thus, the total work per step performed by the motor was up to 77 ± 16 pN·nm (propagated error). Dividing by the free energy available per hydrolysis of 1 ATP molecule of ~100 pN·nm (8) results in an overall efficiency—when accounting for both translational and rotational work of the motor—of about 80%, making it a highly efficient molecular machine, much higher than previously thought.

Discussion

The rotation and generation of torque have implications for the structure and the stepping mechanism. Recent work on intermediate states during stepping is consistent with continuous, unidirectional motor rotations (31, 32), supporting our findings. A torsional stiffening of the motor under load and potential super-twisting may be due to a structural rearrangement of the hinge domain in the motor stalk (17). Unfolding of the hinge domain might be necessary to twist the motor by multiple turns. Furthermore, our findings that the motor can sustain large torque imply that, during stepping, the bottom of the motor stalk, i.e., the position at which the neck linkers connect to the neck coiled...
and rotation of a wide range of molecular machines, including cytoskeletal motors, rotary engines like the bacterial flagellar or pili motors and the ATP synthase, or DNA topoisomerases. Rotations and the generation of torque may have to be considered for other kinesin and cytoskeletal motors and the rotational work accounted for to determine the overall motor efficiency.

Materials and Methods
Kinesin Expression and Purification. We used truncated rat kinesin-1 rK430 (kinesin heavy chain isofrom SC from Rattus norvegicus) with a C-terminal GFP and hexa-histidine tag. The protein was expressed from a bacterial plasmid PET-17b with an ampicillin selection marker. The cloned plasmid was originally provided to us by the Howard Laboratory, Yale University, New Haven, CT. Briefly, using heat shock, the cloned plasmid was transformed into BZ12(DE3)pRARE Escherichia coli competent cells. The bacteria were grown as a small culture in lysogeny broth and plated onto agar plates with ampicillin. Growing bacteria were selected for further growth in 700 mL of warm AMP-LB medium until the medium had an optical density of 0.8. The bacteria were then induced using isopropyl β-D-1-thiogalactopyranoside and allowed to grow for 12 h. The bacteria were centrifuged, and the pellet was lysed using a tip sonicator in a cold room for 60 s (6 × 10-s pulses with 20-s intervals). Then, the lysate was centrifuged to separate proteins from the cellular debris. The supernatant postcentrifugation was passed through a 1-mL HiTrAP column (17.5247.01; GE Healthcare) at a flow rate of 1 mL/min. The protein was eluted using 300 mM imidazole in the elution buffer.

Synthesis of Birefringent Microspheres. Birefringent microspheres were synthesized by evaporation and precipitation of the nematic liquid crystal precursor RM257 (Merck). The protocol is described in refs. 18 and 20 and schematically illustrated in SI Appendix, Fig. S1. Briefly, RM257 was added as a white amorphous powder to prewarmed (55 °C) ethanol with a mass-to-volume ratio of 0.1 to 1 mg/mL resulting in about 0.2- to 5-µm-diameter microspheres. To completely dissolve RM257, the solution was stirred with a magnetic stirrer at 55 °C. Simultaneously, in a separate beaker, a 3:1 solution of water and ethanol was heated to 75 °C. Subsequently, 10× the weight of RM257 of the photoinitiator Darocur 1173 (BASF) was added to the RM257 solution. The DMF-257 solution was then immediately poured into the water-ethanol solution with continuous heating (75 °C) and stirring of the solution. The water-ethanol solution volume was 10-fold that of the RM257 solution. The mixture was heated until the entire volume of ethanol evaporated. Birefringent microspheres precipitated during this stage while the solution turned milky. The size of the birefringent microspheres was controlled by varying the initial RM257 concentration, the ethanol-water ratio, and the evaporation rate.

Acrylate Coupling of Antibodies and Motor Protein Attachment. For protein coupling, 200 µL of birefringent microspheres with an approximate concentration of 10^10 microspheres per milliliter in deionized water were supplemented with 100 µL of 10 mM monofunctional methoxy-PEG-acrylate monomer (2 kDa) molecular weight, Creative GEWORKs in borate buffer (pH 8.5), and 1 µL of 30% N-acryloxysuccinimide (Sigma) in DMSO and incubated on ice for 5 min. Then, we added 100 µL BR880 (80 nM piperazine-N,N′-bis(2-ethanesulfonic acid)/KOH pH 6.9, 1 mM MgCl2, 1 mM EGTA) and, for activation, irradiated the solution with UV light (ULTRAVITALUX ultraviolet high-pressure lamp; OSRAM) for 20 s at a distance of 15 cm. Immediately afterward, 5 µL of 6.4 mg/mL anti-GFP antibody (monoclonal from mice, antibody facility Max Planck Institute of Molecular Cell Biology and Genetics) was added, and the solution was incubated for 2 h on ice. The antibody-coupled microspheres were incubated with the appropriate rK430 concentration (≈10,000 × diluted stock concentration of 100 µM for single-molecule conditions (41)) for 8 min at room temperature and then diluted in motility buffer (BR880-taxol with 0.5 mg/mL casien, ATP of appropriate concentration, and an antifade mixture (0.5% β-mercaptoethanol, 20 mM glucose, 20 µg/mL glucose oxidase, 8 µg/mL catalase, 10 mM DTT)).

Microtubule, Flow Cell, and Motility Assay Preparation. Kinesin-coated microsphere assays were performed in flow cells. Flow cells with immobilized microtubules were constructed and prepared as described in ref. 30.

Motor Functionality Under Single-Molecule Conditions. To confirm that motors were functional after coupling, we placed motor-coupled microspheres onto surface-immobilized microtubules using the optical tweezers. After turning off the trap, we tracked the microscope motion using differential interference contrast with an LED illumination (LED-DIC). To ensure single-molecule conditions, only about one out of five microspheres...
shoved motility (3). At a temperature of 29.2 ◦C (42), we measured a microsphere speed of 0.85 ± 0.11 µm/s (N = 19) consistent with the motor speed of 0.95 ± 0.07 µm/s measured by single-molecule fluorescence microscopy without microtubules and literature values (2, 3). The agreement confirmed the functionality of the motor when attached to a birefringent microsphere.

Optical Tweezers, Optical Microprotractor, Torsion Balance, and Polarization Microscopy. The measurements were performed in a single-beam optical tweezers combined with LED-DIC microscopy to visualize single microtubules. The setup, schematically depicted in SI Appendix, Fig. 52, and calibration procedures for translation and force measurements were described in detail earlier (29, 42, 43). Briefly, the setup has a near-angstrom resolution in surface-coupled assays, is equipped with a millikelvin precision temperature control on the trapping objective set to 29.200 ◦C, and has a 3D force feedback using piezo tilt mirrors for the lateral and a piezo translation stage for the axial direction (25). For polarization microscopy, we removed the DIC prisms. The polarization direction of the visible illumination is rotated 45° relative to the trapping laser polarization. Thus, when viewed under crossed polarizers, trapped microspheres have maximum brightness.

For rotation measurements, we added a half-wave and sometimes additionally a quarter-wave plate before the trapping objective to adjust the laser polarization state. In addition, we introduced a polarizing beam splitter (PBS) to couple out the backscattered laser light onto a photodiode (QPD4-Q TO, operated at 50 V reverse bias; First Sensor AG). We call the light intensity measured by this rotation detector a “rotation signal.” For circular polarization, the backscattered light reverses its polarization direction and, after passing the quarter-wave plate, is linearly polarized, with a polarization direction perpendicular to the incoming light. Thus, the photodiode after the PBS detects all backscattered light if the reflection did not result in elliptical polarization. The intensity of the rotation signal depends on the orientation of the microsphere and has the same twofold rotational symmetry as the microsphere. Therefore, the signal is proportional to sin(2θ), where θ is the rotation angle of the microsphere. As expected (21), when we used a circularly polarized laser for trapping in our optical tweezers, these microspheres rotated (SI Appendix, Fig. 59). For linear polarization, the signal intensity that results from photodiode detection is proportional to sin(θ), where θ is the angle between the microsphere’s extraordinary axis and the laser polarization direction. This angular dependence also results in a twofold rotational symmetry. Importantly, to achieve a linear response of the rotation signal as a function of θ, the trapping light needs to have elliptical polarization. We rotated the major axis by 20° compared with the system’s orthogonal coordinate system and microtubule axis (see SI Appendix, section 1). All stationary trap measurements were performed in this configuration. To calibrate the rotation signal for the case of elliptical polarization, we first calibrated the parameters for translation and force measurements (29). We measured the lateral displacement sensitivity, trap stiffness, and, importantly, the microsphere’s translational drag coefficient.

From the latter, we determined the microsphere radius, which we use as an input for the rotational simulation. We recorded a power spectrum of the rotational Brownian motion (SI Appendix, Fig. S6) and determined the angle sensitivity and torsional stiffness of the trap using the known microsphere radius and thus the known rotational drag coefficient (see SI Appendix, section 1). For polarization microscopy, images were recorded with 59 frames per second. Trapping time traces were recorded at 40 kHz with an alias-free analog-to-digital converter. Traces were smoothed with a running median filter with a bandwidth of 200 Hz. We corrected for the nonlinear response of the rotation detector (SI Appendix, sections 1 and 2) and a small crosstalk between translation and rotation signals corresponding to <4% per step (SI Appendix, Fig. S10). Some microspheres got stuck after experiments, which was beneficial to determine the crosstalk directly by scanning through the immobile microspheres. For microspheres that remained mobile, we subtracted an average 0.8% of crosstalk between the translation and rotational signals from the raw voltage data. The force clamp was operated with an update rate of 500 Hz. The diameter of the birefringent microspheres used in the motility trapping experiments ranged from about 0.6 µm to 1.2 µm, with an average size of about 0.95 µm, an average trap stiffness of 0.051 pN/m, and an average torsional stiffness of 9.200 pN m rad⁻¹. In the torsion balance mode using a 600-nm-diameter microsphere with the average torsional stiffness, we could resolve angular steps of 1° with a signal-to-noise ratio of 5 at a bandwidth of 100 Hz. The corresponding root-mean-square, angular resolution σθ = (〈σθ^2〉)^½/(2(kT/γ/meas)^½) for a measurement time t meas of 1 ms and 10 ms was 0.7° (12 mrad) and 0.2° (3.8 mrad), respectively. Overall, we analyzed the motion of 322 different molecules interacting with different microtubules on 43 different days; 65 out of 322 microspheres showed motility (20%), and 57 out of these 65 showed simultaneous translation and rotation (88%). Clear simultaneous steps in both translation and rotation signals were observed for 12 microspheres. For low ATP concentrations (<5 µM), 8 out of 33 microspheres (24%) showed motility. While all eight microspheres showed displacement activity, none showed any rotation signal. To calculate the limping ratio, we used all consecutive steps for which forces were larger than 4 pN, i.e., close to stalling conditions, and for which clear steps in both translation and rotation were visible. The resulting N = 45 angular steps that met the criteria were obtained from seven different microspheres. The average dwell time of the short and long steps were significantly different at the 95% confidence level and were 0.32 ± 0.05 s (N = 22) and 0.64 ± 0.14 s (N = 23) long, respectively. These values resulted in a limping ratio of 2.0 ± 0.5.

ACKNOWLEDGMENTS. This work is dedicated to Joe Howard for his mentoring, contribution to the kinesin field, and his 60th birthday. This manuscript was based on a hypothesis he put forward in ref. 1. We thank J. Howard, K. Harter, M. Mahammdhe, M. Jahnel, V. Bormuth, A. Jannasch, G. Hermsdorf, and M. Chugh for comments on the manuscript. We thank K. Sandomirski and T. Gisler for a detailed protocol on how to make birefringent microspheres and N. Azadfar for help with the protein purification. This work thanks the Drexel International Graduate School of Applied Science and Bioengineering for a PhD fellowship. B.R. thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship. This work was supported by the Deutsche Forschungsgemeinschaft (Emmy Noether Program), European Research Council (Starting Grant 2010, Nanometch 260875), the Technische Universität Düsseldorf, and the Universität Tübingen.